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Abstract 

In this paper an eco-epidemiological system has been proposed and studied 

analytically as well as numerically. The boundedness, existence and uniqueness of 

the solution are discussed. The local and global stability of all possible equilibrium 

point are investigated. The global dynamics is studied numerically. It is obtained 

that system has rich in dynamics including Hopf bifurcation. 
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 تأثير المرض والحصاد على ديناميكية نظام الفريسة والمفترس
 

 *هدى عبد الستار
 , قسم الرياضيات , بغداد, العراققسم الرياضيات , كلية العلوم ,جامعة بغداد 

 

 الخلاصة
. ونوقشت الحدودية, الوجدانية نموذج بيئي مرضي ودرس تحليليا وعدديا اقترح في هذا البحث

. تم بحث الاستقرارية المحلية والشاملة للنموذج المقترح. الاستقرارية الشاملة للنموذج والوحدانية للحل
 درست عدديا ايضا. لوحظ بأن النموذج المقترح غني بديناميكيته والتي تتضمن تفرع هوبف. 

 

Introduction 

The ecology and epidemiology are two important different branches of study. These branches are 
studied extensively in literatures for long time as separated branches. However, in nature there are 

situations where some diseases, which are responsible for an epidemic, have a clear impact on the 

dynamics of ecological systems. In fact mathematical models became important tools to representing 
and analyzing the effect of spreading and controlling infectious diseases on coexistence and the 

dynamical behavior of ecological systems. For instance, Hethcote et al [1] explained how the presence 

of parasites can change the demographic behavior of prey-predator system. These diseases play vital 

role in regulate the host population density and sometimes help the coexistence of species, see [2-3] 
and the references there in. The mathematical models which represent the dynamics of ecological 

systems involving, for example, SI-type, SIS-type or SIR-type of disease are known as eco-

epidemiological models. Such models have received special attention from scientists in recent years 
[4-6]. 

From historical point of view, Anderson and May [7] were the first who proposed an eco-

epidemiological model by merging the Lotka–Volterra prey–predator model and the epidemiological 
SIR model. Later on many works have been devoted to investigate the impacts of disease on a prey-

predator system [8-11] and the references there in. Most of these studies focused on the dynamical 

behavior of prey-predator model involving SI-type or SIR-type of disease which transfers from 

infected to susceptible by contact. 
Recently, Naji and Yaseen [10] proposed and analyzed a prey-predator model with infectious SIS-

type of disease in predator population. They studied the local and global stability of the system 

analytically as well as numerically.  
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Madhusudanan et al [11] proposed and analyzed a mathematical model consisting of two preys and 

a predator which is being harvested. They assumed susceptible and infected prey populations are 

predated by predated species according to Lotka-Voltterra functional response. They investigated the 

local stability of the model and observed that harvesting has a strong impact on the dynamic 
evaluation of populations in the proposed system. 

In this paper, an eco-epidemiological model consisting of a harvested prey-predator model with 

SIS-type of disease in prey was proposed and analyzed. It is assumed that the disease transmitted by 
contact as well as external sources. All the populations in the system are subjected to harvest. Finally 

the predator consumed the infected prey only according to Holling type-II functional response.     

1. The Model Formulation 
In this section an ecoepidemiological model is proposed for studied. The model consisting of two 

species      which denotes to the density of prey species at time   interact with      that represents 

the density of predator species at time  , and involving     type of disease in prey species. In order to 

formulate the model equations the following assumptions are adopted: 
1. The disease divides the population of prey into two classes, the susceptible prey that denotes to 

by:       and the infected prey which represented by     . Hence               . 

2. The disease transmitted from     to     by direct contact in addition to an external source with 

infection rates     and     respectively. Further the infected prey recovers and return back 

to become susceptible prey again with a recover rate       
3. In the absence of predator the susceptible prey growth logistically with intrinsic growth rate    

and carrying capacity    . However the infected prey cannot be reproduction due to the 
existence of disease while it still competes with the susceptible prey for resources. 

4. The predator species feeds on the infected prey only according to the  Holling type    functional 

response with     as maximum attack rate and     which stand for the half saturation 

constant, while      represents the conversion rate. Moreover the predator in the absence of 

the prey will die out with natural death rate      . 

