

Results in Projective Geometry $P G(r, 23), r=1,2$

Emad Bakr Al-Zangana*

Department of Mathematics, College of Science, Al-Mustansiriyah University, Baghdad, Iraq

Abstract

In projective plane over a finite field F_{q}, a conic is the unique complete $(q+1)-\operatorname{arc}$ and any arcs on a conic are incomplete arc of degree less than $q+1$. These arcs correspond to sets in the projective line over the same field. In this paper, The number of inequivalent incomplete k - arcs; $k=5,6, \ldots, 12$, on the conic in $P G(2,23)$ and stabilizer group types are found. Also, the projective line $P G(1,23)$ has been splitting into two 12 -sets and partitioned into six disjoint tetrads.

Keywords: Projective plane, Projective line, k - Arc, Complete arcs.

$$
\begin{aligned}
& r=1,2 \quad P G(r, 23) \text { نتائج في الهندسة الاسقاطية } \\
& \text { عماد بكر عبد الكريم الزنكنة } \\
& \text { قسم الرياضيات، كلية العلوم، الجامعة المستتصرية، بغداد، العراق }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الخلاصة }
\end{aligned}
$$

> واي قوس اخر على المخروط هو غير تام من الارجة اقل من q+1 1 . هذه الاقواس نقابل مجاميع في الخط
> الاسقاطي على نفس الحقل. في هذا البحث عدد الاقواس الغير تامة من الارجن

$$
\begin{aligned}
& \text { قد جزء الى مجموعتين من الارجة } 12 \text { و قس ايضا الى ستة مجاميع من الارجة الرابعة. }
\end{aligned}
$$

1- Introduction

Let $P G(r, q)$ be a projective geometry of dimension r over the Galois field F_{q} of q elements. If $r=1, P G(1, q)$ is called projective line and if $r=2, P G(2, q)$ is called projective plane.
Definition 1.1 [1]: A $k-\operatorname{arc} K$ in projective plane $P G(2, q)$ is a set of k points, no three of them are collinear. A k-arc is complete if it is not contained in $(k+1)-\operatorname{arc}$. A $k-\operatorname{set} K$ in projective line $P G(1, q)$ is a set of k distinct points.
Definition 1.2 [1]: In $P G(r, q)$, a frame is a set of $n+2$ points, no $n+1$ in a hyperplane; that is, every subset of $n+1$ points is linearly independent.

The set $\Upsilon_{2}=\left\{U_{0}, U_{1}, U_{2}, U\right\}$ in projective plane $P G(2, q)$ and the set $\Upsilon_{1}=\{\infty, 0,1\}$ in projective line $P G(1, q)$ are called the standard frames, where
$U_{0}=[1,0,0], U_{1}=[0,1,0], U_{2}=[0,0,1], U=[1,1,1]$.
Definition 1.3[1]: Let F be a form of degree two; that is,
$F=\sum_{0 \leq i \leq j \leq 2} a_{i j} X_{i} X_{j}$,
With not all $a_{i j}=0$ in F_{q}, then the set

$$
C=v(F)=\{P(X) \in P G(2, q) \mid F(X)=0\}
$$

is called a quadric plane. The set $v(F)$ is called non-singular if F irreducible over F_{q}. A nonsingular plane quadric C is called a conic which is formed a unique complete $(q+1)-\operatorname{arc}$.
Lemma 1.4: Any conic form through the standard frame has the following form

$$
F=a X_{0} X_{1}+b X_{0} X_{2}+c X_{1} X_{2}
$$

Theorem 1.5[1]: In $P G(2, q)$ with $q \geq 4$, there is a unique conic through a 5 -arc.
Definition 1.6[1]: The cross-ratio $T=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\} \quad$ of four ordered points $P_{1}, P_{2}, P_{3}, P_{4} \in P G(1, q)$ with coordinates $t_{1}, t_{2}, t_{3}, t_{3}$ is
$\lambda=\left\{P_{1}, P_{2} ; P_{3}, P_{4}\right\}=\left\{t_{1}, t_{2} ; t_{3}, t_{4},\right\}=\frac{\left(t_{1}-t_{3}\right)\left(t_{2}-t_{4}\right)}{\left(t_{1}-t_{4}\right)\left(t_{2}-t_{3}\right)}=C R(T)$.
Definition 1.7[1]: Let T be a tetrad(4-set) with cross-ratio λ. Then T is called
(1) Harmonic, denoted by H, if $\lambda=1 / \lambda$ or $\lambda=\lambda /(\lambda-1)$ or $\lambda=(1-\lambda)$;
(2) Equianharmonic, denoted by E, if $\lambda=1 /(1-\lambda)$ or equivalently, $\lambda=(\lambda-1) / \lambda$;
(3) Neither harmonic nor equianharmonic, denoted by N, if the cross-ratio is another value.

