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Abstract

In this paper, the interplay among four population species is offered. The
system consists of two competitive prey, predator and super predators. The
application of the hypothesis of the Sotomayor theorem for local bifurcation
around every equilibrium point is adopted. It is detected that the transcritical
bifurcation could occur near most of the system's equilibrium points, while
saddle-node and pitchfork bifurcation can not be accrued at any of them.
Further, the conditions that guarantee the accruing Hopf bifurcation are carried
out. Finally, some numerical analysis is illustrated to confirm the analytical
results.

Keywords: Prey-predator model, Competition interaction, Harvesting,
Stability. Local bifurcation.
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1. Introduction

The bifurcation theory is considered a mathematical tool to define the oscillatory
solutions to a system and the stable state. It helps to understand the behaviour of
nonlinear dynamic systems results like the emergence and disappearance of equilibrium
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and periodic orbits [1]. This theory has considerably evolved in the literature by using
new ideas and methods and their introduction into the theory of dynamic systems.

Many researchers studied numerous properties such as coexistence, persistence, stability,
bifurcation and extinction [2, 9]. For instance, the difficulties in the dynamic behaviour of
two prey-one predator systems following a Holling type Il functional response with an
influence impulsive has been explored [10]. Moreover, the local and global stability of
the prey-predator model have been analysed, including Holling type | functional response
and the implications of group help [11]. Further, Tolcha considered the interaction
between two mutualistic prey and a predator population. The stability of his model has
been established for the positive equilibrium point. In addition, the proportional
harvesting function is taken into account in his model when these species interact [12]. In
[3], the authors suggested an interaction model between two competitive prey, predator
and super predators. The second prey is assumed to be harvested. According to the type |
functional response, the predator can only attack the first prey, while the super predator
(top predator) can only attack the first predator. The existence of all the steady-states has
been found. The stability analysis of all the equilibrium points has been intensely studied.
In this paper, the persistence analysis and the local bifurcation behaviour at each
equilibrium point are studied to understand the whole dynamic behaviour of our system.

2. Assumptions of the Model

Consider the population is divided into four groups: wu, (t) first prey, u,(t) second prey,
us(t) predator and wu,(t) super predator or top predator at time t. Also, it is supposed
that the growth of the first three species is logistic. The corresponding mathematical
system of our model is

% riuy (1 - %) — a U Uy — Brugug = Uy fi (U, Uy, Uz, Uy),

% r2U; (1 - %) — AUy Uy — QUp = Uy fo(Ug, Up, Uz, Uy), 1)
s = r3uU3 (1 - %) + Bauguz — Bous — Y1UsUs = Usf3(Uy, Up, Us, Us),

e VeUsls YU = Uy fa (Uq, Uy, Uz, Uy).

The model's (1) parameters are defined in the following table

Table 1 The description of System (1) parameters

Intrinsic growth rates

Carrying capacities.

The predation rates of the first prey and first predator.

The first prey and first predator biomass conversion rates into the first and top
predator.

The first and the second predator's natural death rate.
The competition rates between the two prey.

The harvesting rate of the second prey.
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The flow chart of system (1) is presented in the following block diagram.

— a—— _ﬁ
¥ (1 3 _) [ First prey Bawits " First predator Fahs (1 m)
\ U3 < — Bolly

=@ Uy U, H—a,ulul Y2 Usily

suz(l ﬂ  Second prey / Second predator |
_’l oW Uy
—au, auy

Figure 1: Block diagram for model (1)

3. Equilibria
System (1) has the following equilibrium points:
1. F; =1(0,0,0,0).

F, = (00,2 (r5 = Bo), 0).

F, = (o,é(r2 — ), 0,0).
F, = (k,0,0,0).

Fs = (0,0,13,1ly).

Fg = (0,u,,us,0).

F, = (ii4, 0,13, 0).

Fg = (uj,u3,0,0).

Fy = (0, uz,u3,u4)

10 Fip = (ul,O u3,u4)

11. F;; = (U4, Uy, Ug, 0).

12. Fi, = (uj, u3,u3,uy).

CoNOOR W N

The structure and existing conditions of each equilibrium point and their stability have
been explained in detail ,see [3].

Local bifurcation analysis

This section studies the local bifurcation behaviour near the steady-state using
Sotomayor's approach [13].
Now, the Jacobian matrix of system (1) at a general point is given by:
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2ryuy
n - — AUy — Brus —a Uy =By 0
2ru,
] = —ayU, T, — T au; —a 0 0
213U4
Baus 0 3 — + Buy — Bo — Y1lka —Y1Us
0 0 Y2Us YaUusz — Y

For nonzero vector S = (sy,5,,53,54)7:

_—251 (% S1+ a8, + 5153)_

D?F(S,S) = ~25; (@05 + 7 52) , @)

253 (,3251 - T_353 - V154)

2Y2535,
and, D3F(S,S,S) = (O 0,0,0)7. So by using the Sotomayor theorem, the pitchfork kind
of bifurcation can not occur at F;,i = 1,2,...,12.

Theorem 1: For r; = a, the system (1) at F, has a saddle-node bifurcation.
Proof: The system (1) at F, has a zero eigenvalue, say 1,, atr, = a, and the Jacobian
matrix J*(F,) = J(F,,1;) becomes:

[Tl - ﬁ1u3 O 0 O —l

| 0 0 0 0o |

“(F,) =| , 2131 [
J () | Bl 0 m————F -yl |
l o 0 0 Vyits — ]

Now, let st (51[ ],52[1],53E ],s£1]> be the eigenvector corresponding to the
eigenvalues A,, = 0. Thus, (J*(Fy) — A,,F)SM =0, which gives: sl =
T
(0, 52[1],0,0) and s.! is any nonzero real number.

Let nltl = (ng ],ngﬂ,ngﬂ,m ) be the eigenvector associated with the eigenvalue /122 of

the matrix J*(F,). Therefore, (] —/122F)77 = 0. By solving this equation for

nltl = (0, ngﬂ, 0,0) is obtained, where 77 I represent any nonzero real number.

