

On The Dependent Elements of Reveres Bimultipliers

Auday H. Mahmood*, Eqbal J. Harjan
Department of Mathematic, College of Education, Al-Mustansiriyah University, Baghdad, Iraq

Abstract

The objective of this paper is to study the dependent elements of a left (right) reverse bimultipliers on a semiprime ring. A description of dependent elements of these maps is given. Further, we introduce the concept of double reverse (σ, τ) Bimultiplier and look for the relationship between their dependent elements.

Keywords: Semiprime rings, left (right) reverse bimultiplier, Dependent elements, free action maps.

> حول الـنـاصر المـتمدة للدوال ثنائبة المضروبـات المعكوسـة

> الخلاصة
> الهـف من هذه البحث هو دراسة العناصر المعتددة للوال ثثائية المضروبات المعكوسة المعرفة على
> الحقات شبه الأولية. إن وصفاً للعناصر المعتمدة الخاصة بهذه الدوال قد أعطيت. إضافة لذلك قدمنا في هذا
> العمل مفهوم ثنائية المضروبات المعكوسة المزدوجة-(涫) ونظرنا إلى العلاقة بين عناصرها المعتمدة.

1. Introduction

Throughout this work, unless otherwise mentioned, R denotes an associative ring with center $Z(R)$. Recall that a ring R is prime in case $a R b=(0)$ implies that either $a=0$ or $b=0$, and semiprime ring if $a R a=(0)$ implies $a=0$. For any $x, y \in R$, the symbol $[x, y]$ will denote the commutator $x y-y x$. We shall make extensive use of the commutator identities $[x z, y]=x[z, y]+[x, y] z$ and $[x, y z]=y[x, z]+[x, y] z$. A biadditive mapping $\mathcal{B}: R \times R \rightarrow R$ is called a left (right) reverse $\boldsymbol{\alpha}$-bimultiplier if:
$\mathcal{B}(x y, z)=\mathcal{B}(y, z) \alpha(x) \quad \& \mathcal{B}(x, y z)=\mathcal{B}(x, z) \alpha(y)$
$(\mathcal{B}(x y, z)=\alpha(y) \mathcal{B}(x, z) \boldsymbol{\&} \mathcal{B}(x, y z)=\alpha(z) \mathcal{B}(x, y))$, holds for all $x, y, z \in R$.
The mapping \mathcal{B} is called a reverse $\boldsymbol{\alpha}$-bimultiplier if it is both left and right reverse α-bimultiplier [1]. In case $\boldsymbol{\alpha}=I_{R}$, then \mathcal{B} is called reverse bimultiplier.
A. H. Majeed and the author in [2] introduce the concept of dependent elements of mappings of the form (,): $R \times R \rightarrow R$ as follows: An element $a \in R$ is called a dependent element of $\mathcal{F}: R \times R \rightarrow R$ if $\mathcal{F}(x, y) a=a y x$ holds for all $x, y \in R$. The collection of all dependent elements of \mathcal{F} denotes by $\mathcal{D}(\mathcal{F})$. A mapping \mathcal{F} is said to be a free action in case zero is the only dependent element.
An ideal U of R is said to be essential if $U \cap V \neq\{0\}$, for any nonzero ideal V of R [3]. It is known that the annihilators of U (denoted by ann (U)) is defined by ann $(U)=r(U) \cap \ell(U)$, where $\ell(U)$ and $r(U)$ denotes to the left and right annihilators of U (see[4] :p.62), furthermore, If R is a semiprime ring, then the left and right and two-sided annihilators $\operatorname{ann}(U)$ of U coincide [5].
In this paper we present some results concerning the dependent elements and free action associated to right reverse α-bimultiplier. Also, for mappings $\sigma, \tau: R \rightarrow R$, we introduce the notion of the double reverse (σ, τ)-Bimultiplier.

[^0]
Definition (1.1):

Let R be a ring, U be a subring of R. For any biadditive mappings $\mathcal{S}, \mathcal{T}: U \times U \rightarrow R$, the pair $(\mathcal{T}, \mathcal{S})$ is called a double reverse (σ, τ)-bimultiplier of U if \mathcal{T} is a left reverse σ-bimultiplier and \mathcal{S} is a right reverse τ-Bimultiplier of U, as well as they satisfy a stability condition $\tau(z) \mathcal{T}(x, y)=\mathcal{S}(y, z) \sigma(x)$, for all $x, y, z \in U$, where σ and τ are endomorphisms of R.
Remark (1.2):
When $\sigma=\tau=I_{R}$, then the pair $(\mathcal{T}, \mathcal{S})$ is said to be a double reverse bimultiplier of U.