5. Finally it is assumed that there is a harvesting on the populations of system represented by the 

harvesting rate constants             for the suscepitable prey, infected prey and predator 

respectively. 
According to the above assumptions the proposed system can be represented mathematically with the 

following set of differential equations: 
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                                                                                      (1) 

Clearly the interaction functions in the right hand side of system (1) are continuously differentiable 

functions on: 

  
  {                   } . 

Hence they are Lipschitizian. Thus system (1) with any initial condition                   
  has a 

unique solution. Furthermore, all the solutions of system (1) which start in   
  are uniformly bounded 

and hence system (1) is dissipation system as shown in the following theorem: 

Theorem (1): All the solutions, which start in   
   are uniformly bounded. 

Proof: Let                      then from system (1) we have that 
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Here      {           } .Thus from the properties of logistic growth function we get  
  

  
 

  

 
    

By using Gronwall lemma it obtains that  

                
  

  
         

Hence as     
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Which is independent of the initial conditions. Thus the proof is complete.      ■ 

2. Equilibrium points and their stability 

There are five equilibrium points for system (1) the existence conditions for each of them are given 

below: 

1. The vanish equilibrium point,             always exists. 

2. The disease and predator free equilibrium point,      ̅      where   

 ̅  
         

 
                                                                                                 (2a) 

Exists provided that the following condition holds 

                                                                                                     (2b) 

3. The predator free equilibrium point,    ( ̂  ̂  ) where 

 ̂  (
     

  ̅  
)  ̂     ̂  

 

  
 

 

  
√                                                                                           (3a) 

With 

 

                                                                           

          
                             

                              

 

Clearly    exists uniquely in the    plane provided that the following condition holds 

                                                     (3b) 

4. The coexistence equilibrium point,               where 
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                                           (4a) 

Here     
 

 
;    (

 

 
  )             and        

   . Clearly    exists uniquely in the 

interior of   
  provided that the following conditions are satisfied 

 
         

                  
                                                                                                      (4b) 

Now in order to study the local stability of each of the above equilibrium points the Jacobain matrix of 

system (1) is obtained at general point         as 

          

(
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                              (5) 

Consequently the characteristic equation of the Jacobin matrix at            can be written as 

                                                                                                            (6a) 

Where                 and                       . Thus we get the 

following eigenvalues  

 

                    

      
  

 
 

 

 
√  

     

                                 (6b) 

Where   represents the eigenvalue in the u-direction. Straightforward computation shows that,      

with      and hence both the eigenvalues    and    have negative real parts if the following 
condition holds: 

      {             
             

       
}                                                       (6c) 

Therefore    is locally asymptotically stable under the condition (6c) and saddle point otherwise. 

The Jacobian matrix at the disease free equilibrium point      ̅      can be written as follows 
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Clearly the characteristic equation for       is given by 

   ̅     ̅              ̅                                               (7b) 

This gives  

 

 ̅                   

 ̅   ̅  
  

 
 

 

 
√  

     

                                 (7c) 

Here    (     ̅

 
     )     ̅         and    (     ̅

 
   )   ̅          (
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   ). 

Note that, it is easy to verify that      and      if and only if the following condition holds: 

 
       

  
  ̅  

     

 
                                  (7d) 

Hence both the eigenvalues  ̅   ̅  have negative real parts and then     is locally asymptotically stable. 

Now regarding to predator free equilibrium point    ( ̂  ̂  ) the Jacobian matrix is given by 

       

(

 
 

     ̂

 
   ̂

 
   ̂        ̂

 
   ̂    

  ̂     ̂        
   ̂

    ̂

  
    ̂

    ̂
      )

 
 

                            (8a) 

Then the characteristic equation for       can be written as 
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Thus we obtain that 
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Accordingly the eigenvalues in Eq. (8c) have negative real parts and hence    is locally 
asymptotically stable provided that the following conditions hold 
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                                                     (8d) 
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Finally the Jacobain matrix near the positive equilibrium point               is given by: 

       (   )   
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Here        
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Therefore the characteristic equation can be written as 

        
      

                                                   (9b)  

Where              ;                         and              with        
             [                        , 

Consequently, according to the Routh-Hurwitzcriterion Eq. (9b) have roots (eigenvalues) with 

negative real parts and hence    is locally asymptotically stable if and only if the following conditions 

holds: 
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 In the following theorems, the global stability of the above equilibrium points is studied. 