Now, to check whether the conditions for saddle-node bifurcation are holding, the
following is considered:

oF 0fi 0f2 0fs aﬁ;) Uy T
ar, r(Uin) = (arz "or,’ ar,’ ar, (0' ! ’0'0)
So, ., (F,,15) = (0,1,0,0)" and hence,

T *
() F, (Fyr) =i = 0.

That means the first condition of the saddle-node bifurcation is met. Now,
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T

o[ [11]P
D2E, (F,,r,")(s1, 5111 = (0,@,0@ ,

hence, it is obtained that:
—2ry [52[1]

2
] ] ,0,0

(1) [D2E, (F,, ) (s, s11)] = (0,787, 00) o,

_ - [sf”]zngﬂ 0

Therefore, the second condition of saddle-node bifurcation is satisfied. Thus, system
(1) has saddle-node bifurcation at F, with the parameter r; = a.

Theorem 2: For ry = B,, the system (1) at F5 has a saddle-node bifurcation.
Proof: The system (1) at F; has a zero eigenvalue, say 133, when r3 = f3,, and the
Jacobian matrix J*(F;) = J(Fs,73), becomes:

[~ au, 0 0 O ]
21U
* — | _azﬁz T2 - 22 - O 0 |
J*(F3) = l |
l 0 0 0 0 J
0 0 0 —y

T
Now, let S = (51[2],52[2],53[2],54&2]) be the eigenvector corresponding to the

T
eigenvalues 155 = 0. Thus, (J*(F3) — A33F)S! = 0, which gives:S[2! = (0,0, s§2],o) ,

and s'?! is any nonzero real number.

T
Let nl& = ( k2] ng”,ngﬂ,nf]) be the eigenvector associated with the eigenvalue A5
of the matrix J*(Fs). Then (J;" — 233F)n!? = 0. By solving this equation for n!?,

[2] [ oY is obtai [1]
ntel = (O,O,n3 ,0) is obtained, where 73 represents any nonzero real number.

Now, to check whether the conditions for saddle-node bifurcation are met, the
following is considered:
OF of, 0f, dfs Ofi\"
R F} (U,T'g) — <£,£'£,£> — (
ors 3 0r; 0ry 0r3 0rs
So, ., (Fs,75) = (0,0,1,0)" and hence

T *
(71[2]) E.(F;513) = 7I£2] * 0.

u T
0,0,1 — 53 o) .

Therefore, the first condition of the saddle-node bifurcation is met. Now,
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2

[2] —2r5|s [ ]]

D2E, (F;,r3)(S®,s) = 0

Hence,
() [D2F,, (F3, =) (512, 5121)] = (0,0, ngﬂ,o) 0,0

_ —2r; [sé”]zné” 0.

m
This means the second condition of saddle-node bifurcation is satisfied. Thus, system
(1) has saddle-node bifurcation at F; with the parameter 3 = f3,.

Theorem 3: For rf = B, — B,k, the system (1) at F, has a saddle-node bifurcation.
Proof: The system (1) at F, has a zero eigenvalue, say A3 atrf = B, — B,k and
J#(Fy) = J(F,,v$), becomes:

- —a,k —p1 0
0 nrn—ak—«a 0 0

# _ 2 2
0 0 0 -y

Now, let SI3! (51[ ],52[3],53E ],sf]) be the eigenvector corresponding to the

eigenvalues 1,3 =0.  Thus, (J*¥(F) — 2,3F)SB =0,  which  gives:
B T
si3l = (k—ﬁlss[,ﬂ, 0,5, O) and sI*! is any nonzero real number.
1

([] (3] [3]

Let nl3! Ny LN N3 ,n4 ) be the eigenvector associated with the elgenvalue A4g OF

the matrix ]4 . Then (4 —/143F)n = 0. By solving this equation for ni3!, 3! =

T
(0,0, n?], 0) is obtained, where 77£3] represents any nonzero real number.

Now, to check whether the conditions for saddle-node bifurcation are met, the
following is considered:
fy fy 0fs f\T T
= F,(Ur;) = (i 8f 8fs f") =(001-%,0) .

6 67'3 67'3 67‘3

S0, ., (F,,r#) = (0,0,1,0)" and hence ()" F, (F,, 1) = ¥ = 0.

Therefore, the first condition of the saddle-node bifurcation is met. Now,

2
2rd sl
— 2,8151[3153[,3],0, 2[3251[3]s£3] — —[ 3 ] ,0

D2F, (F,,r{)(SB), sB1) = . -
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(™)' [D2F (B, ) (519, 510)] =

[3 T

B o (2l S 2rf[s§]° [3] (3]
(0,0,75%,0) (2 — 285850, 0, 28,5155 - =L 0] = (2,558 -

k m

213 [53 ] )773 — 9 (kﬁlﬁz )[ [3]] 77[3] # 0.

1

This means the second condition of saddle-node bifurcation is satisfied. Thus, system
(1) has saddle-node bifurcation at F, with the parameter r§ = B, — B,k.

Theorem 4: For rf = a, the system (1) at Fs has a saddle-node bifurcation.
Proof: The system (1) at Fs has a zero eigenvalue, say A,,, at r¥ = a, and J#(F;) =
J(Fs,r}), becomes:

[T1— Bt 0O 0 0 ]
| 0 0 0 0 |
]#(F5) | ~ —13ll3 L
0 —
l B3 - V1u3J
0 0 Yyl 0

T
Now, let S (s1 ,s2 ,53 :SLE ]) be the eigenvector corresponding to the
0.

Thus, (J*(Fs) — A,,F)S™ =0, which gives: S =
T T
(0, 52[4],0,0) , and 52[4 is any nonzero real number. Let nl*l = (n£4],n£4].n£4],n£4]) be

eigenvalues A,, =

the eigenvector associated with the eigenvalue A,, of the matrix J# . Then (;‘T -

[4] ing thi i [4] 4] 4 00\ :
/’lzzF) n'*! = 0. By solving this equation for n'*!, n'*! = (0,772 ,0,0) is obtained, where
ng‘” represents any nonzero real number.