Remark 1.8:

(i) The cross-ratio of any harmonic tetrad has the values $-1,2,1 / 2$.
(ii) The cross-ratio of a tetrad of type E satisfies the equation

$$
\lambda^{2}-\lambda+1=0
$$

In $P G(2, q)$ with $\quad q \geq 5$ odd, an arc not contained in a conic can has at most $\frac{1}{2}(q+3)$ points in common with a conic [2]. Therefore, any incomplete arc in a conic is at most of degree $\frac{1}{2}(q+3)$; Here, there are two questions.
(1) What is the maximum size of complete arc other than the conic has $\frac{1}{2}(q+3)$ points in common with a conic?
(2) What is the number of incomplete arc in the conic?

In [2], the first question has been answer for some q. In [3], question two has been answered for $q=19$.

The aim of this paper is answered question two for $q=23$, before that, the conics formed through the standard frame have been reparametrized. Also, the projective line over F_{23} has been splits into two 12 -sets and partitioned into six different tetrads.
For the group types which appear in this paper see [4]. The main computing tool is the mathematical programming language GAP [5].

2- Conic Representation Through 5-arc

According to Lemma 1.4 and Theorem 1.5, to give a conic with different form through the standard frame, it has to be finding the inequivalent 5 -arcs.

Theorem 2.1: In $P G(2,23)$, there are six projectively inequivalent 5-arcs through the standard frame Υ_{2} as given in Table-1.
Table 1-Inequivalent 5-arcs in $P G(2,23)$

A_{i}	5 -arc	Stabilizer
A_{1}	$\Upsilon_{2} \cup\{7\}$	I
A_{2}	$\Upsilon_{2} \cup\{8\}$	Z_{2}
A_{3}	$\Upsilon_{2} \cup\{10\}$	Z_{2}
A_{4}	$\Upsilon_{2} \cup\{14\}$	Z_{2}
A_{5}	$\Upsilon_{2} \cup\{16\}$	Z_{2}
A_{6}	$\Upsilon_{2} \bigcup\{28\}$	Z_{2}

In the following, the conic form through each 5-arc A_{i} that listed in Table 1 and its parametrazion has been given.
$C_{A_{1}}=X_{0} X_{1}+9 X_{0} X_{2}-10 X_{1} X_{2}=\left\{\mathrm{P}\left(9\left(t^{2}-2 t\right), 9(1-12 t), 12 t\right) \mid t \in \mathrm{~F}_{23}^{*}\right\}$
$C_{A_{2}}=C_{A_{3}}=X_{0} X_{1}+11 X_{0} X_{2}+11 X_{1} X_{2}=\left\{\mathrm{P}\left(20\left(t^{2}-2 t\right), 11(1-12 t), 12 t\right) \mid t \in \mathrm{~F}_{23}^{*}\right\}$
$C_{A_{4}}=X_{0} X_{1}+4 X_{0} X_{2}-5 X_{1} X_{2}=\left\{\mathrm{P}\left(16\left(t^{2}-2 t\right), 4(1-12 t), 12 t\right) \mid t \in \mathrm{~F}_{23}^{*}\right\}$
$C_{A_{5}}=X_{0} X_{1}+10 X_{0} X_{2}-11 X_{1} X_{2}=\left\{\mathrm{P}\left(3\left(t^{2}-2 t\right), 10(1-2 t), 12 t\right) \mid t \in \mathrm{~F}_{23}^{*}\right\}$
$C_{A_{6}}=X_{0} X_{1}-9 X_{0} X_{2}+8 X_{1} X_{2}=\left\{\mathrm{P}\left(2\left(t^{2}-2 t\right), 14(1-12 t), 12 t\right) \mid t \in \mathrm{~F}_{23}^{*}\right\}$
Where $F_{q}^{*}=F_{q} \cup\{\infty\}$.
Since there is a unique conic up to projectivity, so it is enough to fixed one conic form to fined the number of $k-\operatorname{arcs}$ on the conic.
Theorem 2.2: The number of inequivalent incomplete k - $\operatorname{arcs} ; k=5,6, \ldots, 12$, on the conic in $P G(2,23)$ and stabilizer group types are given in Table-2.

