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Abstract 
The objective of this paper is to study the dependent elements of a left (right) 

reverse bimultipliers on a semiprime ring. A description of dependent elements of 

these maps is given. Further, we introduce the concept of double reverse ( ,  )-
Bimultiplier and look for the relationship between their dependent elements.  
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 ثنائية المضروبات المعكوسةحول العناصر المعتمدة للدوال 
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 الخلاصة
الهدف من هذه البحث هو دراسة العناصر المعتمدة للدوال ثنائية المضروبات المعكوسة المعرفة على 

إضافة لذلك قدمنا في هذا  قد أعطيت. هذه الدوالالمعتمدة الخاصة ب لعناصرلوصفاً  إنالحلقات شبه الأولية. 
        نظرنا إلى العلاقة بين عناصرها المعتمدة.و  (  , )-العمل مفهوم ثنائية المضروبات المعكوسة المزدوجة

 

1.  Introduction 
Throughout this work, unless otherwise mentioned, R denotes an associative ring with center Z(R). 

Recall that a ring R is prime in case aRb = (0) implies that either a=0 or b=0, and semiprime ring if 

aRa =(0) implies a=0. For any x,y  R, the symbol [x, y] will denote the commutator  xy – yx. We shall 

make extensive use of the commutator identities [xz, y] = x[z, y] + [x, y]z  and [x, yz]= y[x, z]+[x, y]z.  

A biadditive mapping   : R R R is called a left (right) reverse  𝛼-bimultiplier if: 

 (xy, z) =  (y, z) 𝛼(x)  &   (x, yz) =  (x, z)𝛼(y)  

( (xy, z) = 𝛼(y)  (x, z) &  (x, yz) = 𝛼(z)  (x, y)), holds for all x,y,z  R. 

The mapping   is called a reverse 𝛼-bimultiplier if it is both left and right reverse 𝛼-bimultiplier [1].  

In case 𝛼 = IR, then   is called reverse bimultiplier.  

A. H. Majeed and the author in [2] introduce the concept of dependent elements of mappings of the 

form ( , ): R R  R as follows: An element a  R is called a dependent element of  : R R  R if    

 (x, y)a = ayx holds for all x, y  R. The collection of all dependent elements of   denotes by  ( ).      

A mapping   is said to be a free action in case zero is the only dependent element. 

An ideal U of R is said to be essential if U V {0}, for any nonzero ideal V of R [3]. It is known that 

the annihilators of U (denoted by ann(U)) is defined by ann(U)= r(U)    (U), where  (U) and r(U) 
denotes  to the left and right annihilators of U (see[4] :p.62), furthermore, If R is a semiprime ring, 

then the left and right and two-sided annihilators ann(U) of U coincide [5]. 

In this paper we present some results concerning the dependent elements and free action associated to 

right reverse 𝛼-bimultiplier. Also, for mappings  ,   : R R, we introduce the notion of the double 

reverse ( ,  )-Bimultiplier.  
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Definition (1.1): 

Let R be a ring, U be a subring of R. For any biadditive  mappings   ,  : U U R, the pair ( ,  ) 

is called a double reverse ( ,  )-bimultiplier of U if   is a left reverse  -bimultiplier and   is a right 

reverse  -Bimultiplier of U, as well as they satisfy a stability condition   (z)  (x, y) =  (y, z)  (x), for 

all x,y,z  U, where   and   are endomorphisms of R. 

Remark (1.2):  

When   =   = IR, then the pair ( ,  ) is said to be a double reverse bimultiplier of U. 

Example (1.3): 

Let   be a commutative ring, and R be the set  

R ={(
  
  

)         }. 

Then R is a ring with respect to the usual operation of addition and multiplication of matrices, also 
Choose 

U={(
  
  

)     }. 

Define Symmetric biadditive mappings S,  : U U R, and endomorphisms  ,  : R  R  such that: 

 ((
  
  

)  (
  
  

)) = (
   
   

) 

 ((
  
  

)  (
  
  

)) = (
  
    

) 

  ((
  
  

)) = (
  
  

) 

  ((
  
  

)) = (
  
  

) 

Then ( ,  ) is double reverse ( ,  )-bimultiplier of U.                                  ∎ 

2.  Preliminary results 
We begin with the following lemmas which are essential in developing the proof of our main 

results. 
Lemma (2.1):   [3] 

Let   be an ideal of a semiprime ring R, then     ann( ) is an essential ideal of R. 

