

ISSN: 0067-2904 GIF: 0.851

Results in Projective Geometry PG(r, 23), r = 1, 2

Emad Bakr Al-Zangana*

Department of Mathematics, College of Science, Al-Mustansiriyah University, Baghdad, Iraq

Abstract

In projective plane over a finite field F_q , a conic is the unique complete

(q+1) - arc and any arcs on a conic are incomplete arc of degree less than q+1. These arcs correspond to sets in the projective line over the same field. In this paper, The number of inequivalent incomplete k - arcs; k = 5, 6, ..., 12, on the conic in PG(2,23) and stabilizer group types are found. Also, the projective line PG(1,23) has been splitting into two 12-sets and partitioned into six disjoint tetrads.

Keywords: Projective plane, Projective line, k - Arc, Complete arcs.

r = 1,2 PG(r,23) نتائج في الهندسة الاسقاطية

عماد بكر عبد الكريم الزنكنة*

قسم الرياضيات، كلية العلوم، الجامعة المستنصرية، بغداد، العراق

الخلاصة

$$q+1$$
 المخروط هوالقوس الوحيد التام من الدرجة F_q المخروط هوالقوس الوحيد التام من الدرجة $q+1$ في المستوي الاسقاطي على الحقل المنتهي F_q المخروط هوالقوس الوحيد التام من الدرجة في الخط واي قوس اخر على المخروط هو غير تام من الدرجة اقل من $q+1$. هذه الاقواس تقابل مجاميع في الخط الاسقاطي على نفس الحقل. في هذا البحث عدد الاقواس الغير تامة من الدرجة k حيث k حيث الاسقاطي على نفس الحقل. في هذا البحث عدد الاقواس الغير تامة من الدرجة k حيث k حيث k حيث المقاطي على المخروط في $PG(2,23)$ والزمر المثبتة لها قد وجد. كذلك الخط الاسقاطي $PG(1,23)$ قد جزء الى مجموعتين من الدرجة 12 قسم ايضا الى ستة مجاميع من الدرجة الرابعة.

1-Introduction

Let PG(r,q) be a projective geometry of dimension r over the Galois field F_q of q elements. If r = 1, PG(1,q) is called projective line and if r = 2, PG(2,q) is called projective plane.

Definition 1.1 [1]: A k – arc K in projective plane PG(2,q) is a set of k points, no three of them are collinear. A k – arc is complete if it is not contained in (k+1) – arc. A k – set K in projective line PG(1,q) is a set of k distinct points.

Definition 1.2 [1]: In PG(r,q), a frame is a set of n+2 points, no n+1 in a hyperplane; that is, every subset of n+1 points is linearly independent.

The set $\Upsilon_2 = \{U_0, U_1, U_2, U\}$ in projective plane PG(2, q) and the set $\Upsilon_1 = \{\infty, 0, 1\}$ in projective line PG(1, q) are called the standard frames, where

 $U_0 = [1,0,0], U_1 = [0,1,0], U_2 = [0,0,1], U = [1,1,1].$ **Definition 1.3[1]:** Let F be a form of degree two; that is, $F = \sum_{0 \le i \le j \le 2} a_{ij} X_i X_j \,,$ With not all $a_{ii} = 0$ in F_a , then the set $C = v(F) = \{P(X) \in PG(2,q) \mid F(X) = 0\}$ is called a quadric plane. The set v(F) is called non-singular if F irreducible over F_q . A nonsingular plane quadric C is called a conic which is formed a unique complete (q+1)-arc. Lemma 1.4: Any conic form through the standard frame has the following form $F = aX_0X_1 + bX_0X_2 + cX_1X_2.$ **Theorem 1.5**[1]: In PG(2,q) with $q \ge 4$, there is a unique conic through a 5-arc. $T = \{P_1, P_2, P_3, P_4\}$ Definition **1.6[1]:** The cross-ratio of four ordered points $P_1, P_2, P_3, P_4 \in PG(1,q)$ with coordinates t_1, t_2, t_3, t_3 is

$$\lambda = \{P_1, P_2; P_3, P_4\} = \{t_1, t_2; t_3, t_4, \} = \frac{(t_1 - t_3)(t_2 - t_4)}{(t_1 - t_4)(t_2 - t_3)} = CR(T).$$

Definition 1.7[1]: Let T be a tetrad(4-set) with cross-ratio λ . Then T is called

(1) Harmonic, denoted by H, if $\lambda = 1/\lambda$ or $\lambda = \lambda/(\lambda - 1)$ or $\lambda = (1 - \lambda)$;

(2) Equianharmonic, denoted by E, if $\lambda = 1/(1-\lambda)$ or equivalently, $\lambda = (\lambda - 1)/\lambda$;

(3) Neither harmonic nor equianharmonic, denoted by N, if the cross-ratio is another value. **Remark 1.8:**

(i) The cross-ratio of any harmonic tetrad has the values -1,2,1/2.

