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Abstract

Let R be commutative ring with identity and let M be any unitary left R-module.
In this paper we study the properties of ec-closed submodules, ECS- modules and
the relation between ECS-modules and other kinds of modules. Also, we study the
direct sum of ECS-modules.
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1. Introduction:

Throughout this paper R will be a commutative ring with identity and all modules will be unitary
left R-module. A proper submodule N of an R-module M is called an essential in M if for every
nonzero submodule L of M then LN N# 0, A uniform module is a module in which every two a
nonzero submodules have a nonzero intersection[1]. A submodule N of M is called closed, if it has no
proper essential submodule in M [1]. A module M is called extending CS, if every submodule of M is
essential in direct summand. Equivalently every closed submodule of M is a direct summand of M [2].
In [3], Kamal and Elmnophy Introduce the concept of ec-closed submodule that an ec-closed
submodule N of a module M , is closed submodule N which contains essentially a cyclic submodule,
i.e. there exists xeN such that x R <, N. A module M is said to be ECS- module if every ec-closed
submodule is a direct summand, every CS-module is ESC- module, but not every ECS is CS —-module
[4].This paper is structured in three sections, in the first section we introduce some general properties
of ec-closed submodules and examples. In section two we give the definition of ECS-module and the
relation between ECS-module and uniform extending module and CS-module. In section three, we
study the direct sum of ECS- modules.

1. Ec-closed submodules

In this section we recall the definition of an ec-closed submodule and give some of basic properties
of the class of submodules.let N be a submodule of an R-module M, by an ec-closed submodule N of a
module M is a closed submodule N which contains essentially a cyclic submodule (i.e. there exists x €
N such that x R is essential submodule in N [3].

Proposition 1-1: Every R-module M has ec-closed submodule.
Proof: Let M be any R-module and let xR is a cyclic submodule of M, then there exists a closed
submodule H of M such that x R<, H[1]. Then H is ec-closed submodule of M.
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Remarks and examples 1-2:

1- (0) is an ec-closed submodule of M

2- Every simple R- module is ec-closed submodule

3- Every uniform R- module is ec-closed submodule

4- Let M be an R- module and A,B are submodule of M then B need not ec-closed in M, for example,
<0><27< 7, <0>is ec-closed in M but 2Z is essential in Z then 2Z is not ec-closed in Z

5- If an R-module which has closed uniform submodule N then N is ec-closed submodule.
Proposition 1-3: Let M be an R-module and A, B be submodules of M such that A < B then

1. If A'is ec-closed submodule of B and B is closed submodule of M then A is an ec-closed of M
2. If Alis ec-closed of M then A is ec-closed of B

3. If Alis ec-closed of B then A is ec-closed of M

4. If Ais ec-closed of M and % < %,% is ec-closed of % then B is ec-closed of M.

Proof: It is straight ford see [1],[5].

Proposition 1-4[3]: Every direct summand of an ec-closed submodule of M is ec-closed submodule.
Proposition 1-5: If A is an ec-closed submodule of M and N is an essential submodule of M, then
ANN s ec-eclosed in N.

Proof: Its clear.

Proposition 1-6: Let {A,} and {B,} be collections of modules such that A, is ec-closed submodule of
B, for each o then @ Aa is ec — closed submodule in ® B «

Proof:

Since A« is ec-closed submodule of B, then A, is closed submodule of B, , therefore & A, closed
submodule of @ B, by [1]. Since A, is ec-closed of B, , then there exists a, € A, such that

a, R is essential submodule in A, . This implies that @a,R is essential in & A, by [1, Prop. 1.1]
then® A, is ec-closed in & B, .

2. ECS-module

Definition 2.1: [4] An R-module M is called an ECS-module if every ec-closed submodule of M is a
direct summand of M.

Remarks and Examples 2-2:

1-1t is clear that every semisimple R-module is ECS- module and hence any simple module is ECS-
module.

2-Every uniform module is ECS —-module

3-The Z-module M=ZfB Z; is ECS-module. But the Z-module M=Z, £ Z,; is not ECS-module,
where number P is a prime number.

4-Let M be n — injective R-module, then M is an ECS —module.

Proof: Let M be m —injective R-module. Since every CS- module is ECS and every =n- injective
module is CS-module [6], then M is ECS.

Proposition 2-3: Every direct summand of ECS is ECS

Proof: Let M be an R-module and M=A® B. Let K be an ec-closed submodule of A. Since A is a
summand of M then A is closed submodule of M thus K is ec-closed submodule of M by pro.1.3. But
M is ECS module then K is a summand of M then K is a summand of A. Hence A is ECS.

Remark 2-4:

Let M be an R-module. If M is ECS- module then it is not necessary that every essential submodule of
M is ECS.

Proof: Let M be R-module which is not ECS —module. Let E (M) the injective hull of M. So M is
essential in E (M)since E(M) is injective then E(M) is ECS.