Lemma (2.2): [6] 

Let R be a simeprime ring, and a  R satisfies a[a, x] =0, for all x  R, then a  Z(R). 
Lemma (2.3): [7] 

Let R be a semiprime ring, and a  R be some fixed element. If a[x, y] =0, for all x,y  R , then there 

exists an ideal U of R such that a  U Z(R). 
Lemma (2.4): [8] 

If R is a semiprime ring and U is an ideal of R, then U  ann(U) ={0}. 

Lemma (2.5): [8] 

If R is a semiprime ring, then the center of a nonzero one-sided ideal is contained in the centre of R. 
In particular, any commutative one-sided ideal is contained in the centre of R. 

Remarks (2.6): [9] 

If R is a semiprime ring, and U an ideal of R, it's easy to verify that U is a simeprime as subring of R. 

3.  Main results 

We start our main results with following theorem which describe the dependent elements of a left 

reveres Bimultiplier over a simeprime ring.         

Theorem (3.1): 
   Let R be a simeprime ring and  : R R  R be a left reveres bimultiplier, a  R. Then a   ( ) if 

and only if a  Z(R) and  (a, y)=ay holds for all y  R. 

Proof:  

Suppose a   ( ), then 

                                               (x, y)a = ayx, for all x, y  R .                                                               (1) 

We consider 

 (xa
2 , y)=  ( , y) a

2
x= ay ax =  ( ax, y)a 

 (x, y)a a=  (a ax, y) =  (ax, y)a  =  (x, y)a
2  

Hence  

 (x, y)a a=  (x, y)a
2 , for all x, y,  R. 
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That is 

                                                 (x, y)a [a,  ]=0, for all x, y,   R.                                                      (2) 

According to (1), the above relation becomes: 

                                                    ayx [a,  ]=0, for all x, y,   R.                                                         (3) 

Putting a  for   in (3)
 
gives: 

                                                   ayx a[a,  ]=0, for all x, y,   R.                                                        (4) 

Replacing y by [a,  ] in (4), we get: 

                                               a[a,  ] x a [a,  ]=0 , for all x,,   R.                                                    (5) 

The semiprimeness of R leads to: 

                                                          a [a,  ] =0, for all   R.                                                             (6) 

An application of Lemma (2.2) implies that a  Z(R). So for any y,   R, we have: 

 ay =  ( , y) a =  (a , y)  =  ( a, y)=  (a, y)  . 

That is 

                                    ( (a, y) – ay)   =0, for all y,   R.                                     

Using the semiprimeness of R, we get:               

                                                    (a, y) = ay, for all  y  R. 

Conversely, suppose a  Z(R) and  (a, y)=ay holds for all y  R, then: 

 (x, y) a =  (ax, y)=  (xa, y)=  (a, y) x= ayx, for all x, y  R. 

Hence a   ( ) and the proof is complete.                                                           ∎ 

 

Following is an immediate corollary of the above theorem. 

Corollary (3.2):  
If R is a simeprime ring with Z(R)={0}, then the left reveres bimultiplier  : R R  R  is free action. 

The following theorem shows that every dependent element a of a left reveres bimultiplier gives rise 

to a central ideal of R generated by a. 

Theorem (3.3): 

Let R be a simeprime ring and  : R R R be a left reveres bimultiplier. Suppose that a  R is a 

dependent element of  . Then there exist a central ideal U of R   contains a. 

Proof: Let a   ( ), then a   Z(R) by Theorem (3.1), and  

                                                    (x, y)a = ayx, for all x, y  R.                                                            (1)     

Putting x  for x in (1), we get: 

 ( , y)ax = ayx , for all x, y,  R. 

According to (1), the above relation reduces to: 

                                                   y a[ , x] = 0. for all x, y,  R.                                                           (2) 

Multiplying (2) by a[ , x] from the left, we obtain: 

a[ , x] y a[ , x] = 0. for all x, y,  R. 
Since R is a semiprime ring, we get: 

                                                        a [ , x] = 0. for all x,  R.                                                            (3) 

From (3) and Lemma (2.3) it follows that there exist an ideal U of R such that   U Z(R).                                                                                               
The following Theorem gives necessary conditions that force a left reverse bimultiplier to be a free 
action. 

Theorem (3.4): 

Let R be a non-commutative prime ring and  : R R R be a left reverse bimultiplier, then   is 
free action. 