(ii) The cross-ratio of a tetrad of type E satisfies the equation

$$\lambda^2 - \lambda + 1 = 0.$$

In PG(2,q) with $q \ge 5$ odd, an arc not contained in a conic can has at most $\frac{1}{2}(q+3)$ points in

common with a conic [2]. Therefore, any incomplete arc in a conic is at most of degree $\frac{1}{2}(q+3)$;

Here, there are two questions.

(1) What is the maximum size of complete arc other than the conic has $\frac{1}{2}(q+3)$ points in common

with a conic?

(2) What is the number of incomplete arc in the conic?

In [2], the first question has been answer for some q. In [3], question two has been answered for q = 19.

The aim of this paper is answered question two for q = 23, before that, the conics formed through the standard frame have been reparametrized. Also, the projective line over F_{23} has been splits into two 12-sets and partitioned into six different tetrads.

For the group types which appear in this paper see [4]. The main computing tool is the mathematical programming language GAP [5].

2- Conic Representation Through 5-arc

According to Lemma 1.4 and Theorem 1.5, to give a conic with different form through the standard frame, it has to be finding the inequivalent 5-arcs.

Theorem 2.1: In PG(2, 23), there are six projectively inequivalent 5-arcs through the standard frame Υ_2 as given in Table-1.

Table 1-Inequivalent 5-arcs in PG(2, 23)

A_i	5-arc	Stabilizer
A_1	$\Upsilon_2 \bigcup \{7\}$	Ι
A_2	$\Upsilon_2 \bigcup \{8\}$	Z_2
A_3	$\Upsilon_2 \cup \{10\}$	Z_2
A_4	$\Upsilon_2 \bigcup \{14\}$	Z_2
A_5	$\Upsilon_2 \bigcup \{16\}$	Z_2
A_6	$\Upsilon_2 \bigcup \{28\}$	Z_2

In the following, the conic form through each 5-arc A_i that listed in Table 1 and its parametrazion has been given.

$$\begin{split} C_{A_1} &= X_0 X_1 + 9 X_0 X_2 - 10 X_1 X_2 = \{ \mathsf{P}(9(t^2 - 2t), 9(1 - 12t), 12t) | \ t \ \in \mathsf{F}_{23}^* \} \\ C_{A_2} &= C_{A_3} = X_0 X_1 + 11 X_0 X_2 + 11 X_1 X_2 = \{ \mathsf{P}(20(t^2 - 2t), 11(1 - 12t), 12t) | \ t \ \in \mathsf{F}_{23}^* \} \\ C_{A_4} &= X_0 X_1 + 4 X_0 X_2 - 5 X_1 X_2 = \{ \mathsf{P}(16(t^2 - 2t), 4(1 - 12t), 12t) | \ t \ \in \mathsf{F}_{23}^* \} \\ C_{A_5} &= X_0 X_1 + 10 X_0 X_2 - 11 X_1 X_2 = \{ \mathsf{P}(3(t^2 - 2t), 10(1 - 2t), 12t) | \ t \ \in \mathsf{F}_{23}^* \} \\ C_{A_6} &= X_0 X_1 - 9 X_0 X_2 + 8 X_1 X_2 = \{ \mathsf{P}(2(t^2 - 2t), 14(1 - 12t), 12t) | \ t \ \in \mathsf{F}_{23}^* \} \\ \end{split}$$
 (1)
Where $F_q^* = F_q \bigcup \{ \infty \}.$

Since there is a unique conic up to projectivity, so it is enough to fixed one conic form to fined the number of k – arcs on the conic.

Theorem 2.2: The number of inequivalent incomplete $k - \arcsin; k = 5, 6, \dots, 12$, on the conic in PG(2, 23) and stabilizer group types are given in Table-2.

