Iraqi Journal of Science, 2019, Vol. 60, No.5, pp: 1129-1137 DOI: 10.24996/ijs.2019.60.5.21

ISSN: 0067-2904

On H-µ-supplemented modules

Enas Mustafa Kamil^{*}, Wasan Khalid

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

We say that the submodules *A*, *B* of an *R*-module *M* are μ -equivalent, $A\mu B$ if and only if $\frac{A+B}{A} \ll \frac{M}{A}$ and $\frac{A+B}{B} \ll \frac{M}{B}$. We show that μ relation is an equivalent relation and has good behavior with respect to addition of submodules, homorphisms, and direct sums, we apply these results to introduced the class of H- μ -supplemented modules. We say that a module *M* is H- μ -supplemented module if for every submodule *A* of *M*, there is a direct summand *D* of *M* such that $A\mu D$.

Keywords: µ relation, H-µ-supplemented modules.

Various properties of these modules are given.

حول مقاسات المكملات من النمط-H-µ

الخلاصة

نقول ان المقاسات الجزئية A, B من المقاس M متكافئة بالعلاقة μ اذا كان $\frac{M}{A} = \frac{M}{A} e^{\mu}$ و $\frac{M}{B} = \frac{M}{B}$. سوف نبرهن ان العلاقة μ علاقة تكافؤ و لها سلوك جيد في جمع المقاسات الجزئية و صورها و الجمع المباشر و سنطبق هذه النتائج لتقديم صنف جديد من المقاسات وهو مقاسات المكملات من النمط μ -H نقول ان المقاس M هو مقاسا مكملا من النمط μ -H اذا كان لكل مقاس جزئي A من M, يوجد مركبة جداء مباشر D من M بحيث ان $A\mu$. . كما يتضمن البحث بعض الخواص الاساسية و المتوعة.

1. Introduction

Throughout this paper all rings *R* are associative with unity and modules are unital left R-modules. Let *M* be an *R*-module and let *A* be a submodule of *M*, *A* is called small (or superfluous) in *M*, denoted by A << M, if for every submodule *B* of *M* the equality A + B = M implies M = B, see [1]. *A* is called a supplement of *B* in

M if *A* is a minimal with respect to the property A+B = M, equivalently, *A* is a supplement of *B* in *M* if and only if A+B = M and $A \cap B << A$. A module *M* is called

supplemented module if every submodule of *M* has a supplement in *M*, see [2]. As a generalization of small submodule, in [3], we define μ -small submodule in *M* as: *A* is called μ -small submodule of *M* (denoted by $A \ll_{\mu} M$) if whenever A + B = M with $\frac{M}{B}$ is cosingular, then M = B. A submodule *A* of *M* is called μ supplement of *P* in *M* if

is called μ -supplement of *B* in *M* if

^{*}Email:enasmustafa90@yahoo.com

A+B = M and $A \cap B <<_{\mu} A$. A module M is called μ -supplemented module if every submodule of M has a μ -supplement, See [4]. G.F. Birkenmeier [5] defines β^* relation as: the submodules A and B of M are β^* equivalent, $A\beta^*B$ if and only if $\frac{A+B}{A} << \frac{M}{A}$ and $\frac{A+B}{B} << \frac{M}{B}$ and define Goldie*-lifting (H-supplemented) module as : M is H-supplemented module if for every submodule A of M, there is

(H-supplemented) module as : M is H- supplemented module if for every submodule A of M, there is a direct summand D of M such that $A\beta^*D$, to study on the open problem "Is every H-supplemented module is supplemented?"

In section 2, we define an equivalence relation μ as a generalization of β^* by, A and B are μ equivalent, $A\mu B$ if and only if $\frac{A+B}{A} \ll \frac{M}{A}$ and $\frac{A+B}{B} \ll \frac{M}{B}$. Also, we investigate the basic properties of μ . We show it is indeed an equivalence relation on the set of submodules of M, it is congruence relation to addition in the lattice of submodules of M.

A module *M* is called lifting module if for every submodule *A* of *M*, there is a decomposition $M = D \oplus D'$, $D \le A$ and $A \cap D' << D'$, see [6]. *M* is called μ -lifting module if for every submodule *A* of *M*, there is a decomposition $M = D \oplus D'$, $D \le A$ and $A \cap D' << D'$, see [6]. *M* is called μ -lifting module if for every submodule *A* of *M*, there is a decomposition $M = D \oplus D'$, $D \le A$ and $A \cap D' << \mu D'$, see [7].

In section3, we define H- μ -supplemented module as a generalization of Goldie*-lifting module as follows, *M* is called H- μ -supplemented module if for every submodule *A* of *M*, there is a direct summand *D* of *M* such that $A\mu D$. We give some characterizations of H- μ -supplemented. Also, we give necessary assumptions for a quotient module or a direct summand of H- μ -supplemented to be H- μ -supplemented.