Theorem (2): Assume that the equilibrium point            is locally asymptotically stable, then    

is globally asymptotically stable provided that  

                                                     (10) 
Proof: Consider the following positive definite function  

        
 

 
  

Then clearly      
    be    function. Since 

 
   

  
    

 

 
   

 

 
           

  

 
  

  

 
  

                   
       

 
                     

Thus 
   

  
 is negative definite and hence it is Lyapunov function. So    is globally asymptotically 

stable.             ■ 

Theorem 3: Assume that the disease and predator free equilibrium point      ̅      is locally 

asymptotically stable then it is globally asymptotically stable provided that  
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Proof: Consider the following positive definite function 
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Here            are positive constant to be determine below. Clearly      
   be   function. Now 

by differentiating    with respect to time and then simplifying the resulting terms we get that 
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substituting the upper bound of   we get that 
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Hence according to condition (11a) we obtain that  
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Thus according to the condition (11b), 
   

  
 is negative definite and hence   is global asymptotically 

stable.               ■ 

Theorem 4: Assume that the predator free equilibrium point    ( ̂  ̂  ) is locally asymptotically 

stable then it is globally asymptotically stable provided that  
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Proof: Consider the following positive definite function  
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Where             are positive constant to be determine. Clearly     
    is continuously 

differentiable positive definite function with   ( ̂  ̂  )    and              otherwise. 

Since  
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So by substituting the equations of system (1) and then simplifying the resulting terms we obtain that 
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, we obtain with the help of  condition (12b) that  
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Clearly according to condition (12a) we have 
   

  
   and hence according to Lyapunov second 

theorem    is globally asymptotically stable in the   
 .                  ■ 

Theorem 5: Assume that the positive equilibrium point               of system (1) is locally 

asymptotically stable, then it is globally asymptotically stable in   
  provided that 
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Note that, it is easy to verity that condition (13a) guarantees the positivity of the coefficient of the term 
       , while condition (13b) yields that  
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Therefore
   

  
  , that gives    is a Lyapunov function. So    is globally asymptotically stable in   

 . 

                                                                                ■  

3. Numerical Simulation 

In this section the global dynamics of system (1) is studied numerically with different sets of 

parameters and different sets of initial points. The objectives of this study are: first investigate the 
effect of varying the value of each parameter on the dynamics of system (1) and second confirm our 

obtained analytical results. It is observed that, for the following set of hypothetical parameters: 

 
                                   
                                     

                             (14) 

System (1) has a globally asymptotically stable as shown in Figure-1 below.  

 

 
Figure 1- Time series of the solution of system (1) that approach asymptotically to the                    

starting at different initial points. (a) trajectories of susceptible prey as a function of time, (b) 

trajectories of infected prey as a function of time, (c) trajectories of predator as a function of time. 

 

Clearly this is confirming our obtained analytical results regarding to global stability of the positive 

equilibrium point. Now in order to discuss the impact of varying the parameters values of system (1) 

on the global dynamics of the system, the system is solved numerically for the data given in equation 
(14) with varying one parameter each time. It is observed that for the data given in equation (14) with 

varying the intrinsic growth rate   in the range             the solution approaches 

asymptotically to predator free equilibrium point as shown in the typical Figure-2 for the value 

      however, for the range          it approaches to vanish equilibrium point as shown in 

the typical Figure-3 at the value      . Moreover for the range        it’s observed that the 

system (1) approaches asymptotically to periodic attractor as shown in the typical Figure-4 when 

          . Otherwise the solution of system (1) has a globally asymptotically stable positive 
equilibrium point. 

Clearly, as shown in Figure-4, the system (1) undergoes a Hopf bifurcation as the parameter   

passes the value         and the period size increases as the parameter value increases. 
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Figure 2- The solution of system (1) approaches asymptotically to                  for the data in (14) with 

     . (a) 3D attractor of system (1). (b)  Time series of 3D attractor. 

 
Figure 3-The solution of system (1) approaches asymptotically to            for the data in (14) with    

   . (a) 3D attractor of system (1). (b)  Time series of 3D attractor. 
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Figure 4-The solution of system (1) approaches asymptotically to periodic attractor for the data in (14) with two 

different values of  . (a)3D periodic attractor of system (1) when       . (b)Time series of 3D attractor 

in (a). (c) 3D periodic attractor of system (1) when      . (b)  Time series of 3D attractor in (c). 