Table 2-Inequivalent, incomplete $k-\operatorname{arcs}$ on the conic

4-arc	5-arc	6-arc	7-arc	8 -arc	9-arc	10-arc	11-arc	12-arc
$N_{4}=4$	$N_{5}=6$	$N_{6}=22$	$N_{7}=36$	$N_{8}=83$	$N_{9}=125$	$N_{10}=196$	$N_{11}=227$	$N_{12}=268$
1:I	1:I	5:I	21:I	44:I	93:I	132:I	185:I	190:I
3: V_{4}	5: Z_{2}	9: Z_{2}	$15: Z_{2}$	29: Z_{2}	27: Z_{2}	54: Z_{2}	41: Z_{2}	57: Z_{2}
		4:V4		7:V4	$2: Z_{3}$	10:V4	$1: D_{11}$	$1: Z_{3}$
		3: S_{3}		2: D_{4}	3: S_{3}			$10: V_{4}$
		$1: D_{6}$		$1: D_{8}$				$1: Z_{4}$
								4: S_{3}
								$1: D_{8}$
								$1: Z_{11}$
								1: A_{4}
								$1: D_{6}$
								1: D_{12}

3- Projective Line $P G(1,23)$

Each point $\mathrm{P}(x, y)$ with $y \neq 0$ in $P G(1, q)$ is determined by the non-homogeneous coordinate x / y; the coordinate for $\mathrm{P}(1,0)$ is ∞. So, the points of $P G(1, q)$ can be represented by the set

$$
\begin{equation*}
F_{q} \cup\{\infty\}=\left\{\infty, t_{1}, t_{2}, \ldots, t_{q} \mid t_{i} \in F_{q}\right\} \tag{2}
\end{equation*}
$$

On $P G(1,23)$, the projective line over Galois field of order 23 , there are 24 points. The points of $P G(1,23)$ are the elements of the set

$$
F_{23} \cup\{\infty\}=\{\infty, 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 7, \pm 8, \pm 9, \pm 10, \pm 11\}
$$

A tetrad is of type H if the cross-ratio is $-1,2$ or $1 / 2=12$. Since the equation $\lambda^{2}-\lambda+1=0$ has no solution in F_{23}, so there is no tetrad of type E. Therefore, there are three types of tetrads of type N. Let tetrads of cross
ratio $3,8,11,-2,-7,-10$ denote by N_{1}, tetrads of cross-ratio $4,6,9,-3,-5,-8$ denote by N_{2} and tetrads of cross-ratio $5,7,10,-4,-6,-9$ denote by N_{3}.
Let $\Gamma_{1}(k, q)$ be the set of all inequivalent k-sets through the standard frame Υ_{1} in $P G(1, q)$ and $C_{2}(k, q)$ be the set of all inequivalent k-arcs on the conic through the standard frame Υ_{2} in $P G(2, q)$.
It is clear that from (1) and (2), there is one to one corresponding between a projective line and a conic as given below.

$$
\begin{aligned}
P G(1, q) & \rightarrow F_{q}^{*}
\end{aligned} \rightarrow C=\begin{aligned}
{[x, y] } & \mapsto t \quad \mapsto(t)
\end{aligned}
$$

Therefore; there is a one to one corresponding between the inequivalent k-sets through the standard frame Υ_{1} in $P G(1, q)$ and incomplete k - arcs on the conic through the standard frame Υ_{2} up to projectivity, where $k \leq \frac{1}{2}(q+3)$.
Let denote these bijectivity by the map $\varphi_{k}: \Gamma_{1}(k, 23) \rightarrow C_{2}(k, 23)$, then $\varphi_{5}: \Gamma_{1}(k, 23) \rightarrow C_{2}(k, 23)$ is defined as follows:

$$
\begin{array}{ll}
\varphi_{5}\left(A_{1}\right)=P_{3} ; & \varphi_{5}\left(A_{4}\right)=P_{6} \\
\varphi_{5}\left(A_{2}\right)=P_{2} ; & \varphi_{5}\left(A_{5}\right)=P_{4} \\
\varphi_{5}\left(A_{3}\right)=P_{5} ; & \varphi_{5}\left(A_{6}\right)=P_{1}
\end{array}
$$

Corollary 3.1: The number of inequivalent k-sets in $P G(1,23)$ and its stabilizer group types is the same as given in Table-2.

