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Abstract 

     We say that the submodules A, B of an R-module M are µ-equivalent,  AµB if and 

only if 
A

BA 
<<µ

A

M
and 

B

BA 
<<µ

B

M
. We show that µ relation is an 

equivalent relation and has good behavior with respect to addition of submodules, 

homorphisms,  and direct sums, we apply these results to introduced the class of H-

µ-supplemented modules. We say that a module M is H-µ-supplemented module if 

for every submodule A of M,  there is a direct summand D of M such that AµD. 

Various properties of these modules are given. 
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 H-µ-حول مقاسات المكملات من النمط
 

 وسن خالد ،إيناس مصطفى كامل*
العراق ،بغداد  ،جامعة بغداد ،كلية العلهم  ،قدم الرياضيات  

 الخلاصة

اذا كان  µمتكافئة بالعلاقة  Mمن المقاس  A, B نقهل ان المقاسات الجزئية      
A

M<<µ  
A

BA  و

B

M<<µ 
B

BA  سهف نبرهن ان العلاقة .µ  علاقة تكافؤ و لها سلهك جيد في جمع المقاسات الجزئية و

صهرها و الجمع المباشر و سنطبق هذه النتائج لتقديم صنف جديد من المقاسات وهه مقاسات المكملات من 
  ,Mمن  Aاذا كان لكل مقاس جزئي  H-µهه مقاسا مكملا من النمط  M. نقهل ان المقاس H-µالنمط 

. . كما يتضمن البحث بعض الخهاص الاساسية و AµDبحيث ان  Mمن  Dيهجد مركبة جداء مباشر 
 المتنهعة.

1. Introduction 

     Throughout this paper all rings R are associative with unity and modules are unital left R-modules. 

Let M be an R-module and let A be a submodule of M, A is called small (or superfluous) in M, denoted 

by A<<M,  if for every submodule B of M the equality A+B = M implies M = B, see [1]. A is called a 

supplement of B in  

M if A is a minimal with respect to the property A+B = M, equivalently,  A is a supplement of B in M 

if and only if A+B = M and AB<< A. A module M is called 

supplemented module if every submodule of M has a supplement in M, see [2]. As a generalization of 

small submodule, in [3], we define µ-small submodule in M as: A is called µ-small submodule of M 

(denoted by A<<µ M) if whenever A+B = M with 
B

M
is cosingular,  then M = B. A submodule A of M 

is called µ-supplement of B in M if  

            ISSN: 0067-2904 
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A+B = M and AB<<µ A. A module M is called µ-supplemented module if every submodule of M 

has a µ-supplement, See [4]. G.F. Birkenmeier [5] defines β* relation as: the submodules A and B of 

M are β* equivalent, Aβ*B if and only if 
A

BA 
<<

A

M
and 

B

BA 
<<

B

M
 and define Goldie*-lifting 

(H-supplemented) module as : M is H- supplemented module if for every submodule A of M,  there is 

a direct summand D of M such that Aβ*D,  to study on the open problem "Is every H-supplemented 

module is supplemented?" 

      In section 2, we define an equivalence relation µ as a generalization of β* by, A and B are µ 

equivalent, AµB if and only if 
A

BA 
<<µ

A

M
and 

B

BA 
<<µ

B

M
. Also, we investigate the basic 

properties of µ. We show it is indeed an equivalence relation on the set of submodules of M, it is 

congruence relation to addition in the lattice of submodules of M. 

  A module M is called lifting module if for every submodule A of M, there is a decomposition M = D

D',  D ≤ A and AD'<< D', see [6]. M is called µ-lifting module if for every submodule A of M, 

there is a decomposition M = DD',  D ≤ A and AD'<<µ D', see [7].  

    In section3, we define H-µ-supplemented module as a generalization of Goldie*-lifting module as 

follows,  M is called H-µ-supplemented module if for every submodule A of M,  there is a direct 

summand D of M such that AµD. We give some characterizations of H-µ-supplemented. Also, we give 

necessary assumptions for a quotient module or a direct summand of H-µ-supplemented to be H-µ-

supplemented. 

