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Abstract 

Let R be commutative ring with identity and let M be any unitary left R-module. 

In this paper we study the properties of ec-closed submodules, ECS- modules and 

the relation between ECS-modules and other kinds of modules. Also, we study the 

direct sum of ECS-modules. 
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 الخلاصة
في هذا البحث قمنا بدراسة الخواص  آ.حايدا أمقاس M وليكن  ية وذات عنصر محايدابدال Rلتكن الحلقة 

من   دراسة العلاقة بينهماتم  و .ECSوالتوسع من النوع    Ecالاساسية للمقاسات الجزئية المغلقة من النوع 
 .المجموع المباشر لهذا النوع من المقاسات جهة و العلاقة بينه و بين انواع اخرى من المقاسات. كذلك درسنا

 

1. Introduction: 

Throughout this paper R will be a commutative ring with identity and all modules will be unitary 

left R-module. A proper submodule N of an R-module M is called an essential in M if for every 

nonzero submodule L of M then L∩ N≠ 0, A uniform module is a module in which every two a 
nonzero submodules have a nonzero intersection[1]. A submodule N of M is called closed, if it has no 

proper essential submodule in M [1]. A module M is called extending CS, if every submodule of M is 

essential in direct summand. Equivalently every closed submodule of M is a direct summand of M [2]. 
In [3], Kamal and Elmnophy Introduce the concept of ec-closed submodule that an ec-closed 

submodule N of a module M , is closed submodule N which contains essentially a cyclic submodule, 

i.e. there exists xϵN such that x R ≤e N. A module M is said to be ECS- module if every ec-closed 

submodule is a direct summand, every CS-module is ESC- module, but not every ECS is CS –module 
[4].This paper is structured in three sections, in the first section we introduce some general properties 

of ec-closed submodules and examples. In section two we give the definition of ECS-module and the 

relation between ECS-module and uniform extending module and CS-module. In section three, we 
study the direct sum of ECS- modules. 

1. Ec-closed submodules 
In this section we recall the definition of an ec-closed submodule and give some of basic properties 

of the class of submodules.let N be a submodule of an R-module M, by an ec-closed submodule N of a 

module M is a closed submodule N which contains essentially a cyclic submodule (i.e. there exists x ϵ 

N such that x R is essential submodule in N [3]. 

Proposition 1-1: Every R-module M has ec-closed submodule. 

Proof: Let M be any R-module and let xR is a cyclic submodule of M, then there exists a closed 
submodule H of M such that x R≤e H[1]. Then H is ec-closed submodule of M. 
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Remarks and examples 1-2: 

1- (0) is an ec-closed submodule of M 

2- Every simple R- module is ec-closed submodule 

3- Every uniform R- module is ec-closed submodule 
4- Let M be an R- module and A,B are submodule of M then B need not ec-closed in M, for example, 

<0> ≤ 2Z≤ Z, <0>is ec-closed in M but 2Z is essential in Z then 2Z  is not ec-closed in Z 

5- If an R-module which has closed uniform submodule N then N is ec-closed submodule. 
Proposition 1-3: Let M  be an R-module and A, B be submodules of  M such that A ≤ B then 

1. If A is ec-closed submodule of B and B is closed submodule of M then A is an ec-closed of M 

2. If A is ec-closed of M then A is ec-closed of B 
3. If A is ec-closed of B then A is ec-closed of M 

4. If A is ec-closed of M and  
 

 
 

 

 
 
 

 
 is ec-closed of   

 

 
  then B is ec-closed of M. 

Proof: It is straight ford see [1],[5]. 

Proposition 1-4[3]: Every direct summand of an ec-closed submodule of M is ec-closed submodule.  
Proposition 1-5: If A is an ec-closed submodule of M and N is an essential submodule of M, then 

A∩N   is ec-eclosed in N. 