Proof: Let a   ( ), then a   (R) and we have: 

                                                     (x, y)a = ayx, for all x, y  R.                                                           (1) 

Putting xz for x in (1) gives: 

                                                   (z, y)xa = ayxz, for all x,y,z  R.                                                         (2) 

Since a   (R), then the above relation can be written as: 

 (z, y)ax = ayxz, for all x,y,z  R. 

The above relation reduces because (1) to: 

a R [x, z] =0, for all x,z  R. 

Since R is a non-commutative prime ring we conclude that a=0. So   is free action.             ∎ 
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Theorem (3.5): 

Let R be a semiprime ring and a R. Then a   ( ) for a right reverse bimultiplier  : R R  R if and 

only if a is a central and  (x, a) =ax holds for all x R. 

Proof:  
          Suppose a   ( ), then we have: 

                                                      (x, y)a = ayx, for all x, y  R.                                                           (1) 

We consider  

a
2
yx =a (x, y)a =  (x, ya)a = ayax,  for all x,y  R. 

That is  

a[a, y]x, for all x,y  R. 

The semiprimeness of R leads to a[a, y]=0, for all y  R. Then an application of Lemma (2.2) implies 

that a  Z(R). So for any   R, we have: 

                              (x, a) =  (x, a ) =  (x,  a) = a  (x,  )  

                                           =  (x,  )a = a x =  ax. 

Equivalently 

 ( (x, a)- ax)=0, for all x,   R. 

Using the semiprimeness of R leads to: 

 (x, a) =ax, for all x  R. 

Conversely, suppose a  Z(R) and S(x, a) =ax, for all x  R, then: 

 (x,  )a = a  (x,  ) =  (x,  a)=  (x, a )=    (x, a)=  ax = a x 

Consequently,  a   ( ). This completes the proof of the theorem. 

Theorem (3.6): 
Let R be a semiprime ring and a  R is an element dependent on a right reverse bimultiplier    : 

R R R. Then there exists a central ideal of R contains a. 

Proof:  Let a   ( ), then a       by Theorem (3.5), and  

                                                      (x, y)a = ayx, for all x, y  R.                                                           (1) 

Putting  y for y in (1), we get: 

y  (x,  )a = a yx, for all x, y,  R. 

According to (1), the above relation reduces to: 

[y, a ] x = 0, for all x,y,  R. 

The simeprimeness of R leads to: 

[y, a ] = 0, for all y,  R. 

That is 

                                                          a[y,  ] = 0, for all y,  R.                                                           (2) 

An application of Lemma (2.3) on (2), it follows that there exist a central ideal U of R contains a.  
Theorem (3.7): 
    Let R be a semiprime ring and  : R R  R be a reverse bimultiplier. Then there exist ideals   and 

  of R such that: 

(1)       is an essential ideal of R. 

(2)    ( ,  )   . 

(3)     is free action on  . 

Proof:  

Let a, b be elements in  ( ), then by Theorem (3.1), we have a,b   (R),  (a, y) = ay and  (b, y) 

= by, for all  y  R. 

Since Z(R) is a subring of R, then a-b  Z(R). Moreover   

 (a-b, y) =  (a, y)-  (b, y) = ay – by = (a-b)y, for all  y  R. 

Hence a-b    ( ). 

Also, for any a   ( ) and r  R, we have a   (R) and  (a, y) = ay, furthermore   

                               (x, y)ar = ayxr= yxar= yx  (a, r)= y  (ax, r) 

                                     =  (ax, ry)=  (a, ry) x =aryx 

That is ar   ( ), and consequently  ( ) is an ideal of R.                        

Now, choose  =  ( ) and  = ann( ), then   is an ideal of R and     ={0} by Lemma (2.4), also 

    is an essential ideal of R by Lemma (2.1). 

For the second requirement, let x, y    , then: 
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xa = ax =0, and ay = ya=0, for all a   . 

Moreover  

 (x, y)a = ayx =0. 

Hence   ( ,  )   . 

Finally, by Remark (2.6) we have   is a semiprime ideal of R, also, by Lemma (2.5) we get Z( )  

Z(R). 

Now, let c    be a dependent element of the restriction of   on  , then by Theorem (3.1) we have c 

  Z( )  Z(R). Moreover  

 (c,  ) = c , for all      . 

Left multiplication by r, we get:   

r  (c,  ) = rc , for all      , r   R. 
Equivalently  

 (c,  r) = cr , for all      , r   R. 

That is  

 (c, r)   = cr , for all      , r   R. 
Consequently  

( (c, r)- cr)  =0, for all r   R and      . 

The semiprimeness of   leads to: 

 (c, r) = cr, for all r   R. 