Example (1.3):

Let Q be a commutative ring, and R be the set
$R=\left\{\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right), a, b, c \in Q\right\}$.
Then R is a ring with respect to the usual operation of addition and multiplication of matrices, also Choose
$U=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right), a \in \mathcal{Q}\right\}$.
Define Symmetric biadditive mappings $S, \mathcal{T}: U \times U \rightarrow R$, and endomorphisms $\sigma, \tau: R \rightarrow R$ such that:
$\mathcal{T}\left(\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right),\left(\begin{array}{ll}b & 0 \\ 0 & b\end{array}\right)\right)=\left(\begin{array}{ll}a b & 0 \\ a b & 0\end{array}\right)$
$\mathcal{S}\left(\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right),\left(\begin{array}{ll}b & 0 \\ 0 & b\end{array}\right)\right)=\left(\begin{array}{cc}0 & 0 \\ a b & a b\end{array}\right)$
$\sigma\left(\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)\right)=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$
$\tau\left(\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right)$
Then $(\mathcal{T}, \mathcal{S})$ is double reverse (σ, τ)-bimultiplier of U.

2. Preliminary results

We begin with the following lemmas which are essential in developing the proof of our main results.
Lemma (2.1): [3]
Let \mathcal{J} be an ideal of a semiprime ring R, then $\mathcal{J} \oplus \operatorname{ann}(\mathcal{J})$ is an essential ideal of R.
Lemma (2.2): [6]
Let R be a simeprime ring, and $a \in R$ satisfies $a[a, x]=0$, for all $x \in R$, then $a \in Z(R)$.
Lemma (2.3): [7]
Let R be a semiprime ring, and $a \in R$ be some fixed element. If $a[x, y]=0$, for all $x, y \in R$, then there exists an ideal U of R such that $a \in U \subset Z(R)$.
Lemma (2.4): [8]
If R is a semiprime ring and U is an ideal of R, then $U \cap \operatorname{ann}(U)=\{0\}$.
Lemma (2.5): [8]
If R is a semiprime ring, then the center of a nonzero one-sided ideal is contained in the centre of R.
In particular, any commutative one-sided ideal is contained in the centre of R.
Remarks (2.6): [9]
If R is a semiprime ring, and U an ideal of R, it's easy to verify that U is a simeprime as subring of R.

3. Main results

We start our main results with following theorem which describe the dependent elements of a left reveres Bimultiplier over a simeprime ring.

Theorem (3.1):

Let R be a simeprime ring and $\mathcal{T}: R \times R \rightarrow R$ be a left reveres bimultiplier, $a \in R$. Then $a \in \mathcal{D}(\mathcal{T})$ if and only if $a \in Z(R)$ and $\mathcal{T}(a, y)=a y$ holds for all $y \in R$.
Proof:
Suppose $a \in \mathcal{D}(\mathcal{T})$, then

$$
\begin{equation*}
\mathcal{T}(x, y) a=a y x, \text { for all } x, y \in R \tag{1}
\end{equation*}
$$

We consider
$\mathcal{T}\left(x a^{2} \omega, y\right)=\mathcal{T}(\omega, y) a^{2} x=a y \omega a x=\mathcal{T}(\omega a x, y) a$
$\mathcal{T}(x, y) a \omega a=\mathcal{T}(a \omega a x, y)=\mathcal{T}(a x, y) a \omega=\mathcal{T}(x, y) a^{2} \omega$
Hence

$$
\mathcal{T}(x, y) a \omega a=\mathcal{T}(x, y) a^{2} \omega \text {, for all } x, y, \omega \in R .
$$

That is

$$
\begin{equation*}
\mathcal{T}(x, y) a[a, \omega]=0, \text { for all } x, y, \omega \in R . \tag{2}
\end{equation*}
$$

According to (1), the above relation becomes:

$$
\begin{equation*}
\text { ayx }[a, \omega]=0, \text { for all } x, y, \omega \in R . \tag{3}
\end{equation*}
$$

Putting $a \omega$ for ω in (3) gives:

$$
\begin{equation*}
\operatorname{ayx} a[a, \omega]=0, \text { for all } x, y, \omega \in R . \tag{4}
\end{equation*}
$$