Proof: Its clear. 
Proposition 1-6: Let {Aα} and {Bα} be collections of modules such that Aα is ec-closed submodule  of 

Bα for each α then ⨁                             ⨁    

Proof: 

Since A  is ec-closed submodule of Bα then Aα is closed submodule of   Bα , therefore ⨁ Aα closed 

submodule of ⨁ Bα by [1]. Since Aα is ec-closed  of  Bα , then there exists  aα ϵ Aα such that  

aα R is essential submodule in Aα .  This implies that ⊕aαR is essential in  ⊕  Aα by [1, Prop. 1.1] 

then⨁ Aα is ec-closed in ⨁  Bα . 

2. ECS-module 

Definition 2.1: [4] An R-module M is called an ECS-module if every ec-closed submodule of M is a 

direct summand of M. 

Remarks and Examples 2-2: 
1-It is clear that every semisimple R-module is ECS- module and hence any simple module is ECS-

module. 

2-Every uniform module is ECS –module 

3-The Z-module M=Z  Z8 is ECS-module. But the Z-module M=Zp  Zp3 is not ECS-module, 

where number P is a prime number. 

4-Let M be π – injective R-module, then M is an ECS –module. 
Proof: Let M be π –injective R-module. Since every CS- module is ECS and every π- injective 

module is CS-module [6], then M is ECS. 

Proposition 2-3: Every direct summand of ECS is ECS 

Proof: Let M be an R-module and M=A⊕    Let K be an ec-closed submodule of A. Since A is a 

summand of M then A is closed submodule of M thus K is ec-closed submodule of M by pro.1.3. But 

M is ECS module then K is a summand of M then K is a summand of A. Hence A is ECS. 

Remark 2-4: 
Let M be an R-module. If M is ECS- module then it is not necessary that every essential submodule of 

M is ECS. 

Proof: Let M be R-module which is not ECS –module. Let E (M) the injective hull of M. So M is 
essential in E (M)since E(M) is injective  then E(M) is ECS. 

Proposition 2-5: If M be an ECS R- module and N is an ec-closed submodule in M, then 
 

 
 is ECS. 

Proof: Let 
 

 
 be an ec-closed submodule of  

 

 
 . Since N is ec-closed submodule of M, then K is an ec-

closed of M prop.1.3 (4) But M is ECS –module, then K is a direct summand of M, hence 
 

 
 is direct 

summand of 
 

 
 .Therefore 

 

 
 is an ECS –module. 

Proposition 2-6: Any ec-closed submodule of an ECS –module M is always ECS. 

Proof: Let A be an ec-closed submodule of M we must show that A is an ECS-module. 
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Let K be an ec-closed submodule of A. Since A is ec-closed submodule of M, then K is an ec-closed 

submodule of M prop.1-3. But M is an ECS –module, then K is a direct summand of M. Therefore K 

is a direct summand of A. 

Definition 2-7[ 7 ]: An R-module M has finite uniform dimension n if M does not contain an infinite 
direct sum of non zero submodules. Equivalently, M is contains an essential submodule of the form U1

U2 ....  Un for some uniform submodule Ui≤ M, I = 1, 2, 3, …, n. 

Proposition 2-8[4]: Let M has a finite uniform dimension, then M is CS if and only if M is ECS. 

Examples 2-9: 

1- Let R be an R-module such that M= Q⨁
 

   
 , then M is not CS by [4] and, since M has finite 

uniform dimension then M is not ECS. 

2- Let M=Z8  Z be a Z-module, M is CS-module so M is ECS-module. 

Proposition2 -10: Let M be an R- module then the following statements are equivalent: 

1. M   is an ECS-module             

2. Every ec-closed submodule of  M is a summand 
3. If A is an ec-closed submodule of the injective null E(M) of M, then A∩M is a summand of M 

Proof: (       by definition of ECS-module. 

        Let A be an ec-closed submodule of E(M) then  A∩ M is closed submodule of M by [6], 
and since A is an ec-closed submodule then there exists, xϵA such that xR is an essential submodule of 

A. Since M is essential in M, then xR ∩M is essential in A ∩M [1, Prop.1.1] then A∩ M  is ec-closed 

submodule of M. By our assumption, then A ∩M is a summand of M. 