This leads to c   ( ) =  . So we have c     = {0}. 

Hence   is free action on  .                                                                  ∎ 

Theorem (3.8):  
Let R be a semiprime ring, and ( ,  ) is a double reverse bimultiplier of R. In this case  ( ) = 

 ( )   

Proof: For any x,y,z  R, we have:  

                                                            z  (x, y) =  (y, z)x.                                                                    (1)                                                    

Let a   ( ), then by Theorem (3.1) we get a   Z(R) and 

                                                      (x, y)a =ayx, for all x,y  R.                                                            (2) 

Now, replacing x by ax in (1) leads to: 

                                              z  (x, y) a =  (y, z)ax, for all x,y,z  R.                                                    (3) 

In view of (2), the above relation reduces to: 

zayx =  (y, z)ax, for all x,y,z  R. 

Equivalently  

( (y, z)a – azy)x =0, for all x,y,z  R. 

The semiprimeness of R leads to: 

 (y, z)a = azy, for all y,z  R. 

Hence a   ( ), and consequently  ( )  ( ). 

Conversely, let a   ( ), then a   Z(R) by Theorem (3.5). Also, 

    (y, z)ax = a (y, z)x =  (y, za)x = (y, az)x =z (y, a)x=zayx, for all x,y,z  R.                                (4) 

In view of (4), the relation (3) reduces to: 

z  (x, y)a = zayx, for all x,y,z  R. 

Therefore  

z( (x, y)a – ayx)=0, for all x,y,z  R. 

Since R is a semiprime ring, then a   ( ), that is  ( )  ( ).                         ∎ 

Theorem (3.9): 

Let R be a simeprime ring and  : R R  R be a left reveres 𝛼-bimultiplier, where 𝛼 is a surjective 

endomomorphism of R with 𝛼 =      . Then  ( ) Z(R). 

Proof:  

Suppose a is a dependent element of  , then 

                                                (x, y)a = ayx, for all x, y  R.                                                                (1) 

We consider 

                        (xa
2 , y)=  ( , y) 𝛼(a

2
) 𝛼(x)= ay a 𝛼(x)=  ( a 𝛼(x), y)a  

Hence  

                                (xa
2 , y) =  (a a 𝛼(x), y)a, for all x, y,  R.                                                    (2) 
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From (2), we obtain: 

                        (xa
2 , y) =  (𝛼(x), y) a 𝛼( )a 

                                         = ay 𝛼(x) 𝛼( )a, for all x, y,   R.                                                              (3)       

 (xa
2 , y) =  (a 𝛼(x), y)a 𝛼( ) 

                                         =  (𝛼(x), y)a
2
 𝛼( ) =ay 𝛼(x)a 𝛼( ), for all x, y,  R.                                (4) 

Comparing (3) and (4), we arrive at:  

                                           ay 𝛼(x)[a, 𝛼( )]=0, for all x, y,   R.                                                        (5) 

Putting 𝛼( )y for y in (5), we get: 

                                     a 𝛼( )y 𝛼(x) [a, 𝛼( )]=0 , for all x, y,   R.                                                   (6) 

Left multiplication of (5) by 𝛼( )
 
gives: 

                                                         𝛼( )ay 𝛼(x) [a, 𝛼( )]=0 , for all x, y,   R.                                                     (7) 
Subtracting (7) from (6), we obtain: 

                                  [a, 𝛼( )] y 𝛼(x) [a, 𝛼( )]=0 , for all x, y,   R.                                                 (8) 

Left multiplication of (8) by 𝛼(x), then using the semiprimeness of R gives first: 

                                               𝛼(x) [a, 𝛼( )]=0, for all y,  R. 

Consequently, (recall that 𝛼 is surjective) [a, 𝛼( )] =0, for all   R, this means a  Z(R).  

In the following two results we describe the dependent elements of the composition of a left (right) 

reverse 𝛼-Bimultiplier with its associative homomorphism.  

Theorem (3.10):  

Let R be a semiprime ring and  : R R R be a right reverse 𝛼-bimultiplier. If a is an element 

dependent on the mapping   = 𝛼    , where 𝛼 is an endomomorphism of R with  𝛼 =     , then a  

 Z(R). 

Proof: Since a   ( ), where   = 𝛼     then we have: 

                                                 (𝛼    )(x, y)a= ayx, for all x,y  R.                                                       (1) 

The substitution x  
for x in (1) gives: 

𝛼 (𝛼( )  (x, y))a= ayx , for all x,y  R. 