Replacing y by $[a, \omega]$ in (4), we get:

$$
\begin{equation*}
a[a, \omega] \times a[a, \omega]=0, \text { for all } x, \omega \in R . \tag{5}
\end{equation*}
$$

The semiprimeness of R leads to:

$$
\begin{equation*}
a[a, \omega]=0, \text { for all } \omega \in R \tag{6}
\end{equation*}
$$

An application of Lemma (2.2) implies that $a \in Z(R)$. So for any $y, \omega \in R$, we have:

$$
a y \omega=\mathcal{T}(\omega, y) a=\mathcal{T}(a \omega, y)=\mathcal{T}(\omega a, y)=\mathcal{T}(a, y) \omega
$$

That is

$$
(\mathcal{T}(a, y)-a y) \omega=0, \text { for all } y, \omega \in R .
$$

Using the semiprimeness of R, we get:

$$
\mathcal{T}(a, y)=a y, \text { for all } y \in R .
$$

Conversely, suppose $a \in Z(R)$ and $\mathcal{T}(a, y)=a y$ holds for all $y \in R$, then:

$$
\mathcal{T}(x, y) a=\mathcal{T}(a x, y)=\mathcal{T}(x a, y)=\mathcal{T}(a, y) x=a y x, \text { for all } x, y \in R .
$$

Hence $a \in \mathcal{D}(\mathcal{T})$ and the proof is complete.
Following is an immediate corollary of the above theorem.

Corollary (3.2):

If R is a simeprime ring with $Z(R)=\{0\}$, then the left reveres bimultiplier $\mathcal{T}: R \times R \rightarrow R$ is free action.
The following theorem shows that every dependent element a of a left reveres bimultiplier gives rise to a central ideal of R generated by a.

Theorem (3.3):

Let R be a simeprime ring and $\mathcal{T}: R \times R \longrightarrow R$ be a left reveres bimultiplier. Suppose that $a \in R$ is a dependent element of \mathcal{T}. Then there exist a central ideal U of R contains a.
Proof: Let $a \in \mathcal{D}(\mathcal{T})$, then $a \in Z(R)$ by Theorem (3.1), and

$$
\begin{equation*}
\mathcal{T}(x, y) a=a y x, \text { for all } x, y \in R \tag{1}
\end{equation*}
$$

Putting $x \omega$ for x in (1), we get:

$$
\mathcal{T}(\omega, y) a x=a y x \omega, \text { for all } x, y, \omega \in R
$$

According to (1), the above relation reduces to:

$$
\begin{equation*}
y a[\omega, x]=0 . \text { for all } x, y, \omega \in R . \tag{2}
\end{equation*}
$$

Multiplying (2) by $a[\omega, x]$ from the left, we obtain:

$$
a[\omega, x] \text { y } a[\omega, x]=0 . \text { for all } x, y, \omega \in R .
$$

Since R is a semiprime ring, we get:

$$
\begin{equation*}
a[\omega, x]=0 . \text { for all } x, \omega \in R \tag{3}
\end{equation*}
$$

From (3) and Lemma (2.3) it follows that there exist an ideal U of R such that $a \in U \subset Z(R)$.
The following Theorem gives necessary conditions that force a left reverse bimultiplier to be a free action.

Theorem (3.4):

Let R be a non-commutative prime ring and $\mathcal{T}: R \times R \longrightarrow R$ be a left reverse bimultiplier, then \mathcal{T} is free action.
Proof: Let $a \in \mathcal{D}(\mathcal{T})$, then $a \in Z(R)$ and we have:

$$
\begin{equation*}
\mathcal{T}(x, y) a=a y x, \text { for all } x, y \in R \tag{1}
\end{equation*}
$$

Putting $x z$ for x in (1) gives:

$$
\begin{equation*}
\mathcal{T}(z, y) x a=a y x z, \text { for all } x, y, z \in R . \tag{2}
\end{equation*}
$$

Since $a \in Z(\mathrm{R})$, then the above relation can be written as:

$$
\mathcal{T}(z, y) a x=a y x z, \text { for all } x, y, z \in R
$$

The above relation reduces because (1) to:

$$
a R[x, z]=0, \text { for all } x, z \in R .
$$

Since R is a non-commutative prime ring we conclude that $a=0$. So \mathcal{T} is free action.