Now, to check whether the conditions for saddle-node bifurcation are met, the
following is considered:

oF _(0f1 afz af3 af4> U, T
07”2 = F,Un) = (6r2 (')rz 6r2 or, (0’1 l ’0’0) :

So, F., (Fs,r3) = (0,1,0,0)" and hence
T
() E, (Fs,m) =i = 0.
Therefore, the first condition of the saddle-node bifurcation is met. Now,

—2r] [52[4]]2 0,0 T

D%F, (Fs, v{)(s",s) = o, l ,0,0 |,

Hence, it is obtained that:
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—Zrz [ [4]]

() [D2E,, (Fs, r#) (s, s141)] = (075,00 o, .00
—ort#|sl4 ’
— 21[2]77£4]:'t0

This means the second condition of saddle-node bifurcation is satisfied. Thus, system
(1) has saddle-node bifurcation at Fs with the parameter rj = a.

Theorem 5: For y* = y,us, the system (1) at Fg has a saddle-node bifurcation.
Proof: The system (1) at Fg has a zero eigenvalue, say A4, at y* = y,us, and J*(Fg) =
J(Fg, V"), becomes:

(1, — a1y, — Bils 0 0 0
_ —1ru
—a,U, ; 2 0
J*(Fe) = _
= 0 —Tsuz 5
Bau3 m Y1U3
: O 0 0 0
Now, let S'°] (51[5],52[ ],53 ,S ) be the eigenvector corresponding to the eigenvalues
T
Aes = 0. Thus (J*(Fs) — AgsF)SI®! = 0, which gives: s®! = (00 Lgsl gls ]) , and
3
(5]

is any nonzero real number. Let n!5! = (TIES]:UE],% 7 ) be the eigenvector
Then (J&" —/164F)n[5] = 0. By
1 plsl = (0,0,0, nls ]) is obtained, where 7! represents any

S4
associated with the eigenvalue A, of the matrix ]*T

solving this equation for n!°

nonzero real number.
Now, to confirm whether the conditions of Sotomayor's theorem for saddle-node
bifurcation are satisfied, the following is considered:

oF f, 0f, dfs 0fi\"

—=Fy(U} )=(i£££> =(000_1)T_

ay dy " dy 6)/ ay

So, E,(Fs,y") = (0,0,0,—1)T and hence (nls ) E,(Fsy") = —n®! % 0. Therefore, the
first condition of the saddle-node bifurcation is met Now,

T
1,511 = M

(5] [s] [5]

[DZF],(FE,,)/*)(S[5 + 2y1557,2Y2S3 'S,

Hence,

(n'¥)"[p? D]

= (000,7"){ 0,0,

Fy(F6; y*)(s[S]’ S[

(5] [s] .[5]

2
5

273 [S?E ]]

—————+ 2y1S, ,2Y253 S,

= 2y253[,5]s£5]n£5] #* 0.
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This means the second condition of saddle-node bifurcation is satisfied. Thus, system
(1) has saddle-node bifurcation at Fy with the parameter y* = y,us;.

Theorem 6: For r;* = a,ii; + «a, the system (1) at F, has a saddle-node bifurcation if

klrsaya, # 137 (113 + kmpB, ) 3)
Proof: The system (1) at F, has a zero eigenvalue, say 1,,, at ;" = a,ii; + «, and the
Jacobian matrix J**(F,) = J(F,, 1y ) becomes:

_r]iul -ty Pty 0
GRS
Baii 0 m —Yiu3
0 0 0  yyiliz—7.
Now, let slé] (51[6], sz[ ], 53[6], SLE ]) be the eigenvector corresponding to the eigenvalues
Ayy = 0. Thus (J**(F,) — A5, F)S'6l = 0, which gives:
stel = (51[6], _(rlrj;'izﬁlﬁ” 51[6],";[:2 skl O)T, and s.°! is any nonzero real number.

([] le] 6]

Let nle] Ny LN N3 ,n4 ) be the eigenvector associated with the eigenvalue 4,

of the matrix J*". Then (]**T—/172F)77 = 0. By solving this equation for nl®!

nlél = (0,n£ | 0,0) is obtained, where n[s] represents any nonzero real number.

Now, to confirm whether the conditions of Sotomayor's theorem for saddle-node
bifurcation are satisfied, the following is considered:

dF 0fi 0fz 0f3 0f4> Uy T

—=F = 1—— .

or, r(Uim) = ((’)rz "or,’ dr,’ or, (O' ! ’0’0)
So, ., (Fy,15*) = (0,1,0,0)" and hence,

(') F, (F, ") =¥ = 0.

Therefore, transcritical bifurcation cannot occur whilst the first condition of the
saddle-node bifurcation is met. Now,

D2F, (F, r57) (s, ste)

6]
—-2n
= —[ ] — 2a151[6] 52[6] - 2,8151[6] S:,E6], —Zazsl[é]sz[é]

k

2 2

Hence,
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(1) [D2E, (Fy,75°)(s19), 5190
—2r1[sl[6]]2

= (0, n£6],0,0) 2a151[ ]sz Zﬁlsl S3 le] 2a251[6]sz[6]
2 2
2ry" [52[6]] (6] 27y [53[6]]
- f zﬁzsl S3 T, 0
w+ | 6] 2
2 |S;
=-2 azs[6] + —[l ] sz[ﬁ]ngﬁ]

=2 <a2 — klr = (s + kmﬁlﬁz)> S; ]52[ ]n£ 1'% 0 under condition (3). This means

the second condition of saddle-node bifurcation is satisfied. Thus, system (1) has
saddle-node bifurcation at F, with the parameter r,* = a,1i; + «a.