2. The µ relation.  

       In this section we define and study the basic properties of µ-relation on the set of submodules of 

M. These properties will be used in section 3. 

Definition (2.1): Let M be an R-module and let µ be a relation on the set of submodules of M defined 

as follows: AµB if 
A

BA 
<<µ 

A

M
and 

B

BA 
<<µ 

B

M
. 

Lemma (2.2): µ is an equivalence relation. 

Proof:  
     Clearly that µ is reflexive and symmetric. To show that µ is transitive,  let A,  B and C be 

submodules of a module M such that AµB and BµC ,  then 
A

BA 
<<µ 

A

M
, 

B

BA 
<<µ 

B

M
, 

B

CB 

<<µ 
B

M
and 

C

CB 
<<µ

C

M
. Let U be a submodule of M containing A such that 

A

M
= 

A

CA 
+

A

U
, 

U

M
is cosingular,  then M = A+C+U = C+U and hence 

B

M
=

B

UC 
=

B

BC 
+

B

BU 
. Since 

BU

M



is cosingular and 
B

CB 
<<µ 

B

M
, then 

B

M
=

B

BU 
,  hence M = U+B and 

A

M
=

A

BA 
+

A

U
. But 

A

BA 
<<µ 

A

M
, therefore M = U,  which means that 

A

CA 
<<µ 

A

M
.  Similarly,  

C

CA 
<<µ 

C

M
. 

Thus AµC. 

       Let M be an R-module and let X and A be submodules of M such that X≤ A ≤ M,  then X is called 

µ-coessential submodule of A in M (briefly X ≤µce A in M) if 
X

A
 <<µ 

X

M
.  See [7]. 

Examples and Remarks (2.3) 

(1) Let A and B be submodules of an R-module M such that A≤B,  then AµB if and only if A ≤µce B in 

M. For example Z8 as Z- module. It is easy to see that { 0 , 4 }µ{ 0 , 2 , 4 , 6  }, where { 0 , 4 }≤µce {0 , 2 ,

4 , 6  } in Z8. 

(2) In Z as Z- module,  let A = 6Z,  B = 4Z. One can easily show that A is not related with B by µ. 

(3) Let A be a submodule of an R-module M. Then Aµ0 if and only if A<<µ M. 
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The following theorem gives a characterization of µ. 

Theorem (2.4): Let A, B be submodules of an R-module M. The following statements are equivalent. 

(1) AµB. 

(2) A≤µce A+B in M and B≤µce A+B in M. 

(3) For each submodule X of M such that M = A+B+X,  
X

M
is cosingular,  then M = A+X and M = 

B+X. 

(4) If M = K+A,  for any submodule K of M such that 
K

M
is cosingular, then M = K+B and if M = 

B+L,  for any submodule L of M such that 
L

M
 is cosingular,  then M = A+L. 

Proof: (1) (2) Clear. 

(2) (3) Assume that A≤µce A+B in M and B≤µce A+B in M,  let X be a submodule of M such that M = 

A+B+X,  
X

M
is cosingular,  then 

A

M
=

A

BA 
+

A

AX 
, 

AX

M


is cosinular,  by [3, corollary (2.6)]. 

But A≤µce A+B in M,  therefore M = X+A. Similarly,  M = B+X. 

(3) (4) Let K be a submodule of M such that M = A+K,  
K

M
is cosingular,  then M = A+B+K. By (3) 

M = B+K. Similarly,  we can prove the second part. 

(4) (1) To show that AµB,  we have to show that 
A

BA 
<<µ 

A

M
and 

B

BA 
<<µ 

B

M
. Let U be a 

submodule of M containing A such that 
A

M
=

A

BA 
+

A

U
, 

U

M
is cosingular,  then M = A+B+U = B+U. 

By (4) M = A+U = U,  hence 
A

BA 
<<µ 

A

M
. Similarly,  

B

BA 
<<µ 

B

M
. 

Corollary (2.5): Let A and B be submodules of an R-module M such that A ≤ B+K and B ≤ A+L,  

where K,  L are µ-small submodules of M,  then AµB. 

Proof: Let M = A+B+X,  
X

M
is cosingular,  for some submodule X of M, then M = B+K+X and 

XB

M


is cosingular. Since K<<µ M,  then M = B+X. Similarly,  we can show that M = A+X. Thus 

AµB. 