2. The µ relation.

In this section we define and study the basic properties of μ -relation on the set of submodules of M. These properties will be used in section 3.

Definition (2.1): Let M be an R-module and let μ be a relation on the set of submodules of M defined as follows: A μ B if $\frac{A+B}{A} \ll_{\mu} \frac{M}{A}$ and $\frac{A+B}{B} \ll_{\mu} \frac{M}{B}$.

Lemma (2.2): µ is an equivalence relation.

Proof:

Clearly that μ is reflexive and symmetric. To show that μ is transitive, let A, B and C be submodules of a module M such that $A\mu B$ and $B\mu C$, then $\frac{A+B}{A} <<_{\mu} \frac{M}{A}$, $\frac{A+B}{B} <<_{\mu} \frac{M}{B}$, $\frac{B+C}{B}$, $<<_{\mu} \frac{M}{B}$, $\frac{B+C}{B}$, $<<_{\mu} \frac{M}{C}$. Let U be a submodule of M containing A such that $\frac{M}{A} = \frac{A+C}{A} + \frac{U}{A}$, $\frac{M}{U}$ is cosingular, then M = A+C+U = C+U and hence $\frac{M}{B} = \frac{C+U}{B} = \frac{C+B}{B} + \frac{U+B}{B}$. Since $\frac{M}{U+B}$ is cosingular and $\frac{B+C}{B} <<_{\mu} \frac{M}{B}$, then $\frac{M}{B} = \frac{U+B}{B}$, hence M = U+B and $\frac{M}{A} = \frac{A+B}{A} + \frac{U}{A}$. But $\frac{A+B}{A} <<_{\mu} \frac{M}{A}$, therefore M = U, which means that $\frac{A+C}{A} <<_{\mu} \frac{M}{A}$. Similarly, $\frac{A+C}{C} <<_{\mu} \frac{M}{C}$.

Let *M* be an *R*-module and let *X* and *A* be submodules of *M* such that $X \le A \le M$, then *X* is called **µ**-coessential submodule of *A* in *M* (briefly $X \le_{\mu ce} A$ in *M*) if $\frac{A}{X} <<_{\mu} \frac{M}{X}$. See [7].

Examples and Remarks (2.3)

(1) Let *A* and *B* be submodules of an *R*-module *M* such that $A \leq B$, then $A \mu B$ if and only if $A \leq_{\mu ce} B$ in *M*. For example Z_8 as *Z*- module. It is easy to see that $\{\overline{0}, \overline{4}\}\mu\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$, where $\{\overline{0}, \overline{4}\}\leq_{\mu ce} \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ in Z_8 .

(2) In Z as Z- module, let A = 6Z, B = 4Z. One can easily show that A is not related with B by μ .

(3) Let *A* be a submodule of an *R*-module *M*. Then $A\mu 0$ if and only if $A \ll_{\mu} M$.

The following theorem gives a characterization of μ .

Theorem (2.4): Let A, B be submodules of an *R*-module M. The following statements are equivalent. (1) $A\mu B$.

(2) $A \leq_{\mu ce} A + B$ in M and $B \leq_{\mu ce} A + B$ in M.

(3) For each submodule X of M such that M = A + B + X, $\frac{M}{X}$ is cosingular, then M = A + X and M = B + X.

(4) If M = K + A, for any submodule K of M such that $\frac{M}{K}$ is cosingular, then M = K + B and if M =

B+*L*, for any submodule *L* of *M* such that $\frac{M}{L}$ is cosingular, then M = A + L.

Proof: (1) \Rightarrow (2) Clear.

(2) \Rightarrow (3) Assume that $A \leq_{\mu ce} A + B$ in M and $B \leq_{\mu ce} A + B$ in M, let X be a submodule of M such that M = A + B + X, $\frac{M}{X}$ is cosingular, then $\frac{M}{A} = \frac{A + B}{A} + \frac{X + A}{A}$, $\frac{M}{X + A}$ is cosinular, by [3, corollary (2.6)]. But $A \leq_{\mu ce} A + B$ in M, therefore M = X + A. Similarly, M = B + X.

(3) \Rightarrow (4) Let *K* be a submodule of *M* such that M = A + K, $\frac{M}{K}$ is cosingular, then M = A + B + K. By (3) M = B + K. Similarly, we can prove the second part.

(4) \Rightarrow (1) To show that $A \mu B$, we have to show that $\frac{A+B}{A} <<_{\mu} \frac{M}{A}$ and $\frac{A+B}{B} <<_{\mu} \frac{M}{B}$. Let U be a

submodule of *M* containing *A* such that $\frac{M}{A} = \frac{A+B}{A} + \frac{U}{A}$, $\frac{M}{U}$ is cosingular, then M = A+B+U = B+U.

By (4)
$$M = A + U = U$$
, hence $\frac{A+B}{A} \ll_{\mu} \frac{M}{A}$. Similarly, $\frac{A+B}{B} \ll_{\mu} \frac{M}{B}$.