Theorem 7: For r* = B, + B, uj, the system (1) at F has a saddle-node bifurcation if
rnry, > kla,a, 4)

Proof: The system (1) at t Fg has a zero eigenvalue, say Ag3, at r3* = B, + S.u;, and the
Jacobian matrix J® (Fg) = J(Fg,r3'), becomes:

[ —T U s .
& —auy —piug 0
—TyUs
JR(Fg) = |—ayu; % 0 0|
0 0 0 0
0 0 0 -

T
Now, let SI7] (51[7],52[ 1 sl sl ]) be the eigenvector corresponding to the

eigenvalues  Ag; =0.  Thus  (J™(Fg) — Ag3F)S1 =0,  which  gives:

sl7l = (ﬁ sl sl (re—klaay)

T
[7] ) (71 :
2 07 Ikayp, 2 ,0) ,and s,"" is any nonzero real number.

T
Let nl7! = (ngﬂ,ngﬂ,ngﬂ,nf]) be the eigenvector associated with the eigenvalue
Ag3 of the matrix ] *" Then (Ja" —183F)n[7] = 0. By solving this equation for nl’!

nl7l = (0,0,ng 1o ) is obtained, where n."! represents any nonzero real number.

Now, to confirm whether the conditions of Sotomayor's theorem for saddle-node
bifurcation are satisfied, the following is considered:

oF _ _ (01, of; 0f; 6f4>T _ uy N7
oy = Ui = (a vy 01 Ors 07 = (001 m'O) '
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So, F., (Fg, ™) =(0,0,1,0)" and hence, (nm) E. (Fr®) =Y # 0. Therefore, the
first condition of the saddle node bifurcation is met. Now,
D2F, (Fg,rM) (s, s17)
(7]
—2r1[ ]
% —Zalslmsy] 2[3151[7]53E7],—2a251[7]52[7]
(7] [7]
2, [s{7] [ ]

—— 2B -

Hence,
(n'™)" [D2E,, (Fe, i) (S, s171)]

M [7] 71 [7]

= (0,0,ngﬂ,O) 2048, s2 Zﬁlsl 537], —2a,s8;"'s

2 2
n, [;Zm] s 27 r[zsm] ,

= -2 (%857] + %53[) ]) 53[*7]r]£7] = _2 (7"2!32 + T3 (7‘17”2—kla1a2)) 52[7]53[)7]77£7] +0 under

lafz laz mlkazﬁl
condition (4). This means the second condition of saddle-node bifurcation is satisfied.

Thus, the system (1) has saddle-node bifurcation at Fg with the parameter r3* = S, +
Baui.

Theorem 8: For B; = % where B; > 0, the system (1) at F, has a saddle-node
3
bifurcation if
nry # klaya, (5)
Proof: System (1), at Fo, has a zero eigenvalue, say Aq;, at B; =“_;ﬂ, and the
3

Jacobian matrix J*(Fg) = J(Fo, 1) becomes:
0

0 0 0
—1,U
_azaz ; 2 0
J*(F) = it
P13 0 m —Y1l3
0 0 Volly 0

T
Now, let Sfél (51[8],52[ ],sg[,g],si]) be the eigenvector corresponding to the
eigenvalues Ag; = 0. Thus (J* (Fg) — A91F)S!8] = 0, which gives:
— (5181 2tz ([8] ( Bz (8] (8]
stel = (s1 os1 00,08 ) and s, is any nonzero real number.
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Let nl8l (ng ], 77£ ],n£ ],774 ) be the eigenvector associated with the eigenvalue A4,
of the matrix J3". Then (J3" — A9, F)n® = 0. By solving this equation for n7), nl8l =

(ngs], 0,,0,0) IS obtained, where n[s] IS any nonzero real number.

Now, to confirm whether the conditions of Sotomayor's theorem for saddle-node
bifurcation are satisfied, the following is considered:
F ofy fy 0fs 9fa\"
Fﬁl( ,81) ) ] ]
0B, 0B, 0B, 0By 9By
So, Fg, (Fo, B7) = (—13,0,0,0)" and hence,

T " ,
(1) Fg, (Fo, B5) = —u377£8] # 0.

= (_u3l OIOIO)T'

Therefore, the first condition of the saddle-node bifurcation is met. Now,

* —27‘1 2 _27,-2 2
D2 B (1%, 5) = (S 1] = 2ol —2aasf®sl” = =2 [5]).
Hence,

(n'®)" [0, (Fa, B (59, 5190)]
T (—2r 2
= (UP]:O“O,O) (Tl 51[8]] _2“151[ ]52[8]' 2“251[8152[8]
—21, 8112
T [52 ])

2
=-2 (% sl 4 sl ]) sielplel = o (% — l“rlzaz) [51[8]] 1t % 0. Under condition (5).

This means the second condition of saddle-node bifurcation is satisfied. Thus, system
(1) has saddle-node bifurcation at F, with the parameter g; = %
3

Theorem 9: For r5 = a,u, + a, the system (1) at F;, has a saddle-node bifurcation if
kla1a2 * TITZO (6)

Proof: The system (1) at F;,v has a zero eigenvalue, say 145, at 1,° = a,u; + a, and
the Jacobian matrix J°(Fyo) = J(F10,72°) becomes:

[—7yUy " "
X —auy =Py 0
. 0 0 0 0
J°(F1o) = —
" 0 3U3 —y u..
Baus m 1U3
O 0 YolUy 0

Now, let S° (51[ ],52[ ],sg[,g],si ]) be the eigenvector corresponding to the eigenvalues