Note: There is a module M with A,  B and K submodules of M such that M = A+K = B+K,  
K

M
is 

cosingular,  but A is not related with B by µ. For example,  Consider Z as Z-module and let K = 3Z,  A 

= 2Z,  B = 5Z. Clearly Z = 2Z+3Z = 5Z+3Z but 2Z is not µ related to 5Z. 

Proposition (2.6): Let M be an R-module and let A,  B and C be submodules of M.  If AµB ,  then 

A<<µ M if and only if B<<µ M.  

Proof:  

     Assume that AµB and A<<µ M,  let U be a submodule of M such that M = B+U,  
U

M
is cosingular. 

Since AµB,  then M = A+U,  by theorem (2.4). But A<<µ M,  therefore M = U, hence B<<µ M. The 

converse is similar. 

Proposition (2.7): Let M = DD',  and let A, B be submodules of D. Then AµB in M if and only if 

AµB in D. 
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Proof:  

     Suppose that AµB in M and let D = A+B+X,  
X

D
is cosingular,  then M = D+D' = A+B+X+D',  

'DX

M


is cosingular. But AµB in M,  then M = A+X+D' = B+X+D'. Note D = DM = D (A+X+D') 

= A+X. Similarly D = B+X. Thus AµB in D. For the converse assume that AµB in D,  then 
A

BA 
<<µ 

A

D
and 

B

BA 
<<µ

B

D
, hence 

A

BA 
<<µ 

A

M
and 

B

BA 
<<µ

B

M
. Thus AµB in M. 

Proposition (2.8): Let M be an R-module and let A,  B be submodules of M,  then AµB if and only if 

L

A
µ

L

B
,  for every submodule L of M contained in A and B. 

Proof:  

     ( ) Suppose that AµB and let L be a submodule of M contained in A and B,  then A ≤µce A+B in M 

and B ≤µce A+B in M. [7, Prop. (2.4)], 
L

A
≤µce 

L

BA 
=

L

A
+

L

B
in 

L

M
and 

L

B
≤µce 

L

BA 
=

L

A
+

L

B
in 

L

M
. Thus 

L

A
µ

L

B
. 

() Suppose that 
L

A
µ

L

B
for every submodule L of M contained in A and B,  then  

L

A
≤µce 

L

A
+

L

B
=

L

BA 
in 

L

M
and 

L

B
≤µce 

L

A
+

L

B
=

L

BA 
in 

L

M
. By [7, Prop. (2.4)],  A ≤µce A+B in M and B ≤µce 

A+B in M. Thus AµB. 

Proposition (2.9): Let A1,  A2,  B1 and B2 be submodules of an R-module M such that A1µB1 and A2µB2,  

then (A1+A2)µ(B1+B2). 

Proof: Assume that A1µB1 and A2µB2. Then A1 ≤µce A1+B1 in M ,  A2 ≤µce A2+B2 in M,  B1 ≤µce A1+B1 in 

M and B2 ≤µce A2+B2 in M. So (A1+A2) ≤µce (A1+A2)+(B1+B2) in M and (B1+B2) ≤µce (A1+A2)+(B1+B2) in 

M,  by [7,Prop. (2.6)]. Thus (A1+A2)µ(B1+B2). 

     By induction,  one can easily prove the following corollary. 

Corollary (2.10): Let A, B1, B2,……,Bn  be submodules of a module M. If AµBi,   i=1,…,n. Then 

AµB, where B = 


n

i

Bi
1

. 

Remark (2.11): Note that Prop. (2.9) cannot be extend to an infinite sum. For example, consider Q as 

Z- module. Since <
q

p
> <<µ Q for each 

q

p
Q , then             <

q

p
>µ0. If Prop. (2.9) was true for 

even countably infinite sum then Qµ0, which is a contradiction since Q is not µ-small in Q and by 

(2.3-3) we get a contradiction. 

Corollary (2.12): Let M be an R-module. If AµB and C is any submodule of M,  then (A+C)µ(B+C). 

The converse is true when C<<µ M. 

Proof: Assume that AµB. Since CµC,  then (A+C)µ(B+C),  by Prop. (2.9). Conversely, assume that 

C<<µ M and (A+C)µ(B+C),  then A+C ≤µce A+B+C in M and B+C ≤µce A+B+C in M. Since C<<µ M,  

then A ≤µce A+B in M and B ≤µce A+B in M,  by [7,Prop. (2.7)].. Thus AµB. 