Proposition 2-5: If M be an ECS R- module and N is an ec-closed submodule in M, then % is ECS.
Proof: Let% be an ec-closed submodule of % . Since N is ec-closed submodule of M, then K is an ec-
closed of M prop.1.3 (4) But M is ECS —module, then K is a direct summand of M, hence % is direct

summand of % .Therefore % is an ECS —module.

Proposition 2-6: Any ec-closed submodule of an ECS —module M is always ECS.
Proof: Let A be an ec-closed submodule of M we must show that A is an ECS-module.
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Let K be an ec-closed submodule of A. Since A is ec-closed submodule of M, then K is an ec-closed
submodule of M prop.1-3. But M is an ECS —module, then K is a direct summand of M. Therefore K
is a direct summand of A.

Definition 2-7[ 7 ]: An R-module M has finite uniform dimension n if M does not contain an infinite
direct sum of non zero submodules. Equivalently, M is contains an essential submodule of the form U,
tBU, &B....66 U, for some uniform submodule Ui<M, 1=1, 2,3, ..., n.

Proposition 2-8[4]: Let M has a finite uniform dimension, then M is CS if and only if M is ECS.
Examples 2-9:

1- Let R be an R-module such that M= Q@Zip, then M is not CS by [4] and, since M has finite

uniform dimension then M is not ECS.

2- Let M=Zg €& Z be a Z-module, M is CS-module so M is ECS-module.

Proposition2 -10: Let M be an R- module then the following statements are equivalent:

1. M isan ECS-module

2. Every ec-closed submodule of M is a summand

3. If Alis an ec-closed submodule of the injective null E(M) of M, then ANM is a summand of M
Proof: (1) < (2) by definition of ECS-module.

(2) — (3) Let A be an ec-closed submodule of E(M) then AN M is closed submodule of M by [6],
and since A is an ec-closed submodule then there exists, xeA such that xR is an essential submodule of
A. Since M is essential in M, then xR NM is essential in A NM [1, Prop.1.1] then AN M is ec-closed
submodule of M. By our assumption, then A NM is a summand of M.

(3) — (1)Let A be an ec-closed submodule of M and, let B be a relative complement of A. Then by
[1, Prop.1.3] A €& B is essential submodule in M. Since M is an essential submodule of E(M), then A
& B is essential submodule in E(M). Thus E(A) €& E(B)=E(A & B)=E(M). Since E(A) is a summand
of E(M), then E(A) is ECS proposition 2-3. This implies that E(A) is ec-closed submodule of E(M)
then by our assumption E(A) NM is a summand of M. Now, A is essential in E(A) and M is essential
submodule in M thus by [1, Prop.1.1], A=ANM is essential in E(A) N M. But A is ec-closed of M,
then A is a closed submodule in M, then A=E(A)NM, which is a summand of M.Ttherefore A is a
summand of M, hence M is ECS.

Definition 2-11[5]: An R-module M is called uniform extending module if every closed uniform
submodule of M is a direct summand.

Proposition 2-12: Every ECS- module is uniform extending module.

Proof: Let M be ECS-module, and let A be a closed uniform submodule of M, then A is an ec-closed
submodule in M by Remark 1.2.(5). But M is an ECS —module, then A is a direct summand of M.
Hence M is a uniform extending module.

Corollary 2-13[5]:A module with finite uniform dimension is extending if and only if it is uniform
extending module.

Propostion2-14: Let M has finite uniform dimension then the following statement are equivalent.

1-M is an extending module

2-M is an ECS-module

3- M is a uniform extending module.

Proof: (1)= (2) by [4], (2) = (3) by prop. 2-12 and (3)= (1) by corollary (2.13).

Proposition 2-15: Let M be semisimple R-module then the following statement are equivalent.

1- M is an extending module

2-M is an ECS-module

3-M is a uniform extending module

Proof: (1)— (2) clearly,(2) — (3) by prop. 2-12, (3) — (1) clearly

Before giving the next proposition, we need to give the following theorem

Theorem 2-16[5]: If R is an Acc ring, then M is an extending module if and only if M is uniform
extending module.

Proposition 2-17: if R is an Acc ring, then the following statements are equivalent.

1-M is extending module

2-M is an ECS-module

3-M is uniform extending.
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Proof: (1)— (2) clearly, (2)— (3) by prop. 2-12, (3)— (1) by theorem 2-16

3. The direct sum of ECS- modules:

The direct sum of ECS-module need not be ECS-module, for example Z, and Zg are ECS-Z module
while the Z-module Z,%B Zg is not ECS-module.

Lemma3.1: Let M=M; @ M, where M; and M, are ECS—module, then M is ECS if and only if every
ec-closed submodule K of M such that KN M; =0 or KN M, =0 is summand of M.