1102 = O ThUS U (Flo) - Alo ZF)S[g] = 0, Wthh glveS 5[9] =
T
(51[9],](;1 1 o, ﬁ 2 gl ]) . and s is any nonzero real number. Let
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nlol = (n£ ]»77£ ],n£ ],774 ) be the eigenvector associated with the eigenvalue /110 , of the

matrix J3o". Then (J5" — A102F)n'® = 0. By solving this equation for »!°, 7l =

(O,ngg], O,O)Tis obtained, where ng)] represents any nonzero real number.
Now, to confirm whether the conditions of Sotomayor's theorem for saddle-node
bifurcation are satisfied, the following is considered:

oF 0f, 0f, 0f; 0f, U, T

5y, = B (Um) = (a]; a—]; a_jr; 0_5) = (01-2,00) .
So, F., (Fio,75) = (0,1,0,0)7 and hence (n["]) E. (Fio,75) =05 # 0. Therefore, the
first condition of the saddle node bifurcation is met. Now,

D2F, (Fyo,135)(S™, SPT)

—2n [51[9]]2

= — " 2a151[9]52[9] — 25’151[9]53[9], —20(251[7] 52[7]
2 T
2r, [52[9]]
-2 00
I
Hence,
T o
(") [D2E, (F1o,75) (1), 511)]
_ [9]]?
2y [51 ] [9] [9] 7] (7]

= (O,ng)],0,0) —2ay8; 52 2[3151 S3 0, —2a;,8, S,

275 [;2[9]]2 0.0

=-2 ((xzsf)] + %) 2[9]1753] =-2 (az - %) sl[g]sz[g]ngg] # 0. Under condition (6).
1

This means the second condition of saddle-node bifurcation is satisfied. Thus, the
system (1) has saddle-node bifurcation at F;, with the parameter r5 = a,u, + a.

Theorem 10: For y# = y, 15, the system (1) at F;; has a saddle-node bifurcation.
Proof: The system (1) at F;;, has a zero eigenvalue, say 1,14, at y* = y,l3, and the
Jacobian matrix J#(F;;) = J(F;1,¥") becomes:

[ — Tyl . .
ke —aqiiy  —Pqiiy 0
N —Tyliy
SRy = | %l o 0
“ —T3li3 “
0 _
pls m Y1Us
0 0 0
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T
Now, let 101 = (51[10];52[10],53[,10],550]) be the eigenvector corresponding to the

eigenvalues Ay, =0. Thus, (J#(Fy1) — 411 4F)SH =0, which gives: s[10 =
-1z _[10] _[10] (rirz—klaiaz) [10] (klajaprs—mkBiBar,—Ti7213) [10] T [10] .
(la2 S2. 52 klay By 2 mklya,f, 52 ) , and 52 IS any

T
nonzero real number. Let 510 = (U& ],ngl"],nglO],nLlO]) be the eigenvector associated

with the eigenvalue 1, , of the matrix j#, . Then (]flT — Mg 4F)n[1°] = 0. By solving

this equation for nlt0l pltol = (0 0,0, n[lo]) is obtained, where ni*®! represents any
nonzero real number.

Now, to confirm whether the conditions of Sotomayor's theorem for saddle-node
bifurcation are satisfied, the following is considered:

oF 0f, 0f, 0fs 0f4
o EwWy) = (_ 92 73 —> 0,0,0,—1)".
oy y(Uy) = dy ' dy’ ay’d = ( )
E,(F;1,y") = (0,0,0,—1)T and hence (n! 101) F,(Fi1,v") = —n‘[}lo] + 0. Therefore,
the first condition of the saddle-node bifurcation is met. Now,

Dsz(Fll,]/#)(S[lo] [10])

—2r|s [ ! ] [10] ;[10] [10] _[10] [10] _[10]
— 2018; sy — 2P18] S5 T, —2a,8; s,
2 T
2r2 [ [10] ] 273 [53[10]]
l ’ 2[3251[10] 53[10] _ — ' 2}/253[)10]5‘&10]
Hence,
T
(1) [D2E, (Fyy, y*) (S0, sT10D)]
2
—-2n [51[10]]
(0 0,0, 77[10]) I Zalsl[lo]sz[lo]
2
27, [52[10]]
_ 2ﬁ15[10 ?E 0] —20:251[10]82[10] N l ’ 2[3251[10]53[)10]
T
[10]
2r3[ ] 2y S[10]S[10]
m 2 4
i.e.,

T
(n190) " [D2E, (Fyy, y ) (1, S1OT)] = 29,1520l = 0.
This means the second condition of saddle-node bifurcation is satisfied. Thus, the system
(1) has saddle-node bifurcation at F;; with the parameter y# = y,;.
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Theorem 11: For y; = kki*, then the system (1) at F;, has a saddle-node bifurcation
1%4
provided that
klaya,ry # kmpiBory + rirers, @)
T
(™) F, (Fio,v§) # 0, (8)
T
(77[11]) [Dszz (Flz,yf)(S[ll],S[ll])] #0, 9
y2 >0, (10)
where the formula of k4, k,, n'*1 and 111 are given in following the proof.
Proof: System (1) at F;, has a zero eigenvalue, say A,, 4 at y3 = kki*' where
1Uy

ky = M12b34b33(M1 + bs3),

ky = [My — b33My](b33M M, + byybizbzMy) + [basMy + byyby3bsg](by1bi3bsy —
b33M;) + bysby3 My (b33M3 + bygbi3bsy) + b3sMy(My — byybys) + bz (byybizbs Mz —
2b34b43 M1 My).

b;; and M; are given in the local stability analysis of F;, in [3]. Clearly, v¥ > 0 provided
that condition (10) holds.

Now, the Jacobian matrix J#(F;,) = J(Fy2, v¥) becomes:

'—Tlu{ % %
X —aquy —fiuy 0
N —ToU;
]#(F12) = | "% l 0 0
—TaUs
Baus 0 ;l = —Y1U3
0 0 0 0

T
let 5[111=(s{“],sglﬂ,sg“l,sfﬂ) be the eigenvector corresponding to the

eigenvalues say ;54 = 0. Thus (J#(Fyy) — A11 4F)S = 0, which gives: s =
(—_7‘25[11] [11] (irp—aq) [11] (@113=Ty1o13—kmB1f,12) [11]
la, "2 '72 7 Klapy T2 mklazB1Y1 2
number.

r [11] ;
) , and s, is any nonzero real

T
Let nlttl = (ngll],ngll],ngn],nfﬂ) be an eigenvector associated with the
eigenvalue 1,;, of the matrix J%,". Then (]fZT — M 4F)n[11] = 0. By solving this

equation for n{11],

[11] _ (—rzu’é [11] _[11] —(ire—klajaz)  , [11] —(kmﬁlﬁzrz+T1r2r3—kla1a2r3)u* [11])T i
n lajus 12 M2 kla;Bou} 2z kima, By u; 22

1]

obtained, where TIE is any nonzero real number.