Proposition (2.13): Let f :MM' be an R- epimorphisim. Then: 

(1) If A, B are submodules of M such that AµB,  then f (A)µ f (B). 

(2) If A, B are submodules of M' such that AµB,  then f
 -1

(A)µf 
-1

(B). 

Proof:  
(1) Suppose that AµB,  then A ≤µce A+B in M and B ≤µce A+B in M,  hence f (A)  ≤µce f (A+B) = f (A)+f 

(B) in M' and f (B) ≤µce f (A+B) = f (A)+ f (B) in M', by [7,Prop. (2.9)]. Thus f (A)µ f (B). 
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(2) Let M = f
 -1

(A)+f 
-1

(B)+U,  
U

M
is cosingular,  then M' = A+B+f (U),  

)(

'

Uf

M
is cosingular,  by [3, 

Prop. (2.8)]. But AµB,  therefore M' = A+f (U) = B+f (U) which implies that M = f
 -1

(A)+U = f
 -1

(B)+U. 

Thus f 
-1

(A)µf 
-1

 (B). 

Proposition (2.14): Let M = M1M2 be an R-module and let A ≤ M1 and B ≤M2. Then AµM1 and 

BµM2 if and only if (AB)µ(M1M2). 

Proof:  

( ) By Prop. (2.9). 

() Let P1 : MM1 and P2 : MM2 be the projection homomorphisims on M1 and M2 respectively. 

Since (AB)µ(M1M2),  then A = P1(AB)µP1(M1M2) = M1 and B = P2(AB)µP2(M1M2) = 

M2. Thus we get the result. 

3. H-µ-Supplemented modules. 

   In this section,  we use the equivalence relation µ to define the class of analogue of H-supplemented 

which was appeared in [5]. Some basic properties including behavior with respect to direct sums and 

direct summands are studied for this class. 

Definition (3.1): Let M be an R-module.  We say that M is H-µ-supplemented if for every submodule 

A of M,  there exists a direct summand D of M such that AµD. 

        M is called µ-lifting R-module if for every submodule A of M, there is a decomposition M = D
D',  D ≤ A and AD'<<µ D', see [7]. 

Remarks and examples (3.2): 

(1) Cleary that every µ-lifting is H-µ-supplemented. Example (3.3) shows that the converse in not 

true in general. 

(2) Every H-supplemented is H-µ-supplemented. The converse is not true in general, see [3, example 

(3.17)]. 

(3) Z4 as Z-module is H-µ-supplemented. 

(4) Z as Z-module is not H-µ-supplemented module. 

(5) It is easy to see that Q as Z-module is not H-µ-supplemented.  

(6) H-µ- supplemented modules are closed under isomorphisms. 

Example (3.3): Consider the Z-module M = Z8Z2.  The submodules of M are: 

A1 = {(1 , 0 ),  ( 2 , 0 ),  ( 3 , 0 ),  ( 4 , 0 ),  ( 5 , 0 ),  ( 6 , 0 ),  ( 7 , 0 ),  ( 0 , 0 )}. 

A2 = {( 2 , 0 ),  ( 4 , 0 ),  ( 6 , 0 ),  ( 0 , 0 )}. 

A3 = {( 4 , 0 ),  ( 0 , 0 )}. 

A4 = {( 0 ,1 ),  ( 0 , 0 )}. 

A5 = {(1 ,1 ),  ( 2 , 0 ),  ( 3 ,1 ),  ( 4 , 0 ),  ( 5 ,1 ),  ( 6 , 0 ),  ( 7 ,1 ),  ( 0 , 0 )}. 

A6 = {( 2 ,1 ),  ( 4 , 0 ),  ( 6 ,1 ),  ( 0 , 0 )}. 

A7 = {( 4 ,1 ),  ( 0 , 0 )}. 

A8 = {( 2 , 0 ),  ( 4 , 0 ),  ( 6 , 0 ),  ( 2 ,1 ),  ( 4 ,1 ),  ( 6 ,1 ),  ( 0 ,1 ),  ( 0 , 0 )}. 