Example 3.2:

In Table-3 and Table- 4, the inequivalent pentads ($5-$ sets) and hexads ($6-$ sets) through the standard frame $\Upsilon_{1}=\{\infty, 0,1\}$ and its partition to is tetrads (pentads) with stabilizer group types have been given.

Table 3- Inequivalent pentads in $P G(1,23)$

P_{i}	The pentad	Type of Tetrads	Stabilizer
P_{1}	$P_{1}=\Upsilon_{1} \cup\{-1,2\}$	$H H N_{1} N_{1} N_{2}$	Z_{2}
P_{2}	$P_{2}=\Upsilon_{1} \cup\{-1,4\}$	$H N_{2} N_{3} N_{3} N_{2}$	Z_{2}
P_{3}	$P_{3}=\Upsilon_{1} \cup\{-1,5\}$	$H N_{3} N_{2} N_{1} N_{3}$	I
P_{4}	$P_{4}=\Upsilon_{1} \cup\{3,4\}$	$N_{1} N_{2} N_{2} N_{1} N_{2}$	Z_{2}
P_{5}	$P_{5}=\Upsilon_{1} \cup\{3,7\}$	$N_{1} N_{3} N_{3} N_{1} N_{1}$	Z_{2}
P_{6}	$P_{6}=\Upsilon_{1} \cup\{3,14\}$	$N_{1} N_{3} N_{2} N_{2} N_{3}$	Z_{2}

Table 4- Inequivalent hexad in $P G(1,23)$

H_{i}	The hexad	Types of pentads	Stabilizer
H_{1}	$\{\infty, 0,1,22,2,3\}$	$P_{1} P_{1} P_{1} P_{4} P_{1} \boldsymbol{P}_{4}$	V_{4}
H_{2}	$\{\infty, 0,1,22,2,4\}$	$P_{1} P_{2} P_{1} P_{3} P_{5} P_{4}$	I
H_{3}	$\{\infty, 0,1,22,2,5\}$	$P_{1} P_{3} P_{2} P_{3} P_{1} P_{2}$	Z_{2}
H_{4}	$\{\infty, 0,1,22,2,6\}$	$P_{1} P_{2} P_{3} P_{5} P_{3} P_{3}$	I
H_{5}	$\{\infty, 0,1,22,2,7\}$	$P_{1} P_{3} P_{2} P_{4} P_{4} P_{6}$	I
H_{6}	$\{\infty, 0,1,22,2,9\}$	$P_{1} P_{3} P_{1} P_{5} P_{5} P_{3}$	Z_{2}
H_{7}	$\{\infty, 0,1,22,2,10\}$	$P_{1} P_{3} P_{3} P_{5} P_{6} P_{4}$	I
H_{8}	$\{\infty, 0,1,22,2,11\}$	$P_{1} P_{1} P_{3} P_{3} P_{6} P_{6}$	Z_{2}
H_{9}	$\{\infty, 0,1,22,2,12\}$	$P_{1} P_{1} P_{1} P_{1} P_{1} P_{1}$	D_{6}
H_{10}	$\{\infty, 0,1,22,4,5\}$	$P_{2} P_{3} P_{6} P_{2} P_{6} P_{3}$	Z_{2}
H_{11}	$\{\infty, 0,1,22,4,6\}$	$P_{2} P_{2} P_{6} P_{6} P_{2} P_{2}$	V_{4}
H_{12}	$\{\infty, 0,1,22,4,9$ \}	$P_{2} P_{3} P_{4} P_{3} P_{2} P_{4}$	Z_{2}
H_{13}	$\{\infty, 0,1,22,4,10\}$	$P_{2} P_{3} P_{6} P_{5} P_{5} P_{4}$	I
H_{14}	$\{\infty, 0,1,22,4,14\}$	$P_{2} P_{3} P_{2} P_{6} P_{3} P_{6}$	Z_{2}
H_{15}	$\{\infty, 0,1,22,4,17\}$	$P_{2} P_{2} P_{3} P_{3} P_{3} P_{3}$	V_{4}
H_{16}	$\{\infty, 0,1,22,5,7\}$	$P_{3} P_{3} P_{6} P_{4} P_{4} P_{6}$	Z_{2}
H_{17}	$\{\infty, 0,1,22,5,9\}$	$P_{3} P_{3} P_{3} P_{3} P_{3} P_{3}$	S_{3}
H_{18}	$\{\infty, 0,1,22,5,13\}$	$P_{3} P_{3} P_{5} P_{6} P_{5} P_{6}$	Z_{2}
H_{19}	$\{\infty, 0,1,22,5,18\}$	$P_{3} P_{3} P_{3} P_{3} P_{5} P_{5}$	V_{4}
H_{20}	$\{\infty, 0,1,3,4,9\}$	$P_{4} P_{4} P_{4} P_{4} P_{4} P_{4}$	S_{3}
H_{21}	$\{\infty, 0,1,3,4,11\}$	$P_{4} P_{5} P_{4} P_{6} P_{5} P_{6}$	Z_{2}
H_{22}	$\{\infty, 0,1,3,7,10\}$	$P_{5} P_{5} P_{5} P_{5} P_{5} P_{5}$	S_{3}