Now, to confirm whether the conditions of Sotomayor's theorem for saddle-node

bifurcation are satisfied, the following is considered:
Now, consider:
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oF af, 0f, 0fs 0fi\"
—=5,U, z)=( h 0 O f“) = (0,0,0,u3)"
Y, 2 dy, 0y, 0y, 0y,
So, yZ(Flz, ¥H = (000,u§)T and hence
[11] —(kmByfaratrirars—klaiasrs) [11] *
(77 ) ,(Fi2,v3 P uzn, uz # 0 under condition (8).

Therefore, the first condition of the saddle-node bifurcation is met. Now,
E, (Fip, v (s, sty = (—2 (rl Ml gy st 4 pystt )51[11], -2 (azsl[ll] +

T
r7252[11])52[11]' 2(3251[11] r35£11] yls‘£11])s3[ ]’ 2)/;53[11]5&11]) .

Hence, it is obtained that:
(n[ll])T[DZFYZ (Fipy #)(5[11] 5[11])]

1
_ (ng ],n£11]’n£11]’n‘[}11])( 2 (k 51[11] n als[ll n ,3153[,11])51[11]'

1] , 2 11\ _[11] 111 3 [11]
—2(6(251 +TSZ )sz ,2(,8251 _E%

T
—Vlsiu]) (1 ]+2y25[1115£11])_
That means
(1) 102 o,y (S, 501)] = =2 ({4 sl 4 s ) i -

2 (azsPﬂ + %252[11]) sz[ nE” + 2 (,6’25111 - 553[ U ylsi ])53[11]r]3 Uy

2y#sitHs A 2 0 under condition (9). This means the second condition of saddle-

node bifurcation is satisfied. Thus, system (1) has saddle-node bifurcation at F;, with the

k
parameter y§y = —2,
1Uyg

The Hopf bifurcation analysis

This section shows the conditions that guarantee the accruing of Hopf bifurcation is
carried out. In the following theorem, an application of Hague and Venturino methods for
Hopf bifurcation is adapted [14] near the positive steady state.

Theorem 11 Suppose that the following condition is satisfied

>0, (12)
where the formula of r; is given in the following proof. Then, system (1) has a Hop
bifurcation at r; = ry for F,.

Proof Consider the following characteristic equation of the system (1) at F;,
A*+ B A3 + B,A2 + B3A+ B, = 0, (12)

Where, B; is given in the local stability analysis of F;, in [3]. Now, to verify the
necessary and sufficient conditions for a Hop bifurcation to occur, we need to find a
parameter such that A,= 0 is satisfied. It is observed that A,= 0 gives:

kk
Tf = 4*’

k3u1
where,
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k3 = (b33MiM, + byyby3bs My),

k4 = byyb33M; My + b3,b13b31b33My — M3Mybys — byzbs by My M,
— [b33M; + byybi3b31](by1bi3bsy — b33My) + b3abyzbsz M7 (M + bss)
— b3gbyzMy(b33Ms + by1bi3b31) — b3sMy(Ms — bayhys)
— b33(b2yb13b31 M3 — 2b34byzs My My).

Clearly r;" > 0 provided that condition (11) holds. Now, at r; = r;" the characteristic
equation given by Eqg. (12) can be written as

(/12 + j—j) (/12 + AN+ i—i) =0,

Which has four roots

. [A 1 ’ A
21'2 = il\/A:j, 13'4 = E(_Al i A% - 4’A—i>

Clearly, at r, = r{ there are two purely imaginary eigenvalues A, and A, and two
eigenvalues 15 and A, which have negative real parts. Now for all values of r, in the
neighbourhood of r{, the roots in general, have the following forms:

21'2 = 0(1 i iaz, 13,4 == %<_A1 i ’Ai - 4?1_1)

Clearly, Re(/h,z)|r e = a,(ry) =0 and according to the signs of J(F,,) elements
1—"1

guarantee that
Bi(ry) =0,
Bs(r1) 2 0,
Ay(r{) = B1(1{) Bo(r1) — B3(r{) > 0

That means the first condition for Hop bifurcation is followed at r; = 7.

Now to validate the transversality condition, a; + i, is substituted into Eq. (12), and
then calculated its derivative concerni_ng the bifurcation parameter r;,8 (r;) ¥ (17) +T
() ® (ry) # 0, where the form of 8, ¥, T and ® are given in [14]. Note that for r; =

r’,wehave a; = 0and a, = \/% , substitution in to gives the following simplifications:
1

P () = —245(r7);

A *\ — 2 ; * * * .

B (1) = 52 [A () Ax () — 243(r)];
1\1

) *\ — p/ *Y A3(TI)A;(T‘I) .

6 (7'1) _A4(r1) A1(Tf) ’

‘B *Y\ — * 12 * A ( *) A, {

I () = ax (1) [A3(r1) — S ;11(Tf1)(r1)],

where,

*

Ay(r) =5,

A7) = =5 (byy + ba);
Az(r) = % (ba2b33 — b3sabys);
A1) = "0 (by3basbys).
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Hence,
O(r)P(ry) + () P(ry)

1 b b33)A;(rf
= [((%) <b22b34b43 + ( 22 -I;llzilz) 3(7"1)>> (_2A3(T1*))]

] (b22b33 — b3ybyuz — Az (Tf))(A1(7”f) Ay (rf) — 245 (7"1*))

20, (1 )ug
+ —_—
=
# 0.
This means that Hop bifurcation has occurred.