4-arc	5-arc	6-arc	7-arc	8-arc	9-arc	10-arc	11-arc	12-arc
N ₄ =4	N ₅ =6	$N_6 = 22$	N ₇ =36	N ₈ =83	$N_9 = 125$	$N_{10}=196$	$N_{11}=227$	N ₁₂ =268
1: <i>I</i>	1: <i>I</i>	5:I	21: <i>I</i>	44 : I	93: <i>I</i>	132: <i>I</i>	185: <i>I</i>	190: <i>I</i>
$3:V_4$	$5: Z_2$	$9: Z_2$	$15:Z_2$	$29: Z_2$	$27: Z_2$	$54: Z_2$	$41:Z_{2}$	$57: Z_2$
		$4:V_{4}$		$7:V_4$	$2: Z_{3}$	$10:V_4$	$1: D_{11}$	$1: Z_3$
		$3:S_{3}$		$2: D_4$	$3: S_3$			$10:V_4$
		$1: D_{6}$		$1: D_8$				$1: Z_4$
								$4:S_{3}$
								$1: D_8$
								$1: Z_{11}$
								1:A ₄
								$1: D_{6}$
								$1: D_{12}$

Table 2-Inequivalent, incomplete $k - \arcsin$ on the conic

3- Projective Line PG(1, 23)

Each point P(x, y) with $y \neq 0$ in PG(1,q) is determined by the non-homogeneous coordinate x/y; the coordinate for P(1,0) is ∞ . So, the points of PG(1,q) can be represented by the set

$$F_q \bigcup \{\infty\} = \{\infty, t_1, t_2, \dots, t_q \mid t_i \in F_q\}$$

$$(2)$$

On PG(1,23), the projective line over Galois field of order 23, there are 24 points. The points of PG(1,23) are the elements of the set

 $F_{23} \cup \{\infty\} = \{\infty, 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 7, \pm 8, \pm 9, \pm 10, \pm 11\}$

A tetrad is of type H if the cross-ratio is -1, 2 or 1/2 = 12. Since the equation $\lambda^2 - \lambda + 1 = 0$ has no solution in F_{23} , so there is no tetrad of type E. Therefore, there are three types of tetrads of type N. Let tetrads of cross

ratio 3,8,11,-2,-7,-10 denote by N_1 , tetrads of cross-ratio 4,6,9,-3,-5,-8 denote by N_2 and tetrads of cross-ratio 5,7,10,-4,-6,-9 denote by N_3 .

Let $\Gamma_1(k,q)$ be the set of all inequivalent k-sets through the standard frame Υ_1 in PG(1,q) and $C_2(k,q)$ be the set of all inequivalent k-arcs on the conic through the standard frame Υ_2 in PG(2,q).

It is clear that from (1) and (2), there is one to one corresponding between a projective line and a conic as given below.

$$PG(1,q) \to F_q^* \to C$$
$$[x, y] \mapsto t \quad \mapsto P(t)$$

Therefore; there is a one to one corresponding between the inequivalent k – sets through the standard frame Υ_1 in PG(1,q) and incomplete k – arcs on the conic through the standard frame Υ_2 up to projectivity, where $k \leq \frac{1}{2}(q+3)$.

Let denote these bijectivity by the map $\varphi_k : \Gamma_1(k, 23) \to C_2(k, 23)$, then $\varphi_5 : \Gamma_1(k, 23) \to C_2(k, 23)$ is defined as follows:

$$\begin{split} \varphi_5(A_1) &= P_3; \quad \varphi_5(A_4) = P_6; \\ \varphi_5(A_2) &= P_2; \quad \varphi_5(A_5) = P_4; \\ \varphi_5(A_3) &= P_5; \quad \varphi_5(A_6) = P_1. \end{split}$$

Corollary 3.1: The number of inequivalent k – sets in PG(1, 23) and its stabilizer group types is the same as given in Table-2.

Example 3.2:

In Table-3 and Table- 4, the inequivalent pentads (5-sets) and hexads (6-sets) through the standard frame $\Upsilon_1 = \{\infty, 0, 1\}$ and its partition to is tetrads (pentads) with stabilizer group types have been given.