Proof: Assume that K is ec-closed in M such that KN M; =0, then by assumption K is summand of
M.

(&) let L, be ec-closed submodule of M, then L is closed in M and xR<, L thus there exists a closed
submodule H in L Such that LN M, <. H, (xR )NLNM, <HNL, xR NM; <. H, H is an ec-closed in
L and L is ec-closed submodule in M, then by ( 2-3 ) H is an ec-closed in M. Since LN M, <, H,
therefore (LN M) N M; is essential submodule of H N M; then HN M; =0 thus by our assumption
H is direct summand and M=H @ H' when H'<M . Since L is ec-closed of M, then L=LNM=LN(
H@H)=H®QLNH )thusL N H'is ec-closed in But (LN Mp)N H'< HN H' =0 Hence (LN M,
YN M, =0, and by assumption LN H'is a summand of M. Since LN H' <H', then LN H' is sammand
of H'. Thus H'= H'NL & K, K<H' M=H & H'=H & ((H' n L)®K)=LD K. Hence L is a summand
of M.

Proposition 3-2: Let M=M; @ M be a finite direct sum of relatively injective modules M;, then M is
ECS —module if and only if M; (i =1, 2) are ECS-modules.

Proof:- Assume that M is an ECS. Since M; is a summand of M, then by prop.2-3 M; ECS, for each
i=1,2,3,.....,n. The converse, by induction on n, it is sufficient to prove that M is an ECS when n=2. Let
M=M; @ M, and K is an ec-closed submodule of M such that KN M; = 0 . By [ 8, lemma 7.5] there
exists a submodule M ' of M such that M=M; @ M and K< M ',By the second isomorphism theorem
M _M@OM, My = M, andﬂzmieam': M '
M, M, M1 NM, M, M, MiNM
an ECS-module, then M 'is ECS . But K is an ec-closed in M and K< M ', therefore K is an ec-closed
in M'and K is a summand of M ! therefore K is a summand of M.

Proposition 3-3 Let M be a finitely generated, faithful and multiplication R-module. Then M is ECS-
module if and only if R is ECS.

Proof: Suppose that M is ECS-module and let | be an ec-closed ideal in R. To show that IM is ec-
closed in M. Since M is a multiplication module, then IM=(IM:M)M. But M is finitely generated
faithful and multiplication, by [2, th.6.1] is a cancellation module and hence I=(IM:M). Since (IM:M)
ec-closed in R, then (IM:M) is a closed in R, and then by [ 9, prop.3.31] (IM:M)M=IM is closed in M.
Since | is an ec-closed ideal in R then there exists, re I such that <r> <, | then <r>M< IM [9,
prop.3.10]. This implies IM is an ec-closed submodule of M. But M is an ECS then IM is a submodule
of M. Thus M=IM&E (N:M)M, where N is a submodule of M, and M=(I+(N:M))M. Now
0=IMN(IN-M)M=(IN(N:M))M , so IN(N:M) < ann(M). Since M is faithful, then IN(N:M)=0 then
M=RM=(I (N:M)M), R=IB(N: M)

Conversely, let N be an ec-closed submodule of M then N=(N:M)M . But N is an ec-closed in M then
N is a closed in M therefore, (N:M) is closed ideal in R by [9 pro.3.31]. Since N an is ec-closed then
there exists xeN such that <<, N, then by [9, th.3-13], («x»,M )<, R. Thus (N:M) is an ec-closed ideal
in R. But R is ECS then (N:M) is a summand of R. This R=(N:M) & J, Where J is an ideal of
R,M=RM=((N:M) ®J))M=(N:M)M+JM,But by [10, th.1.6], (N:2M)MNIM=((N:M)NJ)M=0M=0,
Hence M=(N:M)MEIM, =N&EIM

Proposition 3-4 Let R be von Neumann regular ring and let M is a faithful multiplication R-module,
then M is an ECS-module

Proof: Since R is a von Neumann regular ring, then R is an ECS and M be ECS-module.

Proposition 3-5: Let M and N be ECS R-module such that ann M+ann N=R, then M @ N
is ECS-module.

Proof: Let A be a nonzero ec-closed submodule of M @ N Since ann M; @ ann N =R, then A= C
@ D,Where C is a submodule of M and D is a submodule of N by [11, prop.4.2]. since A#0, then
either C#0 or D#0. If C#0 and D=0, then C=A, and C is an ec-closed. But M is an ECS-module, then
C is a summand of M. But M is a summand of M @ N, then A is a summand of M @ N. Now, if C£0

= M', thus M, is isomorphic to M', since My is
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and D#0. Since A is an ec-closed then C and D are ec-closed of M and N respectively, prop. 1.4,Since
M and N are ECS then C is a summand of M and D is a summand of N then A= C @ D,Is a direct
summand of M @ N then M & N is ECS.
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