A9 = { ( 4 , 0 ),  ( 4 ,1 ),  ( 0 ,1 ),   ( 0 , 0 )}. 

A10 = {( 0 , 0 )}. 

A11 = M. 

Clearly that M= A1A4 = A1A7 = A4A5 and the µ-small submodules of M are A2 and A3. It is 

enough to check that A6,  A8 and A9 satisfy the definition. For A6,  the only submodule A of M satisfy A6 

+A = M is A1. Since A1 is a direct summand of M  then A6µA4 and A6µA7.  

For A8,  since A1 and A5 are satisfy M = A8 + A1 = A8 + A5 and both is a direct summand,  then A8µA4. 

By the same argument one can see that A9µA4. Thus M is H- µ- supplemented but not µ- lifting,  by 

[7]. 

     The following proposition gives a condition under which µ- lifting and H- µ- supplemented 

modules are equivalent. 

Proposition (3.4):  Let M be an R-module such that every submodule of M has a unique µ- coclosure. 

Then M is µ- lifting if and only if M is H-µ- supplemented. 
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Proof  
     Let M be an H-µ- supplemented and let A be a submodule of M,  there is a direct summand D of M 

such that AµD. Claim that D is µ- coclosure of A,  to see this,  let B be a µ- coclosure of A,  then B≤µce 

A in M and B≤µcc M,  hence B≤µce A+D which means that B is µ- coclosure of A+D. But D is a µ- 

coclosure of A+D,  therefore by our assumption,  D = B ≤ A. Thus M is µ- lifting. The converse is 

clear. 

Next, we give various characterizations of H-µ-supplemented module. 

Proposition (3.5): Let M be an R-module. Then the following statements are equivalent. 

(1) M is H-µ-supplemented. 

(2) For every submodule A of M,  there exists a direct summand D of M such that M = DD' ,  

D' ≤ M and (A+D)D' <<µ D'. 

(3) For every submodule A of M,  there exists a direct summand D of M such that A+D = DS,  

S<<µ M. 

Proof  

     (1) (2) Assume that M is H-µ-supplemented and let A be a submodule of M,  there exists a direct 

summand D of M such that AµD. Let M = DD',  D' ≤ M. To show that (A+D)D' <<µ D',  let U be 

a submodule of D' such that [(A+D)D']+U = D',  
U

D '
is cosingular. So M = D+D' = D+[(A+D)

D']+U. Now,  
D

M
=

D

UD 
+

D

DDDA  ]')[(
. But D ≤ [(A+D)D'] +D ≤ A+D and D≤µce A+D 

in M, therefore D≤µce [(A+D)D']+D in M,  by [7,Prop. (2.5)] and 
DU

M


 = 

DU

DD



 '
=

DU

DUD



 ')(
   

)('

'

DUD

D


= 

U

D '
 is cosingular implies M = D+U. Since DU ≤ DD' = 0,  

then DU = 0. Hence M = DU. So U = D'. Thus (A+D)D' <<µ D'. 

(2) (3) Let A be a submodule of M.  By (2),  there exists a direct summand D of M such that M = D

D',  D' ≤ M and (A+D)D' <<µ D'. Now,  A+D = (A+D)M = (A+D) (D+D') = D [(A+D)
D'],  (A+D)D' <<µ D'. 

(3) (1) Let A be a submodule of M. By (3) there exists a direct summand D of M such that A+D = D

S,  S<<µ M. Let 
D

M
=

D

DA 
+

D

U
, 

U

M
is cosingular,  then M = A+D+U = D+S+U = S+U = U,  

hence 
D

DA 
<<µ 

D

M
. Similarly,  we can show that 

A

DA 
<<µ 

A

M
. Thus AµD. 

Corollary (3.6): Let M be an H-µ-supplemented module,  then for each submodule A of M,  there 

exists a direct summand D of M such that M = DD',  where D' ≤ M and AD' <<µ D'. 

Proof Clear. 

      One can easily prove the following characterization for H-µ-supplemented modules. 

Proposition (3.7): Let M be an R-module. Then M is H-µ-supplemented if and only if for each 

submodule A of M,  there exists f   (End (M)) such that Aµf (M),  where   (End (M)) = { f : M M 

| f is an R- homomorphism such that f  f = f }. 