Table 3- Inequivalent pentads in PG(1, 23)

P_i	The pentad	Type of Tetrads	Stabilizer
P_1	$P_1 = \Upsilon_1 \bigcup \{-1, 2\}$	$HHN_1N_1N_2$	Z_2
P_2	$P_2 = \Upsilon_1 \bigcup \{-1, 4\}$	$HN_2N_3N_3N_2$	Z_2
P_3	$P_3 = \Upsilon_1 \bigcup \{-1, 5\}$	$HN_3N_2N_1N_3$	Ι
P_4	$P_4 = \Upsilon_1 \bigcup \{3, 4\}$	$N_1 N_2 N_2 N_1 N_2$	Z_2
P_5	$P_5 = \Upsilon_1 \bigcup \{3,7\}$	$N_1 N_3 N_3 N_1 N_1$	Z_2
P_6	$P_6 = \Upsilon_1 \bigcup \{3, 14\}$	$N_1 N_3 N_2 N_2 N_3$	Z_2
Table 4- In	equivalent hexad in $PG(1, 23)$		
H_i	The hexad	Types of pentads	Stabilizer
H ₁	{ ∞, 0, 1, 22, 2, 3 }	$P_1P_1P_1P_4P_1P_4$	V_4
H_2	{ ∞, 0, 1, 22, 2, 4 }	$P_1P_2P_1P_3P_5P_4$	Ι
H ₃	{ ∞, 0, 1, 22, 2, 5 }	$P_1P_3P_2P_3P_1P_2$	Z_2
H_4	{ ∞, 0, 1, 22, 2, 6 }	$P_1P_2P_3P_5P_3P_3$	Ι
H_5	{ ∞, 0, 1, 22, 2, 7 }	$P_1P_3P_2P_4P_4P_6$	Ι
H ₆	{ ∞, 0, 1, 22, 2, 9 }	$P_1P_3P_1P_5P_5P_3$	Z_2
H ₇	{ ∞, 0, 1, 22, 2, 10 }	$P_1P_3P_3P_5P_6P_4$	Ι
H ₈	{ ∞, 0, 1, 22, 2, 11 }	$P_1P_1P_3P_3P_6P_6$	
H ₉	$\{\infty, 0, 1, 22, 2, 12\}$	$P_1P_1P_1P_1P_1P_1$	D_6
H ₁₀	$\{\infty, 0, 1, 22, 4, 5\}$	$P_2P_3P_6P_2P_6P_3$	Z_2
H_{11}	$\{\infty, 0, 1, 22, 4, 6\}$	$P_2P_2P_6P_6P_2P_2$	V_4
H ₁₂	$\{\infty, 0, 1, 22, 4, 9\}$	$P_2P_3P_4P_3P_2P_4$	
H ₁₃	{ ∞, 0, 1, 22, 4, 10 }	$P_2P_3P_6P_5P_5P_4$	Ι
H ₁₄	{ ∞, 0, 1, 22, 4, 14 }	$P_2P_3P_2P_6P_3P_6$	Z_2
H ₁₅	{ ∞, 0, 1, 22, 4, 17 }	$P_2P_2P_3P_3P_3P_3$	V_4
H ₁₆	{ ∞, 0, 1, 22, 5, 7 }	$P_3P_3P_6P_4P_4P_6$	Z_2
H ₁₇	{ ∞, 0, 1, 22, 5, 9 }	$P_3P_3P_3P_3P_3P_3$	<i>S</i> ₃
H ₁₈	$\{\infty, 0, 1, 22, 5, 13\}$	$P_3P_3P_5P_6P_5P_6$	Z_2
H ₁₉	{ ∞, 0, 1, 22, 5, 18 }	$P_3P_3P_3P_3P_5P_5$	V_4
H ₂₀	{ ∞, 0, 1, 3, 4, 9 }	$P_4P_4P_4P_4P_4P_4P_4$	S ₃
H_{21}	{ ∞, 0, 1, 3, 4, 11 }	$P_4P_5P_4P_6P_5P_6$	Z_2
H_{22}	{ ∞, 0, 1, 3, 7, 10 }	$P_5P_5P_5P_5P_5P_5$	S_3

4- Splitting PG(1, 23)

Each 12-set Ω_i , and its complement Ω_i^c partition PG(1,23). Clearly, the stabilizer group G_{Ω_i} of Ω_i also fixes the complement Ω_i^c . So, if PG(1,23) is partition into two 12-sets $\Omega = \{\Omega_i; \Omega_i^c\}$, then the stabilizer group of the partition Ω is:

(i) If Ω_i projectively inequivalent to its complement Ω_i^c , then $G_{\Omega_i^c}$ is G_{Ω_i} therefore; the stabilizer group of the partition is also G_{Ω_i} .