Theorem (3.5):

Let R be a semiprime ring and $a \in R$. Then $a \in \mathcal{D}(\mathcal{S})$ for a right reverse bimultiplier $\mathcal{S}: R \times R \rightarrow R$ if and only if a is a central and $\mathcal{S}(x, a)=a x$ holds for all $x \in R$.

Proof:

Suppose $a \in \mathcal{D}(\mathcal{S})$, then we have:

$$
\begin{equation*}
\mathcal{S}(x, y) a=a y x, \text { for all } x, y \in R . \tag{1}
\end{equation*}
$$

We consider

$$
a^{2} y x=a \mathcal{S}(x, y) a=\mathcal{S}(x, y a) a=a y a x, \text { for all } x, y \in R
$$

That is

$$
a[a, y] x, \text { for all } x, y \in R .
$$

The semiprimeness of R leads to $a[a, y]=0$, for all $y \in R$. Then an application of Lemma (2.2) implies that $a \in Z(R)$. So for any $\omega \in R$, we have:

$$
\begin{aligned}
\omega \mathcal{S}(x, a) & =\mathcal{S}(x, a \omega)=\mathcal{S}(x, \omega a)=a \mathcal{S}(x, \omega) \\
& =\mathcal{S}(x, \omega) a=a \omega x=\omega a x
\end{aligned}
$$

Equivalently

$$
\omega(\mathcal{S}(x, a)-a x)=0, \text { for all } x, \omega \in R .
$$

Using the semiprimeness of R leads to:

$$
\mathcal{S}(x, a)=a x, \text { for all } x \in R
$$

Conversely, suppose $a \in Z(R)$ and $S(x, a)=a x$, for all $x \in R$, then:

$$
\mathcal{S}(x, \omega) a=a \mathcal{S}(x, \omega)=\mathcal{S}(x, \omega a)=\mathcal{S}(x, a \omega)=\omega \mathcal{S}(x, a)=\omega a x=a \omega x
$$

Consequently, $a \in \mathcal{D}(\mathcal{S})$. This completes the proof of the theorem.

Theorem (3.6):

Let R be a semiprime ring and $a \in R$ is an element dependent on a right reverse bimultiplier \mathcal{S} : $R \times R \rightarrow R$. Then there exists a central ideal of R contains a.
Proof: Let $a \in \mathcal{D}(\mathcal{S})$, then $a \in Z(R)$ by Theorem (3.5), and

$$
\begin{equation*}
\mathcal{S}(x, y) a=a y x, \text { for all } x, y \in R . \tag{1}
\end{equation*}
$$

Putting ωy for y in (1), we get:

$$
y \mathcal{S}(x, \omega) a=a \omega y x, \text { for all } x, y, \omega \in R .
$$

According to (1), the above relation reduces to:

$$
[y, a \omega] x=0, \text { for all } x, y, \omega \in R
$$

The simeprimeness of R leads to:

$$
[y, a \omega]=0, \text { for all } y, \omega \in R
$$

That is

$$
\begin{equation*}
a[y, \omega]=0 \text {, for all } y, \omega \in R . \tag{2}
\end{equation*}
$$

An application of Lemma (2.3) on (2), it follows that there exist a central ideal U of R contains a.

Theorem (3.7):

Let R be a semiprime ring and $\mathcal{T}: R \times R \longrightarrow R$ be a reverse bimultiplier. Then there exist ideals \mathcal{K} and \mathcal{J} of R such that:
(1) $\mathcal{K} \bigoplus \mathcal{J}$ is an essential ideal of R.
$\mathcal{J}(\mathcal{J}, \mathcal{J}) \subset \mathcal{J}$.
\mathcal{T} is free action on \mathcal{J}.
(3)

Proof:
Let a, b be elements in $\mathcal{D}(\mathcal{T})$, then by Theorem (3.1), we have $a, b \in Z(\mathrm{R}), \mathcal{T}(a, y)=a y$ and $\mathcal{T}(b, y)$ $=b y$, for all $y \in R$.
Since $Z(R)$ is a subring of R, then $a-b \in Z(R)$. Moreover

$$
\mathcal{T}(a-b, y)=\mathcal{T}(a, y)-\mathcal{T}(b, y)=a y-b y=(a-b) y, \text { for all } y \in R .
$$