4- Splitting $P G(1,23)$

Each 12-set Ω_{i}, and its complement $\Omega_{i}{ }^{c}$ partition $P G(1,23)$. Clearly, the stabilizer group $G_{\Omega_{i}}$ of Ω_{i} also fixes the complement $\Omega_{i}{ }^{c}$. So, if $P G(1,23)$ is partition into two 12-sets $\Omega=\left\{\Omega_{i} ; \Omega_{i}^{c}\right\}$, then the stabilizer group of the partition Ω is:
(i) If Ω_{i} projectively inequivalent to its complement $\Omega_{i}{ }^{c}$, then $G_{\Omega_{i}}$ is $G_{\Omega_{i}}$ therefore; the stabilizer group of the partition is also $G_{\Omega_{i}}$.
(ii) If Ω_{i} projectively equivalent to its complement $\Omega_{i}{ }^{c}$, then the stabilizer group of the partition is $G_{\Omega_{i}}$ union of all linear transformations between Ω_{i} and Ω_{i}^{c}. And in this case, the stabilizer group of the partition generated always by two elements one of them belong to the $G_{\Omega_{i}}$ and the other is projectivity between $G_{\Omega_{i}}$ and $\Omega_{i}{ }^{c}$.
Theorem: The projective line $P G(1,23)$ has
(i) 90 projectively distinct partitions into two equivalent 12 -sets ($E Q$);
(ii) 178 projectively distinct partitions into two inequivalent 12 -sets (NEQ).

Table 5- Partition of $P G(1,23)$ into two 12 -sets

$N E Q:\left\{\Omega_{i} ; \Omega_{i}^{c}\right\}$	$E Q:\left\{\Omega_{i} ; \Omega_{i}^{c}\right\}$
Total:178	Total:90
$122: I$	$68: Z_{2}$
$46: Z_{2}$	$1: Z_{4}$
$8: V_{4}$	$10: V_{4}$
$2: S_{3}$	$1: S_{3}$
	$1: D_{4}$
	$1: D_{6}$
	$1: D_{8}$
	$1: D_{11}$
	$1: D_{12}$
	$1: S_{4}$
	$1: D_{24}$

Example: (i) The unique 12 -set $\Omega_{j}=P_{1} \cup\{3,5,6,12,13,19,20\}$, which has stabilizer group of type D_{12}, and its complement $\Omega_{j}^{c}=\{4,7,8,9,10,11,14,15,16,17,18,21\}$ partition the projective line such that $\Omega_{j} \cong \Omega_{j}^{c}$. The stabilizer group of the partition is of type D_{24} as given bellow:
$D_{24}=\left\langle a=2-t, \quad b=(8 t-10) /(11 t+9) \mid a^{2}=b^{24}=1, b a=a b^{-1}\right\rangle$.
(ii) The 12 -set $\Omega_{k}=P_{1} \cup\{3,4,5,7,8,17,19\}$, which has stabilizer group of type S_{3}, and its complement $\Omega_{k}^{c}=\{6,9,10,11,12,13,14,15,16,18,20,21\}$ are partition the projective line such that $\Omega_{k} \nexists \Omega_{k}^{c}$. The stabilizer group of the partition is also S_{3} as given bellow:
$S_{3}=\left\langle a=(5-4 t) /(4 t+4), \quad b=-2 /(9 t+8) \mid a^{2}=b^{3}=1, b a=a b^{-1}\right\rangle$.