Corollary (2.5): Let A and B be submodules of an *R*-module M such that $A \le B+K$ and $B \le A+L$, where K, L are μ -small submodules of M, then $A\mu B$.

Proof: Let M = A + B + X, $\frac{M}{X}$ is cosingular, for some submodule X of M, then M = B + K + X and

 $\frac{M}{B+X}$ is cosingular. Since $K \ll_{\mu} M$, then M = B+X. Similarly, we can show that M = A+X. Thus $A \mu B$.

Note: There is a module M with A, B and K submodules of M such that M = A + K = B + K, $\frac{M}{K}$ is cosingular, but A is not related with B by μ . For example, Consider Z as Z-module and let K = 3Z, A = 2Z, B = 5Z. Clearly Z = 2Z + 3Z = 5Z + 3Z but 2Z is not μ related to 5Z.

Proposition (2.6): Let *M* be an *R*-module and let *A*, *B* and *C* be submodules of *M*. If $A \mu B$, then $A <<_{\mu} M$ if and only if $B <<_{\mu} M$. **Proof:**

Assume that $A \mu B$ and $A \ll_{\mu} M$, let U be a submodule of M such that M = B + U, $\frac{M}{U}$ is cosingular. Since $A \mu B$, then M = A + U, by theorem (2.4). But $A \ll_{\mu} M$, therefore M = U, hence $B \ll_{\mu} M$. The

converse is similar. **Proposition** (2.7): Let $M = D \oplus D'$, and let A, B be submodules of D. Then $A\mu B$ in M if and only if $A\mu B$ in D. **Proof:**

Suppose that $A\mu B$ in M and let D = A + B + X, $\frac{D}{V}$ is cosingular, then M = D + D' = A + B + X + D', $\frac{M}{X+D}$ is cosingular. But $A\mu B$ in M, then M = A+X+D' = B+X+D'. Note $D = D \cap M = D \cap (A+X+D')$ = A+X. Similarly D = B+X. Thus $A \mu B$ in D. For the converse assume that $A \mu B$ in D, then $\frac{A+B}{A} \ll_{\mu} M$ $\frac{D}{A} \text{ and } \frac{A+B}{B} <<_{\mu} \frac{D}{R}, \text{ hence } \frac{A+B}{A} <<_{\mu} \frac{M}{A} \text{ and } \frac{A+B}{B} <<_{\mu} \frac{M}{B}. \text{ Thus } A\mu B \text{ in } M.$ **Proposition** (2.8): Let M be an R-module and let A, B be submodules of M, then $A\mu B$ if and only if

 $\frac{A}{L} \mu \frac{B}{L}$, for every submodule L of M contained in A and B. **Proof:**

(⇒) Suppose that $A \mu B$ and let *L* be a submodule of *M* contained in *A* and *B*, then $A \leq_{\mu ce} A + B$ in *M* and $B \leq_{\mu ce} A + B$ in M. [7, Prop. (2.4)], $\frac{A}{L} \leq_{\mu ce} \frac{A+B}{L} = \frac{A}{L} + \frac{B}{L}$ in $\frac{M}{L}$ and $\frac{B}{L} \leq_{\mu ce} \frac{A+B}{L} = \frac{A}{L} + \frac{B}{L}$ in $\frac{M}{I}$. Thus $\frac{A}{I} \mu \frac{B}{I}$.

(\Leftarrow) Suppose that $\frac{A}{I} \mu \frac{B}{I}$ for every submodule L of M contained in A and B, then $\frac{A}{I} \leq_{\mu ce} \frac{A}{I} + \frac{B}{I} =$ $\frac{A+B}{L} \text{ in } \frac{M}{L} \text{ and } \frac{B}{L} \leq_{\mu ce} \frac{A}{L} + \frac{B}{L} = \frac{A+B}{L} \text{ in } \frac{M}{L}. \text{ By [7, Prop. (2.4)], } A \leq_{\mu ce} A+B \text{ in } M \text{ and } B \leq_{\mu ce} \frac{A+B}{L} \text{ in } \frac{M}{L}.$

A+B in M. Thus $A\mu B$.

Proposition (2.9): Let A_1 , A_2 , B_1 and B_2 be submodules of an *R*-module *M* such that $A_1\mu B_1$ and $A_2\mu B_2$, then $(A_1 + A_2)\mu(B_1 + B_2)$.

Proof: Assume that $A_1 \mu B_1$ and $A_2 \mu B_2$. Then $A_1 \leq_{\mu ce} A_1 + B_1$ in M, $A_2 \leq_{\mu ce} A_2 + B_2$ in M, $B_1 \leq_{\mu ce} A_1 + B_1$ in *M* and $B_2 \leq_{\mu ce} A_2 + B_2$ in *M*. So $(A_1 + A_2) \leq_{\mu ce} (A_1 + A_2) + (B_1 + B_2)$ in *M* and $(B_1 + B_2) \leq_{\mu ce} (A_1 + A_2) + (B_1 + B_2)$ in *M*, by [7,Prop. (2.6)]. Thus $(A_1+A_2)\mu(B_1+B_2)$.