Hence $a-b \in \mathcal{D}(\mathcal{T})$.
Also, for any $a \in \mathcal{D}(\mathcal{T})$ and $r \in R$, we have $a \in Z(R)$ and $\mathcal{T}(a, y)=a y$, furthermore

$$
\begin{gathered}
\mathcal{T}(x, y) a r=a y x r=y x a r=y x \mathcal{T}(a, r)=y \mathcal{T}(a x, r) \\
=\mathcal{T}(a x, r y)=\mathcal{T}(a, r y) x=a r y x
\end{gathered}
$$

That is $\operatorname{ar} \in \mathcal{D}(\mathcal{T})$, and consequently $\mathcal{D}(\mathcal{T})$ is an ideal of R.
Now, choose $\mathcal{K}=\mathcal{D}(\mathcal{T})$ and $\mathcal{J}=\operatorname{ann}(\mathcal{K})$, then \mathcal{J} is an ideal of R and $\mathcal{K} \cap \mathcal{J}=\{0\}$ by Lemma (2.4), also $\mathcal{K} \oplus \mathcal{J}$ is an essential ideal of R by Lemma (2.1).
For the second requirement, let $x, y \in \mathcal{J}$, then:

$$
x a=a x=0, \text { and } a y=y a=0, \text { for all } a \in \mathcal{K} .
$$

Moreover

$$
\mathcal{T}(x, y) a=a y x=0
$$

Hence $\mathcal{T}(\mathcal{J}, \mathcal{J}) \subset \mathcal{J}$.
Finally, by Remark (2.6) we have \mathcal{J} is a semiprime ideal of R, also, by Lemma (2.5) we get $Z(\mathcal{J}) \subseteq$ $Z(R)$.
Now, let $c \in \mathcal{J}$ be a dependent element of the restriction of \mathcal{T} on \mathcal{J}, then by Theorem (3.1) we have c $\in Z(\mathcal{J}) \subseteq Z(R)$. Moreover

$$
\mathcal{T}(c, z)=c z, \text { for all } z \in \mathcal{J}
$$

Left multiplication by r, we get:

$$
r \mathcal{T}(c, z)=r c z, \text { for all } z \in \mathcal{J}, r \in R .
$$

Equivalently

$$
\mathcal{T}(c, z r)=c r z, \text { for all } z \in \mathcal{J}, r \in R .
$$

That is

$$
\mathcal{J}(c, r) z=c r z, \text { for all } z \in \mathcal{J}, r \in R .
$$

Consequently

$$
(\mathcal{T}(c, r)-c r) z=0, \text { for all } r \in R \text { and } z \in \mathcal{J}
$$

The semiprimeness of \mathcal{J} leads to:

$$
\mathcal{T}(c, r)=c r, \text { for all } r \in R .
$$

This leads to $c \in \mathcal{D}(\mathcal{T})=\mathcal{K}$. So we have $c \in \mathcal{K} \cap \mathcal{J}=\{0\}$.
Hence \mathcal{T} is free action on \mathcal{J}.

Theorem (3.8):

Let R be a semiprime ring, and $(\mathcal{T}, \mathcal{S})$ is a double reverse bimultiplier of R. In this case $\mathcal{D}(\mathcal{T})=$ $\mathcal{D}(\mathcal{S})$
Proof: For any $x, y, z \in R$, we have:

$$
\begin{equation*}
z \mathcal{T}(x, y)=\mathcal{S}(y, z) x \tag{1}
\end{equation*}
$$

Let $a \in \mathcal{D}(\mathcal{T})$, then by Theorem (3.1) we get $a \in Z(R)$ and

$$
\begin{equation*}
\mathcal{T}(x, y) a=a y x, \text { for all } x, y \in R \tag{2}
\end{equation*}
$$

Now, replacing x by $a x$ in (1) leads to:

$$
\begin{equation*}
z \mathcal{T}(x, y) a=\mathcal{S}(y, z) a x, \text { for all } x, y, z \in R \tag{3}
\end{equation*}
$$

In view of (2), the above relation reduces to:

$$
z a y x=\mathcal{S}(y, z) a x, \text { for all } x, y, z \in R
$$

Equivalently

$$
(\mathcal{S}(y, z) a-a z y) x=0, \text { for all } x, y, z \in R
$$

The semiprimeness of R leads to:

$$
\mathcal{S}(y, z) a=a z y, \text { for all } y, z \in R
$$

Hence $a \in \mathcal{D}(\mathcal{S})$, and consequently $\mathcal{D}(\mathcal{T}) \subseteq \mathcal{D}(\mathcal{S})$.
Conversely, let $a \in \mathcal{D}(\mathcal{S})$, then $a \in Z(R)$ by Theorem (3.5). Also,

$$
\begin{equation*}
\mathcal{S}(y, z) a x=a \mathcal{S}(y, z) x=\mathcal{S}(y, z a) x=\mathcal{S}(y, a z) x=z \mathcal{S}(y, a) x=z a y x, \text { for all } x, y, z \in R \tag{4}
\end{equation*}
$$