Persistence analysis

This section examines the system's persistence conditions with the Freedman and
Waltman approach [15]. The persistence of a system mathematically means that a strictly
positive solution of it that starts in the Int. of R% has no omega-limit sets on the boundary
planes. While biologically means the long-term survival of all system species.

Theorem 11: Suppose that the local stability conditions of F;,i = 2, ..., 11 that are given
in [3] are violated, then the system (1) persists

Proof: Let that m be a point in the Int. of R¥ and o(m) is the orbit through m. Let Q(m)
be the omega-limit set of o(m). Clearly, Q(m) is bounded due to the boundedness of the
system (1). First, it is claimed that F; € 2(m). Assume the contrary, and then, since F; is
a saddle point, it cannot be the only point in Q(m), and hence, according to the Butler-
McGhee lemma [15], there is at least another point, say n, such that n € w*(F;) N 2(m).
Where w*(F,) is the stable manifold of F;. Now, w*(F;) is the space R% .,y » RS u,)
or Ri(u2u3u4) and the entire orbit through n, denoted by o(n), is contained in 2(m).
Suppose that w*(F;) is the space Ri(u3u4) (similar proof as to when w*(F;) is the space
R (uyuyy @nd R, o 0.)- Then, if n € 0R%, .. i.e., on the boundary axes of RY, ,, .
This means that a particular positive axis (that containing n) is included in 2(m). Thus,
contradicting its boundedness. Now, let n € Int.R%, ., i.€., in the interior of R}

+(uzug):
Since there is no equilibrium point in the Int. Ri(u3u4), the orbit through m, which is

contained in 2(m), must be bounded. Giving a contradiction too, this shows that
F, ¢ Q(m).

Then, using the argument entirely analogous to the above vyields that F;,i = 2,...,11
cannot be contained in 2(m). Thus, 2(m) must be in the Int. of R%, this proves the
persistence of the system (1).

Numerical Examination

This section performs the numerical simulation to detect the key parameters that
affect the persistence of all system's (1) species. MATLAB is used to draw the time series
of system (1) solutions. Throughout this paper, the following set of parameters is chosen
to understand the whole system (1) behaviour

r, =03, k=357=051=47r;=04m=3,a =0.04,a; = (13)
0.03,a, = 0.05, 8, = 0.001, 8, = 0.07, 8, = 0.04, y = 0.03,y, =
0.05,7, = 0.04.
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Now, we study the effect of the intrinsic growth rate of the first prey r; on the dynamic
behaviour of the whole system. It is observed that the solution to system (1) settles down
to F;, when r; = 0.1. While for r; < 0.1 it approaches periodic behaviour. This result
means the condition of Theorem 10 has been met, and therefore, the system (1) has a Hop
bifurcation at ;, = ;' = 0.01 for F;,. (See Figure 2).

a b c
12 T T 15 T T T

10 u3 | u3

Populations
Populations
Populations

Time %104 Time %104 Time x10°

Figure 2: Time series of system's (1) solution with the data given by Eq. (12) with (a)
r, = 0.9, system (1) converges to (3.55, 2.25, 0.75, 3.13). (b) r, = 0.1, system (1)
converges to (3.89, 2.12, 0.75, 2.86). (c) r; = 0.01, system (1) converges to a periodic
attractor.

Now, Figure 3 explains the system's dynamics with the data given by Eq. (12) with
different values of r,. It explains that the solution to system (1) settles down to F;, in the
Int. Ri(u1u3u4) when r, < 0.18. That means system (1) losses its persistence. while the

system (1) keep persists for r, > 0.18.

12 T ? T 12 T b T 12 T c
ul
u2

ul
u2

ul

Populations
Populations
Populations

oL

0 1 2 3 4
Time « 104 Time « 104 Time %104

Figure 3: Time series of system's (1) solution with the data given by Eq. (12) with (a)
r, = 0.9, system (1) converges to (3.92, 2.95, 0.75, 2.84). (b) r, = 0.19, system (1)
converges to (2.91, 0.08, 0.75, 3.64). (c) r, = 0.18, system (1) converges to (2.88, O,
0.75, 3.67).
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Figure 4 clarifies the system's dynamics with the data given by Eq. (12) with diverse
values of r;. It detects the solution of system (1) keep persists when r; > 0.2. While the
system (1) settle down to Fy; in the Int. R3 (uyuyug) fOr 0.18 < 713 < 0.2. Further, the first

and second predators become zero when r; < 0.18.

a b
20 T q 15
ul ut
@15 ] { uZ |- @ —_2
o ‘ ul s 10 u3| |
510 — k| —ud
3 3
2 | sl
o 5 e |\
0 3 0L >
0 500 1000 1500 2000 2500 0 5 10 15
Time Time x10*
c d
15 20
ol ul
z —uw @ 15 —u2{4
s10 u3| | s u3
s —ud 510 —ud |4
3 3
Q 5 Q
g c 5
9 N
0 k J 3 i T
0 0.5 1 15 2 25 3 0 05 1 15 2
Time x10% Time x10*

Figure 4: Behaviour of system(1) movement with (a) r; = 0.9, system (1) converges to
(3.66, 2.21, 0.75, 10.54). (b) 5 = 0.2, system (1) converges to (3.66, 2.21, 0.75,0.04). (c)
r; = 0.18, system (1) converges to (3.94, 2.1, 0.35, 0). (d) 3 = 0.17, system (3.1)
converges to (4.19, 2, 0, 0).