       The following proposition gives another characterization of H-µ-supplemented. 

Proposition (3.8): Let M be an R-module,  then M is an H-µ-supplemented if and only if for each 

submodule A of M, there exists a direct summand D of M and a submodule B of M such that A ≤µce B 

in M and D ≤µce B in M. 

Proof:  
     Suppose that M is H-µ-supplemented and let A be a submodule of M, then there exists a direct 

summand D of M such that AµD,  hence A ≤µce A+D in M and D ≤µce A+D in M. Put B = A+D. Thus, 

we get the result. 

     Conversely,  Let A be a submodule of M.  By our assumption,  there exists a direct summand D of 

M and a submodule B of M such that A ≤µce B in M and D ≤µce B in M. Since D ≤ A+D ≤ B and D ≤µce B 
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in M ,  then D ≤µce A+D in M,  by [7,Prop. (2.5)]. Similarly, A ≤µce A+D in M. Thus M is H-µ-

supplemented module. 

     The following propositions gives a condition under which a factor of H-µ-supplemented module is 

H-µ-supplemented. 

   Recall that an R-module M is called distributive if for all A,  B and C ≤M,  A (B+C) = (AB)+(A
C). See [8]. 

Proposition (3.9): Let M be an H-µ-supplemented R-module and let A be a submodule of M, then 
A

M

is H-µ-supplemented in each of the following cases. 

(1) For every direct summand D of M,  
A

AD 
is a direct summand of 

A

M
. 

(2) M is distributive module. 

Proof  

(1) Suppose that M is an H-µ-supplemented R-module and let 
A

X
  be a submodule of 

A

M
. Since M is 

H-µ- supplemented, there exists a direct summand D of M such that M = DD',  D' ≤ M and XµD. By 

hypothesis 
A

AD 
  is a direct summand of 

A

M
 and 

A

AD 
µ

A

M
, by Prop. (2.8).Thus 

A

M
is H-µ-

upplemented. 

(2) Suppose that M is distributive module,  we use (1) to show that 
A

M
 is H-µ-supplemented. Let D be 

a direct summand of M. Since M is distributive,  then 
A

AD 
 is a direct summand of 

A

M
,  by the same 

argument in [7, Prop. (3.9)]. So,  by (1) M is H-µ-supplemented module. 

      Let M be an R-module. Recall that a submodule A of M is called a fully invariant if g(A) ≤ A,  for 

every g End(M) and M is called duo module if every submodule of M is fully invariant. See [9]. 

Proposition (3.10): Let M be an H-µ-supplemented module. If A is a fully invariant submodule of M,  

then 
A

M
 is an H-µ-supplemented module. 

Proof  

     Let 
A

X
  be a submodule of 

A

M
.  Since M is H-µ-supplemented,  there exists a direct summand D 

of M such that XµD,  where M = DD' and D'≤M. By [9,  lemma (5-4)], we have 
A

M
 = 

A

AD 
 

A

AD '
. Since XµD,  then 

A

X
µ

A

AD 
, by Prop. (2.8). Thus 

A

M
 is a H-µ-supplemented module. 

Corollary (3.11):  Let M be an H-µ-supplemented duo module, then 
A

M
is H-µ-supplemented for 

every submodule A of M. 

Proposition (3.12): Let M be an H-µ-supplemented module and let A be a submodule of M. If for each 

e ϑ(End(M)),  there exists f   ϑ(End(
A

M
)) such that 

A

T
≤µce 

A

MeA )(
in 

A

M
, where Im (f ) = 

A

T
, 

then 
A

M
is H-µ-supplemented. 

Proof  

     Let 
A

B
be a submodule of 

A

M
. Since M is H-µ-supplemented, so by Prop. (3.7),  there exists e 

ϑ(End(M)) such that Bµ e(M).By our assumption,  there exists f   ϑ(End(
A

M
)) such that 

A

T
≤µce 
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A

MeA )(
in 

A

M
, where Im (f ) = 

A

T
. One can easily show that 

A

T
is a direct summand of 

A

M
. To 

show that 
A

B
µ

A

T
. Since 

A

T
≤µce 

A

MeA )(
in 

A

M
,  then 

A

T
µ

A

MeA )(
and

A

B
µ

A

MeA )(
, by 

Prop. (2.8). Since µ is symmetric and transitive,  then 
A

B
µ

A

T
. Thus 

A

M
is H-µ-supplemented. 