By induction, one can easily prove the following corollary. **Corollary** (2.10): Let A, B_1, B_2, \ldots, B_n be submodules of a module M. If $A \mu B_i$, $\forall i=1, \ldots, n$. Then

$$A\mu B$$
, where $B = \sum_{i=1}^{n} Bi$.

Remark (2.11): Note that Prop. (2.9) cannot be extend to an infinite sum. For example, consider Q as

Z- module. Since
$$\langle \frac{p}{q} \rangle \langle \langle \mu \rangle Q$$
 for each $\frac{p}{q} \in Q$, then $\langle \frac{p}{q} \rangle \mu 0$. If Prop. (2.9) was true for

even countably infinite sum then $Q\mu 0$, which is a contradiction since Q is not μ -small in Q and by (2.3-3) we get a contradiction.

Corollary (2.12): Let M be an R-module. If $A \mu B$ and C is any submodule of M, then $(A+C)\mu(B+C)$. The converse is true when $C <<_{\mu} M$.

Proof: Assume that $A\mu B$. Since $C\mu C$, then $(A+C)\mu(B+C)$, by Prop. (2.9). Conversely, assume that $C \ll_{\mu} M$ and $(A+C)\mu(B+C)$, then $A+C \leq_{\mu ce} A+B+C$ in M and $B+C \leq_{\mu ce} A+B+C$ in M. Since $C \ll_{\mu} M$, then $A \leq_{\mu ce} A + B$ in M and $B \leq_{\mu ce} A + B$ in M, by [7, Prop. (2.7)]. Thus $A \mu B$.

Proposition (2.13): Let $f: M \to M'$ be an *R*- epimorphisim. Then:

(1) If A, B are submodules of M such that $A\mu B$, then $f(A)\mu f(B)$.

(2) If A, B are submodules of M' such that $A\mu B$, then $f^{-1}(A)\mu f^{-1}(B)$.

Proof:

(1) Suppose that $A \mu B$, then $A \leq_{\mu ce} A + B$ in M and $B \leq_{\mu ce} A + B$ in M, hence $f(A) \leq_{\mu ce} f(A + B) = f(A) + f(A)$ (B) in M' and $f(B) \leq_{uce} f(A+B) = f(A) + f(B)$ in M', by [7, Prop. (2.9)]. Thus $f(A) \mu f(B)$.

(2) Let
$$M = f^{-1}(A) + f^{-1}(B) + U$$
, $\frac{M}{U}$ is cosingular, then $M' = A + B + f(U)$, $\frac{M'}{f(U)}$ is cosingular, by [3,

Prop. (2.8)]. But $A\mu B$, therefore M' = A + f(U) = B + f(U) which implies that $M = f^{-1}(A) + U = f^{-1}(B) + U$. Thus $f^{-1}(A)\mu f^{-1}(B)$.

Proposition (2.14): Let $M = M_1 \oplus M_2$ be an *R*-module and let $A \leq M_1$ and $B \leq M_2$. Then $A \mu M_1$ and $B \mu M_2$ if and only if $(A \oplus B) \mu (M_1 \oplus M_2)$.

Proof:

 (\Rightarrow) By Prop. (2.9).

 (\Leftarrow) Let $P_1: M \to M_1$ and $P_2: M \to M_2$ be the projection homomorphisms on M_1 and M_2 respectively. Since $(A \oplus B)\mu(M_1 \oplus M_2)$, then $A = P_1(A \oplus B)\mu P_1(M_1 \oplus M_2) = M_1$ and $B = P_2(A \oplus B)\mu P_2(M_1 \oplus M_2) = M_2$. Thus we get the result.

3. H-µ-Supplemented modules.

In this section, we use the equivalence relation μ to define the class of analogue of H-supplemented which was appeared in [5]. Some basic properties including behavior with respect to direct sums and direct summands are studied for this class.

Definition (3.1): Let *M* be an *R*-module. We say that *M* is **H**- μ -supplemented if for every submodule *A* of *M*, there exists a direct summand *D* of *M* such that $A\mu D$.

M is called μ -lifting R-module if for every submodule *A* of *M*, there is a decomposition $M = D \oplus D'$, $D \leq A$ and $A \cap D' <<_{\mu} D'$, see [7].

Remarks and examples (3.2):

(1) Cleary that every μ -lifting is H- μ -supplemented. Example (3.3) shows that the converse in not true in general.

(2) Every H-supplemented is H- μ -supplemented. The converse is not true in general, see [3, example (3.17)].

(3) Z_4 as Z-module is H- μ -supplemented.

- (4) Z as Z-module is not H- μ -supplemented module.
- (5) It is easy to see that Q as Z-module is not H- μ -supplemented.
- (6) H- μ supplemented modules are closed under isomorphisms.