In view of (4), the relation (3) reduces to:

$$
z \mathcal{T}(x, y) a=z a y x, \text { for all } x, y, z \in R
$$

Therefore

$$
z(\mathcal{T}(x, y) a-a y x)=0, \text { for all } x, y, z \in R
$$

Since R is a semiprime ring, then $a \in \mathcal{D}(\mathcal{T})$, that is $\mathcal{D}(\mathcal{S}) \subseteq \mathcal{D}(\mathcal{T})$.

Theorem (3.9):

Let R be a simeprime ring and $\mathcal{T}: R \times R \longrightarrow R$ be a left reveres α-bimultiplier, where α is a surjective endomomorphism of R with $\alpha=I_{\mathcal{D}(\mathcal{T})}$. Then $\mathcal{D}(\mathcal{T}) \subseteq Z(R)$.
Proof:
Suppose a is a dependent element of \mathcal{T}, then

$$
\begin{equation*}
\mathcal{T}(x, y) a=a y x, \text { for all } x, y \in R \tag{1}
\end{equation*}
$$

We consider

$$
\mathcal{T}\left(x a^{2} \omega, y\right)=\mathcal{T}(\omega, y) \alpha\left(a^{2}\right) \alpha(x)=a y \omega a \alpha(x)=\mathcal{T}(\omega a \alpha(x), y) a
$$

Hence

$$
\begin{equation*}
\mathcal{T}\left(x a^{2} \omega, y\right)=\mathcal{T}(a \omega a \alpha(x), y) a, \text { for all } x, y, \omega \in R \tag{2}
\end{equation*}
$$

From (2), we obtain:

$$
\begin{align*}
\mathcal{T}\left(x a^{2} \omega, y\right) & =\mathcal{T}(\alpha(x), y) a \alpha(\omega) a \\
& =a y \alpha(x) \alpha(\omega) a, \text { for all } x, y, \omega \in R . \tag{3}\\
\mathcal{T}(a \alpha(x), y) & a \alpha(\omega) \\
& =\mathcal{T}(\alpha(x), y) a^{2} \alpha(\omega)=\text { ay } \alpha(x) a \alpha(\omega), \text { for all } x, y, \omega \in R .
\end{align*}
$$

$\mathcal{T}\left(x a^{2} \omega, y\right)=\mathcal{T}(a \quad \alpha(x), y) a \alpha(\omega)$
Comparing (3) and (4), we arrive at:

$$
\begin{equation*}
\text { ay } \alpha(x)[a, \alpha(\omega)]=0, \text { for all } x, y, \omega \in R . \tag{5}
\end{equation*}
$$

Putting $\alpha(\omega) y$ for y in (5), we get:

$$
\begin{equation*}
a \alpha(\omega) y \alpha(x)[a, \alpha(\omega)]=0, \text { for all } x, y, \omega \in R . \tag{6}
\end{equation*}
$$

Left multiplication of (5) by $\alpha(\omega)$ gives:

$$
\begin{equation*}
\alpha(\omega) \text { ay } a(x)[a, \alpha(\omega)]=0, \text { for all } x, y, \omega \in R . \tag{7}
\end{equation*}
$$

Subtracting (7) from (6), we obtain:
$[a, \alpha(\omega)] y \alpha(x)[a, \alpha(\omega)]=0$, for all $x, y, \omega \in R$.
Left multiplication of (8) by $\alpha(x)$, then using the semiprimeness of R gives first:

$$
\begin{equation*}
\alpha(x)[a, \alpha(\omega)]=0, \text { for all } y, \omega \in R \tag{8}
\end{equation*}
$$

Consequently, (recall that α is surjective) $[a, \alpha(\omega)]=0$, for all $\omega \in R$, this means $a \in Z(R)$.
In the following two results we describe the dependent elements of the composition of a left (right) reverse α-Bimultiplier with its associative homomorphism.