Definition (3.13):  Let M be an R-module,  we say that M is completely H-µ-supplemented module if 

every direct summand of M is H-µ-supplemented. 

Remarks and Examples (3.14):  

(1) Every µ-lifting is completely H-µ-supplemented. For example,  Z4 as Z- module. 

(2) The converse of (1) is not true in general. For example,  Let M be the Z- module Z8Z2 is 

completely H-µ-supplemented,  by [10,  Example,  (2.10)] which is not µ-lifting module. 

(3) Z as Z- module is not completely H-µ-supplemented. 

    The following propositions give conditions under which a module M is completely H-µ- 

supplemented. 

Proposition (3.15): Let M be a distributive H-µ-supplemented R-module. Then M is completely H-µ-

supplemented. 

Proof  

     Let M = AB, where A and B are submodules of M,  we want to show that A is H-µ- 

supplemented. Since A
B

M
is H- µ- supplemented,  by Prop. (3.9),  then A is H-µ- supplemented 

A module M is said to have the summand sum property (briefly SSP), if the sum of any two direct 

summands of M is again a direct summand of M. See [11]. 

Proposition (3.16): Let M be an H-µ-supplemented module. If M has the summand sum property,  

then M is completely H-µ-supplemented. 

Proof  
     Assume that M is H-µ-supplemented with the summand sum property and let A be a direct 

summand of M such that M = AA', A' ≤ M. To show that A is H-µ-supplemented,  it is sufficient to 

show that 
'A

M
is H-µ-supplemented. Let D be a direct summand of M. Since M has the (SSP),  then 

D+A' is a direct summand of M,  let M = (D+A')B,  B ≤ M. Then 
'A

M
=

'

'

A

DA 


'

'

A

AB 
.Hence 

'A

M

is completely H-µ-supplemented. But A 
'A

M
 then by Prop. (3.9), A is a H-µ-supplemented.  

Corollary (3.17): Let M be an H-µ-supplemented duo module. Then M is completely H-µ-

supplemented. 

     The following propositions give conditions under which the direct sum of H-µ-supplemented is H-

µ-supplemented. 

Proposition (3.18): Let M = M1M2 be an R-module such that  ann(M1) + ann(M2) = R, if M1 and M2 

are H-µ-supplemented,  than M is H-µ-supplemented.  

Proof   

     Let A be a submodule of M. By [1,  Prop. 4.2,  CH. 1],   A = A1A2,  where A1 ≤ M1 and A2 ≤ M2.  

Since M1 and M2 are H-µ-supplemented modules,  there exists direct summands D1 and D2 of M1 and 

M2 respectively such that A1µD1and A2µD2 ,  then A = (A1A2)µ(D1D2),  where (D1D2)  is a 

direct summand of M. Thus M is H-µ-supplemented. 

Proposition (3.19): Let M = M1M2 be a duo module such that M1 and M2 are H-µ-supplemented 

modules,  then M is H-µ-supplemented. 

Proof  

     Let M = M1M2 be a duo module and let A be a submodule of M,  then A is a fully invariant. 

Hence,  A = AM = A ( M1M2) = (AM1) ( AM2). Since M1 and M2 are H-µ-supplemented 

modules,  then there exist direct summands D1 and D2 of M1 and M2 respectively such that A1µD1and 
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A2µD2 ,  then A = [(AM1) ( AM2)]µ(D1D2),  where (D1D2)  is a direct summand of M. Thus 

M is H-µ-supplemented. 

Proposition (3.20): Let M = M1M2 be a distributive module such that M1 and M2 are H-µ-

supplemented modules, then M is H-µ-supplemented. 

Proof   

     Let M = M1M2 be a distributive module and let A be a submodule of M, A = AM = A (M1
M2) = (AM1) ( AM2). Since M1 and M2 are H-µ-supplemented modules, then there exist direct 

summands D1 and D2 of M1 and M2 respectively such that A1µD1and A2µD2 ,  then A = [(AM1) ( A

M2)]µ(D1D2) ,  where (D1D2) is a direct summand of M. Thus M is H-µ-supplemented. 
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