Example (3.3): Consider the *Z*-module $M = Z_8 \oplus Z_2$. The submodules of *M* are:

 $A_{I} = \{(\bar{1}, \bar{0}), (\bar{2}, \bar{0}), (\bar{3}, \bar{0}), (\bar{4}, \bar{0}), (\bar{5}, \bar{0}), (\bar{6}, \bar{0}), (\bar{7}, \bar{0}), (\bar{0}, \bar{0})\}.$

$$A_{2} = \{ (2,0), (4,0), (6,0), (0,0) \}.$$

$$A_{3} = \{ (\bar{4},\bar{0}), (\bar{0},\bar{0}) \}.$$

$$A_{4} = \{ (\bar{0},\bar{1}), (\bar{0},\bar{0}) \}.$$

 $\begin{aligned} &A_4 = \{(0,1), (0,0)\}.\\ &A_5 = \{(\bar{1},\bar{1}), (\bar{2},\bar{0}), (\bar{3},\bar{1}), (\bar{4},\bar{0}), (\bar{5},\bar{1}), (\bar{6},\bar{0}), (\bar{7},\bar{1}), (\bar{0},\bar{0})\}.\\ &A_6 = \{(\bar{2},\bar{1}), (\bar{4},\bar{0}), (\bar{6},\bar{1}), (\bar{0},\bar{0})\}.\\ &A_7 = \{(\bar{4},\bar{1}), (\bar{0},\bar{0})\}.\\ &A_8 = \{(\bar{2},\bar{0}), (\bar{4},\bar{0}), (\bar{6},\bar{0}), (\bar{2},\bar{1}), (\bar{4},\bar{1}), (\bar{6},\bar{1}), (\bar{0},\bar{1}), (\bar{0},\bar{0})\}.\\ &A_9 = \{(\bar{4},\bar{0}), (\bar{4},\bar{1}), (\bar{0},\bar{1}), (\bar{0},\bar{0})\}.\\ &A_{I0} = \{(\bar{0},\bar{0})\}.\\ &A_{I1} = M.\end{aligned}$

Clearly that $M = A_1 \oplus A_4 = A_1 \oplus A_7 = A_4 \oplus A_5$ and the μ -small submodules of M are A_2 and A_3 . It is enough to check that A_{6_1} A_8 and A_9 satisfy the definition. For A_6 , the only submodule A of M satisfy A_6 +A = M is A_1 . Since A_1 is a direct summand of M then $A_6\mu A_4$ and $A_6\mu A_7$.

For A_8 , since A_1 and A_5 are satisfy $M = A_8 + A_1 = A_8 + A_5$ and both is a direct summand, then $A_8\mu A_4$. By the same argument one can see that $A_9\mu A_4$. Thus M is H- μ - supplemented but not μ - lifting, by [7].

The following proposition gives a condition under which μ - lifting and H- μ - supplemented modules are equivalent.

Proposition (3.4): Let *M* be an *R*-module such that every submodule of *M* has a unique μ - coclosure. Then *M* is μ - lifting if and only if *M* is H- μ - supplemented.

Proof

Let M be an H- μ - supplemented and let A be a submodule of M, there is a direct summand D of M such that A μ D. Claim that D is μ - coclosure of A, to see this, let B be a μ - coclosure of A, then B $\leq_{\mu ce}$ A in M and B $\leq_{\mu ce}$ M, hence B $\leq_{\mu ce}$ A+D which means that B is μ - coclosure of A+D. But D is a μ - coclosure of A+D, therefore by our assumption, D = B \leq A. Thus M is μ - lifting. The converse is clear.

Next, we give various characterizations of H-µ-supplemented module.

Proposition (3.5): Let M be an R-module. Then the following statements are equivalent.

(1) M is H- μ -supplemented.

(2) For every submodule A of M, there exists a direct summand D of M such that $M = D \oplus D'$, $D' \leq M$ and $(A+D) \cap D' \ll_{\mu} D'$.

(3) For every submodule A of M, there exists a direct summand D of M such that $A+D = D \oplus S$, $S <<_{\mu} M$.

Proof

 $(1) \Longrightarrow (2)$ Assume that *M* is H- μ -supplemented and let *A* be a submodule of *M*, there exists a direct summand *D* of *M* such that $A\mu D$. Let $M = D \oplus D'$, $D' \le M$. To show that $(A+D) \cap D' <<_{\mu} D'$, let *U* be a submodule of *D*' such that $[(A+D) \cap D']+U = D'$, $\frac{D'}{U}$ is cosingular. So $M = D+D' = D+[(A+D) \cap D']$

$$D']+U$$
. Now, $\frac{M}{D} = \frac{D+U}{D} + \frac{[(A+D) \cap D']+D}{D}$. But $D \le [(A+D) \cap D'] + D \le A+D$ and $D \le_{\mu ce} A+D$

in *M*, therefore $D \leq_{\mu ce} [(A+D) \cap D'] + D$ in *M*, by [7,Prop. (2.5)] and $\frac{M}{U+D} = \frac{D+D'}{U+D} = \frac{D+D'}{U+D}$

$$\frac{(D+U)+D'}{U+D} \cong \frac{D'}{D' \cap (U+D)} = \frac{D'}{U} \text{ is cosingular implies } M = D+U. \text{ Since } D \cap U \le D \cap D' = 0,$$

then $D \cap U = 0$. Hence $M = D \oplus U$. So U = D'. Thus $(A+D) \cap D' \ll_{\mu} D'$.