Figure 5 illustrates the system's dynamics with the data given by Eq. (12) with
different values of y. It demonstrates that the second predator becomes zero when
y = 0.089, and the solution, in this case, converges to F;;. Whilst the solution of system
(1) approaches to F;, when y < 0.089.

a b

8 T , : , : 8 - :
ul ul
u2| | u2|
u3 : u3
u4| | : u4| |

7

~

6

(=]

(3
o

Populations
=N

Populations
-y
w

w

{L

N

-

0 ; : n : 0
0 1 2 3 4 5 6 0 2 4 6 8
Time %x10% Time x10%

0
Figure 5: Behaviour of system(1) movement with (a) y = 0.088, system (1) converges
to (2.62, 2.63, 2.19, 0.015). (b) y = 0.089, system (1) converges to (2.61, 2.63, 2.206, 0).
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Figure 6 studies the dynamics behaviour with various values of y;. It illustrates that
the solution settles down to F, for different values of y;. This means that the behaviour

of the dynamic of the system (1) keeps persisting for the different values of y;.

a b
. . : 10 . . . :

160

ul
u2
u3d| |
ud

140

120

-
(=3
o

Populations
(=
o
Populations

43
ZVL
ok . 0 i

0 0.5 1 1.5 2 25 3 3.5 0 0.5 1 1.5 2 25 3 3.5
Time « 104 Time «10°

Figure 6: Behaviour of system(1) movement with (a) y; = 0.001, system (1) converges
to (3.66, 2.21, 0.75, 152.49). (b) y; = 0.9, system (1) converges to (3.66, 2.21, 0.75,
0.16).

Finally, for different values of y,The trajectory of the system (1) approaches its
positive equilibrium point F;, when y, > 0.1. Moreover, the second predator faces

extinction when y, < 0.1. In this case, the solution stabilises at F;, in the Int. Ri(u1u3u4).
(see figure 7)

a b c
40 T T T 15 T T 107 T
ul ul ul
u2| u2 u2
u3 u3 u3
u4 ud| |

35

ud| |

N
(5,

Populations
N
o
Populations
Populations

A=
Time «10° Time « 104 Time « 104
Figure 7: Behaviour of system(1) movement with (a) y, = 0.9, system (1) aproches
(4.17, 2.009, 0.03, 4.55). (b) y, = 0.1, system (1) converges to (3.98, 2.08, 0.3, 3.99). (c)
¥, = 0.01, system (1) converges to (2.61, 2.63, 2.206, 0).

Conclusions
Based on the previous analysis, the model shows twelve non-negative equilibrium

points. The local bifurcation at them has been studied. Then the conditions that guarantee
the persistence of the whole system have been provided. Further, the numerical

1389



Nuaimi and Jawad Iragi Journal of Science, 2023, Vol. 64, No. 3, pp: 1369-1390

simulation results show a periodic attractor at a specific value of the intrinsic growth rate
r;. That means the system (1) faces a Hop bifurcation under certain conditions. Further,
the stability at F;, (the positive equilibrium point) has been achieved for a wide range of
the parameter. That means all components of the model keep persisting for a long time.
On the other hand, it can be determined that with some change in the Intrinsic growth
rates (ry, 1,,73), the top predator's natural death rate y and biomass conversion rates y,
have led to losses of system persistence.

References

[1] C. G. Rong, "Hopf bifurcation analysis: a frequency domain approach, vol. 21." World
Scientific, 1996.

[2] S. Jawad, "Study the Dynamics of Commensalism Interaction with Michaels-Menten Type
Prey Harvesting," Al-Nahrain J. Sci., vol. 25, no. 1, pp. 45-50, 2022.

[3] M. Al Nuaimi and S. Jawad, "Modelling and stability analysis of the competitional
ecological model with harvesting,"” Commun. Math. Biol. Neurosci., vol. 2022, p. Article-ID,
2022.

[4] D. Mukherjee, "Persistence and global stability of a population in a polluted environment
with delay," J. Biol. Syst., vol. 10, no. 03, pp. 225-232, 2002.

[5] Y. Liu, L. Zhao, X. Huang, and H. Deng, "Stability and bifurcation analysis of two species
amensalism model with Michaelis—Menten type harvesting and a cover for the first species,"
Adv. Differ. Equations, vol. 2018, no. 1, pp. 1-19, 2018.

[6] D. Hu and H. Cao, "Stability and bifurcation analysis in a predator—prey system with
Michaelis—Menten type predator harvesting," Nonlinear Anal. Real World Appl., vol. 33, pp.
58-82, 2017.

[7] R.P. Gupta and P. Chandra, "Bifurcation analysis of modified Leslie—-Gower predator—prey
model with Michaelis—Menten type prey harvesting," J. Math. Anal. Appl., vol. 398, no. 1,
pp. 278-295, 2013.

[8] J. B. Collings, "Bifurcation and stability analysis of a temperature-dependent mite predator-
prey interaction model incorporating a prey refuge," Bull. Math. Biol., vol. 57, no. 1, pp. 63—
76, 1995.

[9] S. Jawad, "Modelling, dynamics and analysis of multi-species systems with prey refuge.”
Brunel University London, 2018.

[10] R. Colucci, "Coexistence in a one-predator, two-prey system with indirect effects,”" J. Appl.
Math., vol. 2013, 2013.

[11]N. Ali, "Stability and bifurcation of a prey predator model with giwu's growth rate for prey,”
Int. J. Math. Comput., vol. 27, no. 2, pp. 30-39, 2016.

[12]S. Tolcha, B. K. Bole, and P. R. Koya, "Population Dynamics of Two Mutuality Preys and
One Predator with Harvesting of One Prey and Allowing Alternative Food Source to
Predator," Math. Model. Appl., vol. 5, no. 2, p. 55, 2020.

[13]G. Fusco, M. lannelli, and L. Salvadori, Advanced Topics in the Theory of Dynamical
Systems: Notes and Reports in Mathematics in Science and Engineering, vol. 6, vol. 6.
Elsevier, 2016.

[14]M. Haque and E. Venturino, "Increase of the prey may decrease the healthy predator
population in presence of a disease in the predator,” 2006.

[15]H. 1. Freedman, Deterministic mathematical models in population ecology, vol. 57. Marcel
Dekker Incorporated, 1980.

1390