That is 

                                        𝛼2( ) (𝛼    )( x, y)a= ayx , for all x,y,    R.                                             (2) 
According to (1), the above relation reduces to: 

                                                  𝛼2( )ayx= ayx , for all x,y,    R.                                                     (3) 

Taking   = a in (3), we obtain: 

                                                  a[a,y]x +a y[a, x]=0, for all x,y  R.                                                     (4) 

Replacing x by xz in (4), then using (4), we obtain: 

                                                      ayz[a, x]=0, for all x,y,z  R.                                                             (5) 

Left multiplication of the above relation by x, we get: 

                                                    xayz[a, x]=0, for all x,y,z  R.                                                             (6) 

Also, putting xy for y in (5) gives: 

                                                    axyz[a, x]=0, for all x,y,z  R.                                                             (7) 

Subtracting (6) from (7), we arrive at: 

                                                  [a, x]yz[a, x]=0, for all x,y,z  R.                                                          (8) 

Right multiplication of (8) by y, since R is a simeprime ring, we get first: 

y [a, x]=0, for all x,y  R, 

and then [a, x]=0, for all x  R. That is a   Z(R). 

Theorem (3.11): 

Let R be a semiprime ring and  : R R R be a left reverse 𝛼-bimultiplier. If a is dependent 

element of   = 𝛼    , where 𝛼 is an anti-homomorphism of R with  𝛼 =     , then a   Z(R). 
Proof: 

         Since a   ( ), then  (x, y)a= ayx, for all x,y  R.  
That is 

                                                  (𝛼    )(x, y)a= ayx, for all x,y  R.                                                      (1) 

The substitution x  
for x in (1) gives: 

                                          𝛼2(x) (𝛼    )(  , y)a= ayx , for all x,y,    R.                                            (2) 

According to (1), the above relation reduces to: 

                                                   𝛼2(x)ay = ayx , for all x,y,    R.                                                      (3) 
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Taking x= a in (3), we obtain: 

                                                       [a, ay]  =0, for all y,    R.                                                           (4) 

Left multiplication of (4) by [a, ay] , since R is a semiprime ring, we arrive at:  

                                                           a [a, y]=0, for all y  R.                                                               (5) 

From (5) and Lemma (2.2), we conclude that a   Z(R).                                          ∎ 

Theorem (3.12):  

Let   be a right reverse 𝛼-bimultiplier of a semiprime ring R, then  : R R  R defined by  (x, y) 

= [ (x, y), 𝛼(x)], for all x,y  R is free action, where 𝛼 is a surjective endomomorphism of R, with 𝛼 

=     . 

Proof:  

Let a   ( ), then  (x, y)a = ayx , for all x,y  R, that is: 

                                               [ (x, y), 𝛼(x)]a = ayx , for all x,y  R.                                                     (1) 

The linearization of (1) with respect to x gives: 

                                [ (x, y), 𝛼( )]a +[  ( , y), 𝛼(x)] a = 0, for all x,y,   R.                                     (2) 

Putting  a instead of   in (2), we get: 

[ (x, y), a] 𝛼( )a + a[ (x, y), 𝛼( )]a  + a[ ( , y), 𝛼(x)]a +[a , 𝛼(x)]  ( , y)a =0. 

According to (2), the above relation reduces to: 

                             [ (x, y), a] 𝛼( )a + [a , 𝛼(x)]  ( , y)a =0, for all x,y,   R.                                   (3) 

Taking x=a in (3), we get: 

                                               [ (a, y), a] 𝛼( )a =0, for all y,   R.                                                     (4) 

The substitution 𝛼( )  (a, y) for 𝛼( ) by in (4) leads to: 

                                         [ (a, y), a] 𝛼( )  (a, y)a =0, for all y,   R.                                               (5) 

Multiplying (4) from the right by  (a, y) gives: 

                                         [ (a, y), a] 𝛼( ) a  (a, y) =0, for all y,   R.                                              (6) 
Subtracting (6) from (5), we arrive at:  

[ (a, y),a] 𝛼( ) [ (a, y),a] =0, for all y,   R. 

Since R is a semiprime ring, and 𝛼 is surjective, then we have: 

                                                       [T(a, y),a] =0, for all y  R.                                                              (7) 
Right multiplication of (7) by a gives: 

[ (a, y),a]a =0, for all y  R. 

In view of (1), the above relation reduces to: 

a y a = 0, for all y  R. 

The semiprimeness of R leads to a=0, hence   is free action.                                  ∎ 
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