(2) \Rightarrow (3) Let *A* be a submodule of *M*. By (2), there exists a direct summand *D* of *M* such that $M = D \oplus D'$, $D' \leq M$ and $(A+D) \cap D' \ll_{\mu} D'$. Now, $A+D = (A+D) \cap M = (A+D) \cap (D+D') = D \oplus [(A+D) \cap D']$, $(A+D) \cap D' \ll_{\mu} D'$.

(3) \Rightarrow (1) Let *A* be a submodule of *M*. By (3) there exists a direct summand *D* of *M* such that A+D = D $\oplus S$, $S <<_{\mu} M$. Let $\frac{M}{D} = \frac{A+D}{D} + \frac{U}{D}$, $\frac{M}{U}$ is cosingular, then M = A+D+U = D+S+U = S+U = U, hence $\frac{A+D}{D} <<_{\mu} \frac{M}{D}$. Similarly, we can show that $\frac{A+D}{A} <<_{\mu} \frac{M}{A}$. Thus $A\mu D$.

Corollary (3.6): Let *M* be an H- μ -supplemented module, then for each submodule *A* of *M*, there exists a direct summand *D* of *M* such that $M = D \oplus D'$, where $D' \leq M$ and $A \cap D' \ll_{\mu} D'$. **Proof** Clear.

One can easily prove the following characterization for H-µ-supplemented modules.

Proposition (3.7): Let *M* be an *R*-module. Then *M* is H-µ-supplemented if and only if for each submodule *A* of *M*, there exists $f \in \vartheta$ (End (*M*)) such that $A\mu f(M)$, where ϑ (End (*M*)) = { $f: M \to M$ | f is an *R*-homomorphism such that $f \circ f = f$ }.

The following proposition gives another characterization of H-µ-supplemented.

Proposition (3.8): Let *M* be an *R*-module, then *M* is an H- μ -supplemented if and only if for each submodule *A* of *M*, there exists a direct summand *D* of *M* and a submodule *B* of *M* such that $A \leq_{\mu ce} B$ in *M* and $D \leq_{\mu ce} B$ in *M*.

Proof:

Suppose that *M* is H-µ-supplemented and let *A* be a submodule of *M*, then there exists a direct summand *D* of *M* such that $A\mu D$, hence $A \leq_{\mu ce} A+D$ in *M* and $D \leq_{\mu ce} A+D$ in *M*. Put B = A+D. Thus, we get the result.

Conversely, Let *A* be a submodule of *M*. By our assumption, there exists a direct summand *D* of *M* and a submodule *B* of *M* such that $A \leq_{\mu ce} B$ in *M* and $D \leq_{\mu ce} B$ in *M*. Since $D \leq A+D \leq B$ and $D \leq_{\mu ce} B$

in *M*, then $D \leq_{\mu ce} A + D$ in *M*, by [7,Prop. (2.5)]. Similarly, $A \leq_{\mu ce} A + D$ in *M*. Thus *M* is H-µ-supplemented module.

The following propositions gives a condition under which a factor of H- μ -supplemented module is H- μ -supplemented.

Recall that an *R*-module *M* is called **distributive** if for all *A*, *B* and $C \leq M$, $A \cap (B+C) = (A \cap B) + (A \cap C)$. See [8].

Proposition (3.9): Let *M* be an H- μ -supplemented *R*-module and let *A* be a submodule of *M*, then $\frac{M}{A}$

is H-µ-supplemented in each of the following cases.

(1) For every direct summand D of M, $\frac{D+A}{A}$ is a direct summand of $\frac{M}{A}$.

(2) *M* is distributive module. **Proof**

(1) Suppose that *M* is an H- μ -supplemented *R-module* and let $\frac{X}{A}$ be a submodule of $\frac{M}{A}$. Since *M* is H- μ - supplemented, there exists a direct summand *D* of *M* such that $M = D \oplus D'$, $D' \leq M$ and $X\mu D$. By hypothesis $\frac{D+A}{A}$ is a direct summand of $\frac{M}{A}$ and $\frac{D+A}{A} \mu \frac{M}{A}$, by Prop. (2.8). Thus $\frac{M}{A}$ is H- μ -upplemented.