 

    Now as the contact infection rate decreases in the range β≤0.19 then system (1) approaches 

asymptotically to periodic attractor in the interior of positive cone as shown in typical Figure-5 for the 
data (14) with to different values of β. Obviously, the solution of system undergoes Hopf bifurcation at 

the point β=0.19 and the period size increases as the parameter value decreases. Moreover, as the 

contact infection rate increases in the range β≥0.36 the system (1) approaches the predator free 
equilibrium point E_2 as shown in the typical Figure-6 for β=0.4. Otherwise the solution still 

approaches asymptotically to the positive equilibrium point. 

    Similar behavior is obtained as that shown with varying β, for the parameters α,h_1,c_2,d_2 and 
h_3. However, decreasing the value of the parameters d_1,c_1 and e below the value that given in (14) 

leads to approach to the predator free equilibrium point, while increasing that value above the specific 

value in (14) leads to periodic solution. Finally increasing the value of K or decreasing the value of 

h_2 do not change the behavior of the system (1) and the solution still approaches to the positive 
equilibrium point, while  decreasing the value of K or increasing the value of h_2 makes the solution 

approaches to the predator free equilibrium point. 
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Figure 5- The solution of system (1) approaches asymptotically to periodic attractor for the data in (14) with two 

different values of  . (a) 3D periodic attractor of system (1) when       . (b)  Time series of 3D 

attractor in (a). (c) 3D periodic attractor of system (1) when       . (b)  Time series of 3D attractor 

in (c). 

 

 
Figure 6-The solution of system (1) approaches asymptotically to                 for the data in (14) with 

     . (a) 3D attractor of system (1). (b)  Time series of 3D attractor. 

 

On the other hand the solution of system (1) approaches asymptotically to the disease and predator 
free equilibrium point as shown in Figure-7 for the following set of parameters, 
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Figure 7-The solution of system (1) approaches asymptotically to               for the data in (15) (a) 3D 

attractor of system (1). (b)  Time series of 3D attractor. 

 

4. Discussion and Conclusions 

 An eco-epidemiological model consisting of a harvested prey-predator model with SIS-type of 
disease in prey was proposed and analyzed. It is observed that the system has at most four nonnegative 

equilibrium points. The stability analysis (local and global) of all possible equilibrium pointes is 

carried out. The boundedness of the solution of the system has been proved. In order to study the 

effect of varying the parameters including harvest on the dynamical behavior of the system, a 
numerical work have been done taking into account the set of values of the parameters in (14).  The 

results can be summarized as follow: 

1. The system (1) has a globally asymptotically stable positive equilibrium point and that confirm our 
analytical results. 

2. Decreasing the intrinsic growth rate leads to extinction in predator species first and then the system 

approaches to predator free equilibrium point. Further decreasing of this parameter will causes 

extinction in all species and the solution approaches to vanish equilibrium point. However 
increasing the value of intrinsic above a specific value leads to destabilizing of the positive 

equilibrium point and the system undergoes a Hopf bifurcation and converges to a periodic 

solution. 
3. Decreasing the value of contact infection rate below a specific value leads to destabilizing of the 

positive equilibrium point and the system undergoes a Hopf bifurcation and converges to a 

periodic solution. However increasing the value of this parameter causes extinction in predator 
species and the solution approaches to the predator free equilibrium point. 

4. Similar behavior is obtained as that shown with varying contact infection rate, for the parameters: 

external infection rate, susceptible harvest rate, half saturation constant, predator death rate and 

predator harvest rate.  
5. Decreasing the value of recovery rate, attack rate and conversion rate of food lead to approach to 

the predator free equilibrium point, while increasing these parameters above the specific value lead 

to occurrence of Hopf bifurcation and periodic solution appear.  
6. Increasing the value of carrying capacity or decreasing the value of infected prey harvest rate do 

not change the behavior of the system (1) and the solution still approaches to the positive 

equilibrium point, while  decreasing the value of carrying capacity or increasing the value of 

infected prey harvest rate make the solution approaches to the predator free equilibrium point.  
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7. Finally, the system approaches to disease and predator free equilibrium point for the date given in 

(15), which satisfy the stability conditions of this point obtain analytically. 
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