(ii) If Ω_i projectively equivalent to its complement Ω_i^c , then the stabilizer group of the partition is G_{Ω_i} union of all linear transformations between Ω_i and Ω_i^c . And in this case, the stabilizer group of the partition generated always by two elements one of them belong to the G_{Ω_i} and the other is projectivity between G_{Ω_i} and Ω_i^c .

Theorem: The projective line PG(1, 23) has

(i) 90 projectively distinct partitions into two equivalent 12-sets (EQ);

(ii) 178 projectively distinct partitions into two inequivalent 12-sets (NEQ).

$NEQ: \{ \mathbf{\Omega}_i; \mathbf{\Omega}_i^c \}$	$EQ: \{\Omega_i; \Omega_i^c\}$
Total:178	Total:90
122: <i>I</i>	68:Z ₂
46:Z ₂	$1: Z_4$
$8:V_4$	$10:V_4$
$2:S_{3}$	1: S ₃
	$1: D_4$
	$1: D_6$
	$1: D_8$
	$1: D_{11}$
	1: D ₁₂
	$1: S_4$
	1:D ₂₄

Table 5- Partition of PG(1, 23) into two 12-sets

Example: (i) The unique 12-set $\Omega_j = P_1 \bigcup \{3, 5, 6, 12, 13, 19, 20\}$, which has stabilizer group of type D_{12} , and its complement $\Omega_j^c = \{4, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 21\}$ partition the projective line such that $\Omega_i \cong \Omega_i^c$. The stabilizer group of the partition is of type D_{24} as given bellow:

$$D_{24} = \langle a = 2 - t, b = (8t - 10)/(11t + 9) | a^2 = b^{24} = 1, ba = ab^{-1} \rangle.$$

(ii) The 12-set $\Omega_k = P_1 \bigcup \{3, 4, 5, 7, 8, 17, 19\}$, which has stabilizer group of type S_3 , and its complement $\Omega_k^c = \{6, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21\}$ are partition the projective line such that $\Omega_k \not\cong \Omega_k^c$. The stabilizer group of the partition is also S_3 as given bellow:

 $S_{3} = \left\langle a = (5 - 4t)/(4t + 4), \ b = -2/(9t + 8) \mid a^{2} = b^{3} = 1, ba = ab^{-1} \right\rangle.$

Theorem: The projective line PG(1, 23) split into six disjoint harmonic tetrads and six disjoint tetrads of type N_i , i = 1, 2, 3. These partitions are not unique.

Proof : The GAP programming has been used to splitting the projective line into six disjoint tetrads. (i) Partitions into Harmonic tetrads;

(iv) Partitions into tetrads of types N_3 ;

$a_1 = \{\infty, 0, 1, -4\},\$	$CR(a_1) = -4;$
$a_2 = \{ -1, 2, -2, 4 \},$	$CR(a_2)=7;$
$a_3 = \{3, -3, 5, -7\},\$	$CR(a_3)=7;$
$a_4 = \{ -5, 6, -6, -8 \},$	$CR(a_4) = -6;$
$a_5 = \{7, 10, -10, -11\},\$	$CR(a_5)=10;$
$a_6 = \{8, 9, -9, 11\},\$	$CR(a_6) = 10.$

References

- 1. Hirschfeld, J. W. P. 1998. Projective geometries over finite fields, 2nd Edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York.
- Bartoli, D., Davydov, A. A., Marcugini S. and Pambianco, F. 2013. A 3-cycle construction of complete arcs sharing (q+3)/2 points with a conic, *Advances in Mathematics of Communications*, 7(3), pp: 319-334.

- **3.** Al-Zangana, E. B. **2011**. The geometry of the plane of order nineteen and its application to errorcorrecting codes, Ph.D. Thesis, University of Sussex, United Kingdom.
- 4. Thomas, A. D. and Wood, G. V. 1980. Group tables. Shiva Mathematics Series, Series 2.
- 5. GAP Group. 2013. GAP. Reference manual, URL http://www.gap-system.org.