(2) Suppose that *M* is distributive module, we use (1) to show that $\frac{M}{A}$ is H-µ-supplemented. Let *D* be a direct summand of *M*. Since *M* is distributive, then $\frac{D+A}{A}$ is a direct summand of $\frac{M}{A}$, by the same

argument in [7, Prop. (3.9)]. So, by (1) *M* is H- μ -supplemented module. Let *M* be an *R*-module. Recall that a submodule *A* of *M* is called a **fully invariant** if $g(A) \le A$, for

every $g \in \text{End}(M)$ and M is called **duo module** if every submodule of M is fully invariant. See [9]. **Proposition (3.10):** Let M be an H- μ -supplemented module. If A is a fully invariant submodule of M,

then $\frac{M}{\Lambda}$ is an H-µ-supplemented module.

Proof

Let $\frac{X}{A}$ be a submodule of $\frac{M}{A}$. Since *M* is H-µ-supplemented, there exists a direct summand *D*

of *M* such that $X\mu D$, where $M = D \oplus D'$ and $D' \leq M$. By [9, lemma (5-4)], we have $\frac{M}{A} = \frac{D+A}{A} \oplus D' + A$

$$\frac{D'+A}{A}$$
. Since $X\mu D$, then $\frac{X}{A}\mu \frac{D+A}{A}$, by Prop. (2.8). Thus $\frac{M}{A}$ is a H- μ -supplemented module.

Corollary (3.11): Let *M* be an H- μ -supplemented duo module, then $\frac{M}{A}$ is H- μ -supplemented for every submodule *A* of *M*.

Proposition (3.12): Let *M* be an H-
$$\mu$$
-supplemented module and let *A* be a submodule of *M*. If for each $e \in \vartheta(\operatorname{End}(M))$, there exists $f \in \vartheta(\operatorname{End}(\frac{M}{A}))$ such that $\frac{T}{A} \leq_{\mu ce} \frac{A + e(M)}{A}$ in $\frac{M}{A}$, where $\operatorname{Im}(f) = \frac{T}{A}$, then $\frac{M}{A}$ is H- μ -supplemented

then $\frac{M}{A}$ is H-µ-supplemented.

Proof

Let $\frac{B}{A}$ be a submodule of $\frac{M}{A}$. Since *M* is H-µ-supplemented, so by Prop. (3.7), there exists $e \in$

 $\vartheta(\operatorname{End}(M))$ such that $B\mu \ e(M)$. By our assumption, there exists $f \in \vartheta(\operatorname{End}(\frac{M}{A}))$ such that $\frac{T}{A} \leq_{\mu \in \Theta} \frac{1}{A}$

$$\frac{A+e(M)}{A}$$
 in $\frac{M}{A}$, where $Im(f) = \frac{T}{A}$. One can easily show that $\frac{T}{A}$ is a direct summand of $\frac{M}{A}$. To

show that
$$\frac{B}{A} \mu \frac{T}{A}$$
. Since $\frac{T}{A} \leq_{\mu ce} \frac{A + e(M)}{A}$ in $\frac{M}{A}$, then $\frac{T}{A} \mu \frac{A + e(M)}{A}$ and $\frac{B}{A} \mu \frac{A + e(M)}{A}$, by

Prop. (2.8). Since μ is symmetric and transitive, then $\frac{B}{A} \mu \frac{T}{A}$. Thus $\frac{M}{A}$ is H- μ -supplemented.

Definition (3.13): Let *M* be an *R*-module, we say that *M* is **completely** H- μ -supplemented module if every direct summand of M is H- μ -supplemented.

Remarks and Examples (3.14):

(1) Every μ -lifting is completely H- μ -supplemented. For example, Z_4 as Z- module.

(2) The converse of (1) is not true in general. For example, Let M be the Z- module $Z_8 \oplus Z_2$ is completely H- μ -supplemented, by [10, Example, (2.10)] which is not μ -lifting module.

(3) Z as Z- module is not completely H- μ -supplemented.

The following propositions give conditions under which a module M is completely H- μ supplemented.

Proposition (3.15): Let M be a distributive H- μ -supplemented R-module. Then M is completely H- μ supplemented.

Proof

Let $M = A \oplus B$, where A and B are submodules of M, we want to show that A is H- μ -

supplemented. Since $A \cong \frac{M}{R}$ is H- μ - supplemented, by Prop. (3.9), then A is H- μ - supplemented

A module *M* is said to have the summand sum property (briefly SSP), if the sum of any two direct summands of *M* is again a direct summand of *M*. See [11].

Proposition (3.16): Let M be an H- μ -supplemented module. If M has the summand sum property, then *M* is completely H- μ -supplemented.