       Let A be an ec-closed submodule of M and, let B be a relative complement of A. Then by 

[1, Prop.1.3]  A  B is essential submodule in M. Since M is an essential submodule of E(M), then A 

 B is essential submodule in E(M). Thus E(A)  E(B)=E(A  B)=E(M). Since E(A) is a summand 

of E(M), then E(A) is ECS proposition 2-3. This implies that E(A) is ec-closed submodule of E(M) 

then by our assumption E(A) ∩M is a summand of M. Now, A is essential in E(A) and M is essential 

submodule in M thus by [1, Prop.1.1], A=A∩M is essential in E(A) ∩ M. But A is ec-closed of M, 
then A is a closed submodule in M, then A=E(A)∩M, which is a summand of M.Ttherefore A is a 

summand of M, hence M is ECS. 

Definition 2-11[5]: An R-module M is called uniform extending module if every closed uniform 
submodule of M is a direct summand. 

Proposition 2-12: Every ECS- module is uniform extending module. 

Proof: Let M be ECS-module, and let A be a closed uniform submodule of M, then A is an ec-closed 

submodule in M by Remark 1.2.(5). But M is an ECS –module, then A is a direct summand of M. 
Hence M is a uniform extending module. 

Corollary 2-13[5]:A module with finite uniform dimension is extending if and only if it is uniform 

extending module. 
Propostion2-14: Let M has finite uniform dimension then the following statement are equivalent.       

1-M is an extending module 

2-M is an ECS-module 
3- M is a uniform extending module. 

Proof: (1)  (2) by [4], (2)  (3) by prop. 2-12 and (3)  (1) by corollary (2.13). 

Proposition 2-15: Let M be semisimple R-module then the following statement are equivalent. 
1- M is an extending module 

2-M is an ECS-module 

3-M is a uniform extending module 

Proof: (1)  (2) clearly,(2)  (3) by prop. 2-12, (3)   (1) clearly 

Before giving the next proposition, we need to give the following theorem 

Theorem 2-16[5]: If R is an Acc ring, then M is an extending module if and only if M is uniform 
extending module. 

Proposition 2-17: if R is an Acc ring, then the following statements are equivalent. 

1-M is extending module 

2-M is an ECS-module 
3-M is uniform extending. 
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Proof: (1)  (2) clearly, (2)  (3) by prop. 2-12, (3)  (1) by theorem 2-16 

3. The direct sum of ECS- modules: 
The direct sum of ECS-module need not be ECS-module, for example Z2  and  Z8 are ECS-Z module 

while the Z-module Z2  Z8  is not ECS-module. 

Lemma3.1: Let M=M1 ⨁ M2 where M1 and M2    are ECS–module, then M is ECS if and only if every 

ec-closed submodule K of M such that K∩ M1 =0 or K∩ M2 =0 is summand of M. 
Proof: Assume that K is ec-closed in M such that  K∩ M1 =0, then by assumption K is summand of 

M.  

( ) let L1 be ec-closed submodule of M, then L is closed in M and xR≤e L thus there exists a closed 

submodule H in L Such that  L∩ M2 ≤e H , (xR )∩L∩M2  ≤ H∩L,  xR ∩M2 ≤e H, H is an ec-closed in 

L and L is ec-closed submodule in M, then by ( 2-3 ) H is an ec-closed in M. Since L∩ M2 ≤e H, 

therefore  (L∩ M2 ) ∩ M1 is essential submodule of H ∩ M1  then   H∩ M1 =0  thus by our assumption 

H is direct summand and M= ⊕      when H  
 
≤ M . Since L is ec-closed of M, then L=L∩M=L∩( 

 ⊕   ) =  ⊕(L∩    ) thus L ∩ H   is ec-closed in But  (L∩ M2)∩ H   ≤   H∩ H  
 
 =0 Hence (L∩ M2 

)∩ M2 =0, and by assumption L∩     is a summand of M. Since  L∩    ≤    , then L∩     is sammand 

of    . Thus   =   ∩L  K, K≤   M=H    =H  ((     ⨁  =L⊕  . Hence L is a summand 

of M. 