Theorem: The projective line $P G(1,23)$ split into six disjoint harmonic tetrads and six disjoint tetrads of type $N_{i}, \quad i=1,2,3$. These partitions are not unique.
Proof: The GAP programming has been used to splitting the projective line into six disjoint tetrads.
(i) Partitions into Harmonic tetrads;

$$
\begin{array}{lll}
a_{1}=\{\infty, 0,1,-1\}, & & C R\left(a_{1}\right)=-1 ; \\
a_{2}=\{2,-2,3,-3\}, & & C R\left(a_{2}\right)=-11 ; \\
a_{3}=\{4,-4,5,-5\}, & & C R\left(a_{3}\right)=2 ; \\
a_{4}=\{6,-6,7,-8\}, & & C R\left(a_{4}\right)=-1 ; \\
a_{5}=\{-7,9,-10,-11\}, & & C R\left(a_{5}\right)=2 ; \\
a_{6}=\{8,-9,10,11\}, & & C R\left(a_{6}\right)=-11 .
\end{array}
$$

(ii) Partitions into tetrads of types N_{1};
$a_{1}=\{\infty, 0,1,-2\}$,

$$
C R\left(a_{1}\right)=-2 ;
$$

$a_{2}=\{-1,2,3,-4\}$,
$C R\left(a_{2}\right)=8 ;$
$a_{3}=\{-3,4,5,-5\}$,
$C R\left(a_{3}\right)=-10 ;$
$a_{4}=\{6,-6,7,-7\}$,
$C R\left(a_{4}\right)=3$;
$a_{5}=\{8,-8,9,11\}$,
$C R\left(a_{5}\right)=-10 ;$
$a_{6}=\{-9,10,-10,-11\}$,
$C R\left(a_{6}\right)=8$.
(iii) Partitions into tetrads of types N_{2};
$a_{1}=\{\infty, 0,1,-3\}, \quad C R\left(a_{1}\right)=-3$;
$a_{2}=\{-1,2,-2,-7\}, \quad C R\left(a_{2}\right)=9$;
$a_{3}=\{3,4,-4,-5\}, \quad C R\left(a_{3}\right)=-8 ;$
$a_{4}=\{5,6,-6,-8\}, \quad C R\left(a_{4}\right)=6$;
$a_{5}=\{7,8,9,10\}, \quad C R\left(a_{5}\right)=9$;
$a_{6}=\{-9,-10,11,-11\}, \quad C R\left(a_{6}\right)=-5$;
(iv) Partitions into tetrads of types N_{3};
$a_{1}=\{\infty, 0,1,-4\}, \quad C R\left(a_{1}\right)=-4$;
$a_{2}=\{-1,2,-2,4\}, \quad C R\left(a_{2}\right)=7$;
$a_{3}=\{3,-3,5,-7\}, \quad C R\left(a_{3}\right)=7$;
$a_{4}=\{-5,6,-6,-8\}, \quad C R\left(a_{4}\right)=-6 ;$
$a_{5}=\{7,10,-10,-11\}, \quad C R\left(a_{5}\right)=10$;
$a_{6}=\{8,9,-9,11\}, \quad C R\left(a_{6}\right)=10$.

References

1. Hirschfeld, J. W. P. 1998. Projective geometries over finite fields, 2nd Edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York.
2. Bartoli, D., Davydov, A. A., Marcugini S. and Pambianco, F. 2013. A 3-cycle construction of complete arcs sharing $(\mathrm{q}+3) / 2$ points with a conic, Advances in Mathematics of Communications, 7(3), pp: 319-334.
3. Al-Zangana, E. B. 2011. The geometry of the plane of order nineteen and its application to errorcorrecting codes, Ph.D. Thesis, University of Sussex, United Kingdom.
4. Thomas, A. D. and Wood, G. V. 1980. Group tables. Shiva Mathematics Series, Series 2.
5. GAP Group. 2013. GAP. Reference manual, URL http://www.gap-system.org.