Proof

Assume that M is H- μ -supplemented with the summand sum property and let A be a direct summand of M such that $M = A \oplus A'$, $A' \leq M$. To show that A is H-µ-supplemented, it is sufficient to show that $\frac{M}{A}$ is H-µ-supplemented. Let D be a direct summand of M. Since M has the (SSP), then

$$D+A'$$
 is a direct summand of M , let $M = (D+A') \oplus B$, $B \le M$. Then $\frac{M}{A'} = \frac{A'+D}{A'} \oplus \frac{B+A'}{A'}$. Hence $\frac{M}{A'}$

is completely H-µ-supplemented. But $A \cong \frac{M}{A'}$ then by Prop. (3.9), A is a H-µ-supplemented.

Corollary (3.17): Let M be an H- μ -supplemented duo module. Then M is completely H- μ supplemented.

The following propositions give conditions under which the direct sum of H-u-supplemented is Hµ-supplemented.

Proposition (3.18): Let $M = M_1 \oplus M_2$ be an *R*-module such that $\operatorname{ann}(M_1) + \operatorname{ann}(M_2) = R$, if M_1 and M_2 are H- μ -supplemented, than *M* is H- μ -supplemented. Proof

Let *A* be a submodule of *M*. By [1, Prop. 4.2, CH. 1], $A = A_1 \bigoplus A_2$, where $A_1 \le M_1$ and $A_2 \le M_2$. Since M_1 and M_2 are H-µ-supplemented modules, there exists direct summands D_1 and D_2 of M_1 and M_2 respectively such that $A_1 \mu D_1$ and $A_2 \mu D_2$, then $A = (A_1 \oplus A_2) \mu (D_1 \oplus D_2)$, where $(D_1 \oplus D_2)$ is a direct summand of M. Thus M is H- μ -supplemented.

Proposition (3.19): Let $M = M_1 \oplus M_2$ be a duo module such that M_1 and M_2 are H- μ -supplemented modules, then M is H- μ -supplemented.

Proof

Let $M = M_1 \oplus M_2$ be a duo module and let A be a submodule of M, then A is a fully invariant. Hence, $A = A \cap M = A \cap (M_1 \oplus M_2) = (A \cap M_1) \oplus (A \cap M_2)$. Since M_1 and M_2 are H- μ -supplemented modules, then there exist direct summands D_1 and D_2 of M_1 and M_2 respectively such that $A_1\mu D_1$ and $A_2\mu D_2$, then $A = [(A \cap M_1) \oplus (A \cap M_2)]\mu(D_1 \oplus D_2)$, where $(D_1 \oplus D_2)$ is a direct summand of *M*. Thus *M* is H- μ -supplemented.

Proposition (3.20): Let $M = M_1 \oplus M_2$ be a distributive module such that M_1 and M_2 are H-µ-supplemented modules, then M is H-µ-supplemented.

Proof

Let $M = M_1 \oplus M_2$ be a distributive module and let A be a submodule of M, $A = A \cap M = A \cap (M_1 \oplus M_2) = (A \cap M_1) \oplus (A \cap M_2)$. Since M_1 and M_2 are H- μ -supplemented modules, then there exist direct summands D_1 and D_2 of M_1 and M_2 respectively such that $A_1\mu D_1$ and $A_2\mu D_2$, then $A = [(A \cap M_1) \oplus (A \cap M_2)]\mu(D_1 \oplus D_2)$, where $(D_1 \oplus D_2)$ is a direct summand of M. Thus M is H- μ -supplemented.

References

- 1. Inoue T. 1983. Sum of hollow modules, Osaka J. Math., 20(1983): 331-336.
- 2. Wisbauer R., 1991, Foundation of module and ring theory, Gordon and Breach, Philadelphia.
- **3.** Khalid W., Kamil E. M. **2018**. On a generalization of small submodules, *Sci. Int.* (Lahore), 30(3): 359-365.
- **4.** Kamil E. M. and Khalid, W. **2018.** On μ-supplemented and cofinitely μ- supplemented, Sci. Int. (Lahore), **30**(4): 567-572.
- 5. Birkenmeie, r G. F., Nebiyev, C., Sokmez, N., Mutlu, F. T. and Tercan, A. 2010. Goldie*-Supplemented modules, *Glassgow Journal*, 52(A): 41-52.
- 6. Oshiro, K. 1984. Lifting modules, *Extending modules and their applications to QF-rings*, *Hokkaido Math. J.*, 13(1984): 310-338.
- 7. Kamil E. M. and Khalid W. 2019. on μ lifting modules, Iraqi journal of science, 60(2): 371-380.
- 8. Erdogdu V. 1987. Distributive Modules, Can. Math. Bull, 30: 248-254.
- 9. Orhan N., Tutuncu D. K. and Tribak R. 2007. On Hollow-lifting Modules, *Taiwanese J. Math*, 11(2): 545-568.
- 10. Kosan M. T. and Keskin D. 2007. H-supplemented duo modules, *Journal of Algebra and its Applications*, 06(06): 965-971.
- 11. Alkan, M. and Harmanci, A. 2002. On summand sum and summand intersection property of modules, *Turkish J. Math*, 26(2): 131-147.