Theorem (3.10):

Let R be a semiprime ring and $\mathcal{T}: R \times R \rightarrow R$ be a right reverse α-bimultiplier. If a is an element dependent on the mapping $\varphi=\alpha o \mathcal{T}$, where α is an endomomorphism of R with $\alpha=I_{\mathcal{D}(\varphi)}$, then $a \in$ $Z(R)$.
Proof: Since $a \in \mathcal{D}(\varphi)$, where $\varphi=\alpha o \mathcal{T}$ then we have:

$$
\begin{equation*}
(\alpha \circ \mathcal{T})(x, y) a=a y x, \text { for all } x, y \in R . \tag{1}
\end{equation*}
$$

The substitution $x \omega$ for x in (1) gives:

$$
\alpha(\alpha(\omega) \mathcal{T}(x, y)) a=a y x \omega, \text { for all } x, y \in R
$$

That is

$$
\begin{equation*}
\alpha^{2}(\omega)(\alpha \circ \mathcal{T})(x, y) a=a y x \omega, \text { for all } x, y, \omega \in R . \tag{2}
\end{equation*}
$$

According to (1), the above relation reduces to:

$$
\begin{equation*}
\alpha^{2}(\omega) a y x=a y x \omega, \text { for all } x, y, \omega \in R . \tag{3}
\end{equation*}
$$

Taking $\omega=a$ in (3), we obtain:

$$
\begin{equation*}
a[a, y] x+a y[a, x]=0, \text { for all } x, y \in R \tag{4}
\end{equation*}
$$

Replacing x by $x z$ in (4), then using (4), we obtain:

$$
\begin{equation*}
\operatorname{ayz}[a, x]=0, \text { for all } x, y, z \in R \tag{5}
\end{equation*}
$$

Left multiplication of the above relation by x, we get:

$$
\begin{equation*}
x a y z[a, x]=0, \text { for all } x, y, z \in R \tag{6}
\end{equation*}
$$

Also, putting $x y$ for y in (5) gives:

$$
\begin{equation*}
\operatorname{axyz}[a, x]=0, \text { for all } x, y, z \in R \tag{7}
\end{equation*}
$$

Subtracting (6) from (7), we arrive at:

$$
\begin{equation*}
[a, x] y z[a, x]=0, \text { for all } x, y, z \in R \tag{8}
\end{equation*}
$$

Right multiplication of (8) by y, since R is a simeprime ring, we get first:

$$
y[a, x]=0, \text { for all } x, y \in R
$$

and then $[a, x]=0$, for all $x \in R$. That is $a \in Z(R)$.

Theorem (3.11):

Let R be a semiprime ring and $\mathcal{T}: R \times R \rightarrow R$ be a left reverse α-bimultiplier. If a is dependent element of $\varphi=\alpha \circ \mathcal{T}$, where α is an anti-homomorphism of R with $\alpha=I_{\mathcal{D}(\varphi)}$, then $a \in Z(R)$.
Proof:
Since $a \in \mathcal{D}(\varphi)$, then $\varphi(x, y) a=a y x$, for all $x, y \in R$.
That is

$$
\begin{equation*}
(\alpha o \mathcal{T})(x, y) a=a y x, \text { for all } x, y \in R . \tag{1}
\end{equation*}
$$

The substitution $x \omega$ for x in (1) gives:

$$
\begin{equation*}
\alpha^{2}(x)(\alpha \circ \mathcal{T})(\omega, y) a=a y x \omega, \text { for all } x, y, \omega \in R . \tag{2}
\end{equation*}
$$

According to (1), the above relation reduces to:

$$
\begin{equation*}
\alpha^{2}(x) a y \omega=a y x \omega, \text { for all } x, y, \omega \in R . \tag{3}
\end{equation*}
$$

Taking $x=a$ in (3), we obtain:

$$
\begin{equation*}
[a, a y] \omega=0, \text { for all } y, \omega \in R \tag{4}
\end{equation*}
$$

Left multiplication of (4) by $[a, a y]$, since R is a semiprime ring, we arrive at:

$$
\begin{equation*}
a[a, y]=0, \text { for all } y \in R . \tag{5}
\end{equation*}
$$