Proposition 3-2: Let M=M1 ⨁ M2 be a finite direct sum of relatively injective modules Mi, then M is 

ECS –module if and only if Mi  ( i =1, 2) are ECS-modules. 
Proof:- Assume that M is an ECS. Since Mi is a summand of M, then by  prop.2-3 Mi ECS, for each 

i=1,2,3,.....,n. The converse, by induction on n, it is sufficient to prove that M is an ECS when n=2. Let 

M=M1 ⨁ M2 and K is an ec-closed submodule of M such that K∩ M1     . By [ 8, lemma 7.5] there 

exists a submodule M  of M such that M=M1 ⨁ M   and K≤ M  ,By the second isomorphism theorem 

 

  
 

  ⨁  

  
 

  

     
      and 

 

  
 

  ⨁  

  
 

  

     
   , thus M2 is isomorphic to   , since M2 is 

an ECS-module, then M   is ECS . But K is an ec-closed in M and K≤ M  , therefore K is an ec-closed 

in M   and K is a summand of M   therefore K is a summand of M. 

Proposition 3-3 Let M be a finitely generated, faithful and multiplication R-module. Then M is ECS-
module if and only if R is ECS.  

Proof: Suppose that M is ECS-module and let I be an ec-closed ideal in R. To show that IM is ec-

closed in M. Since M is a multiplication module, then IM=(IM:M)M. But M is finitely generated 
faithful and multiplication, by [2, th.6.1] is a cancellation module and hence I=(IM:M).  Since (IM:M) 

ec-closed in R, then  (IM:M) is a closed in R, and then by [ 9, prop.3.31] (IM:M)M=IM is closed in M. 

Since I is an ec-closed ideal in R then there exists,  rϵ I  such that <r> ≤e I  then <r>M≤e IM [9, 
prop.3.10]. This implies IM is an ec-closed submodule of M. But M is an ECS then IM is a submodule 

of M. Thus M=IM  (N:M)M, where N is a submodule of M, and M=(I+(N:M))M. Now  

0=IM∩(N:M)M=(I∩(N:M))M , so I∩(N:M) ≤ ann(M). Since M is faithful, then I∩(N:M)=0 then 

M=RM=(I  (N:M)M),  R=I⨁      

 Conversely, let N be an ec-closed submodule of M then N=(N:M)M . But N is an ec-closed in M then 

N is a closed in M therefore, (N:M) is closed ideal in R by [9  pro.3.31]. Since N an is ec-closed then 
there exists xϵN such that ‹x›≤e N, then by [9, th.3-13], (‹x›,M )≤e R. Thus (N:M) is an ec-closed ideal 

in R. But R is ECS then (N:M) is a summand of R. This R=(N:M)  J, Where J is an ideal of 

R,M=RM=((N:M) ⨁J)M=(N:M)M+JM,But by [10, th.1.6], (N:M)M∩JM=((N:M)∩J)M=0M=0, 

Hence M=(N:M)M JM,  =N JM 

Proposition 3-4 Let R be von Neumann regular ring and let M is a faithful multiplication R-module, 
then M is an ECS-module              

Proof: Since R is a von Neumann regular ring, then R is an ECS and M be ECS-module. 

Proposition 3-5: Let M and N be ECS R-module such that ann M+ann N=R, then M ⨁ N                  
is ECS-module. 

Proof: Let A be a nonzero ec-closed submodule of M ⨁ N, Since ann M1 ⨁ ann N =R, then A= C 

⨁ D,Where C is a submodule of M and D is a submodule of N by [11, prop.4.2]. since A≠0, then 

either C≠0 or D≠0. If C≠0 and D=0, then C=A, and C is an ec-closed.  But M is an ECS-module, then 

C is a summand of M. But M is a summand of M ⨁ N, then A is a summand of M ⨁ N. Now, if C≠0 

IM:M)M
IM:M
IM:M
IM:M
IM:M)M=IM
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and D≠0. Since A is an ec-closed then C and D are ec-closed of M and N respectively, prop. 1.4,Since 

M and N are ECS then C is a summand of M and D is a summand of N then A= C ⨁ D,Is a direct 

summand of M ⨁ N then M ⨁ N is ECS. 
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