From (5) and Lemma (2.2), we conclude that $a \in Z(R)$.
Theorem (3.12):
Let \mathcal{T} be a right reverse α-bimultiplier of a semiprime ring R, then $\varphi: R \times R \rightarrow R$ defined by $\varphi(x, y)$ $=[\mathcal{T}(x, y), \alpha(x)]$, for all $x, y \in R$ is free action, where α is a surjective endomomorphism of R, with α $=I_{\mathcal{D}(\varphi)}$.
Proof:
Let $a \in \mathcal{D}(\varphi)$, then $\varphi(x, y) a=a y x$, for all $x, y \in R$, that is:

$$
\begin{equation*}
[\mathcal{T}(x, y), \alpha(x)] a=a y x, \text { for all } x, y \in R . \tag{1}
\end{equation*}
$$

The linearization of (1) with respect to x gives:

$$
\begin{equation*}
[\mathcal{T}(x, y), \alpha(\omega)] a+[\mathcal{T}(\omega, y), \alpha(x)] a=0, \text { for all } x, y, \omega \in R . \tag{2}
\end{equation*}
$$

Putting ωa instead of ω in (2), we get:
$[\mathcal{T}(x, y), a] \alpha(\omega) a+a[\mathcal{T}(x, y), \alpha(\omega)] a+a[\mathcal{T}(\omega, y), \alpha(x)] a+[a, \alpha(x)] \mathcal{T}(\omega, y) a=0$.
According to (2), the above relation reduces to:

$$
\begin{equation*}
[\mathcal{T}(x, y), a] \alpha(\omega) a+[a, \alpha(x)] \mathcal{T}(\omega, y) a=0, \text { for all } x, y, \omega \in R \tag{3}
\end{equation*}
$$

Taking $x=a$ in (3), we get:
$[\mathcal{T}(a, y), a] a(\omega) a=0$, for all $y, \omega \in R$.
The substitution $\alpha(\omega) \mathcal{T}(a, y)$ for $\alpha(\omega)$ by in (4) leads to:

$$
\begin{equation*}
[\mathcal{T}(a, y), a] \alpha(\omega) \mathcal{T}(a, y) a=0, \text { for all } y, \omega \in R \tag{4}
\end{equation*}
$$

Multiplying (4) from the right by $\mathcal{T}(a, y)$ gives:

$$
\begin{equation*}
[\mathcal{T}(a, y), a] \alpha(\omega) a \mathcal{T}(a, y)=0, \text { for all } y, \omega \in R \tag{5}
\end{equation*}
$$

Subtracting (6) from (5), we arrive at:

$$
\begin{equation*}
[\mathcal{T}(a, y), a] \alpha(\omega)[\mathcal{T}(a, y), a]=0, \text { for all } y, \omega \in R . \tag{6}
\end{equation*}
$$

Since R is a semiprime ring, and α is surjective, then we have:

$$
\begin{equation*}
[T(a, y), a]=0, \text { for all } y \in R \tag{7}
\end{equation*}
$$

Right multiplication of (7) by a gives:

$$
[\mathcal{T}(a, y), a] a=0, \text { for all } y \in R
$$

In view of (1), the above relation reduces to:

$$
a y a=0, \text { for all } y \in R .
$$

The semiprimeness of R leads to $a=0$, hence φ is free action.

References

1. Ashraf M. 2010. On Symmetric Generalized (α, β)-Deriavations in Rings, International Congress of mathematicians, Hyderabad, India, August, pp:19-27.
2. Majeed A. H. and Mahmood A. H. 2015. Dependent Elements of Biadditive Mappings on Semiprime Rings, Journal of Al-Nahrain University, 18 (2), June, pp:141-148.
3. Bres̆ar M. 1991.Centralizing Mapping on Von-Neumann Algebras, American Mathematical Society, 111(2), pp:501-510.
4. Herstein I. N. 1969. Topics in Ring Theory, University of Chicago Press.
5. Bres̆ar M.1989. Jordan mapping of semiprime rings, J. Algebra, 127, pp:218-228.
6. Herestein I. N. 1976. Rings with involution, The University of Chicago Press, Chicago.
7. Zaidi S. M. A., Ashraf M. and Ali S.2004. On Jordan ideals and (θ, θ)- derivation in prime rings, IJMMS 37, pp:1957-1964.
8. Ali S., Dhara B., and Khan M. S. 2014. On Prime and Semiprime Rings with Additive Mappings and Derivations, Universal Journal of Computational Mathematics, 2(3), pp:48-55.
9. Samman M. S. and Chaudhry M. A.2008.Dependent Elements of Left Centralizers of Semiprime Rings", the Arabian Journal for Science and Engineering, 33(2A), pp: 313-319.

[^0]: *Email: Audaymath@yahoo.com

