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Abstract 

In projective plane over a finite field qF , a conic is the unique complete 

( 1)q  arc and any arcs on a conic are incomplete arc of degree less than 1q  . 

These arcs correspond to sets in the projective line over the same field. In this paper, 

The number of inequivalent incomplete k  arcs; 5,6, ,12k  , on the  conic in 

(2,23)PG   and stabilizer group types are found. Also, the projective line 

(1,23)PG  has been splitting into two 12-sets and partitioned into six disjoint 

tetrads. 
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 خلاصةال

1qلدرجة امن  تاملوحيد الالمخروط هوالقوس ا qF في المستوي الاسقاطي على الحقل المنتهي   

1qمن الدرجة اقل من  تامواي قوس اخر على المخروط هو غير   في الخط . هذه الاقواس تقابل مجاميع
حيث  kمن الدرجة  تامةالاسقاطي على نفس الحقل. في هذا البحث عدد الاقواس الغير 

5,6, ,12k   (2,23)على المخروط فيPG  لاسقاطي ا والزمر المثبتة لها قد وجد. كذلك الخط
(1,23)PG  الرابعة.ة الى ستة مجاميع من الدرج ايضا  و قسم 21مجموعتين من الدرجة قد جزء الى 

 

 

1- Introduction 

Let ( , )PG r q  be a projective geometry of dimension r over the Galois field qF  of q  elements. If 

1r  , (1, )PG q  is called projective line and if 2r  , (2, )PG q  is called projective plane. 

Definition 1.1 [1]: A k  arc  in projective plane  is a set of  points, no three of them are 

collinear. A k  arc is complete if it is not contained in ( 1)k  arc. A k  set  in projective line 

(1, )PG q  is a set of  distinct points. 

Definition 1.2 [1]: In ( , )PG r q , a frame is a set of 2n points, no 1n  in a hyperplane; that is, 

every subset of  1n  points is linearly independent. 

 

 The set 2 0 1 2{ , , , }U U U U  in projective plane  and the set 1 { , 0, 1}    in projective 

line (1, )PG q are called the standard frames, where 
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0 1 2[1,0,0], [0,1,0], [0,0,1], [1,1,1]U U U U    . 

Definition 1.3[1]: Let F   be a form of degree two; that is, 

0 2

ij i j

i j

F a X X
  

  , 

With not all 0ija  in 
qF , then  the set  

( ) { ( ) (2, ) | ( ) 0}C v F P X PG q F X     

 is called a quadric plane. The set ( )v F is called non-singular if  F irreducible over qF .  A non-

singular plane quadric C  is called a conic which is formed a unique complete ( 1)q arc. 

Lemma 1.4: Any conic form through the standard frame has the following form 

0 1 0 2 1 2F aX X bX X cX X   . 

Theorem 1.5[1]: In  with 4q  , there is a unique conic through a 5-arc.  

Definition 1.6[1]: The cross-ratio  
1 2 3 4{ , , , }T P P P P  of four ordered points 

),1(,,, 4321 qPGPPPP  with coordinates  3321 ,,, tttt  is 

1 3 2 4
1 2 3 4 1 2 3 4

1 4 2 3

( )( )
{ , ; , } { , ; , ,} ( )

( )( )

t t t t
P P P P t t t t CR T

t t t t


 
   

 
. 

Definition 1.7[1]: Let T  be a tetrad(4-set) with cross-ratio  . Then T  is called  

(1) Harmonic, denoted by H , if  1  or )1(    or )1(   ; 

(2) Equianharmonic, denoted by E , if )1(1    or equivalently,  )1(  ; 

(3) Neither harmonic nor equianharmonic, denoted by N , if the cross-ratio is another value. 

Remark 1.8:  

(i) The cross-ratio of any harmonic tetrad has the values .21,2,1   

(ii) The cross-ratio of a tetrad of type  E  satisfies the equation 

                             012  .          

In  with  5q   odd, an arc not contained in a conic can has at most  
1

( 3)
2

q   points in 

common with a conic [2]. Therefore, any incomplete arc in a conic is at most of degree 
1

( 3)
2

q  ; 

Here, there are two questions. 

(1) What is the maximum size of complete arc other than the conic has 
1

( 3)
2

q   points in common 

with a conic? 

(2) What is the number of incomplete arc in the conic? 
 

In [2], the first question has been answer for some q . In [3], question two has been answered for 

19.q    

The aim of this paper is answered question two for 23q  , before that, the conics formed through 

the standard frame have been reparametrized. Also, the projective line over 23F  has been splits into 

two 12-sets and partitioned into six different tetrads. 

For the group types which appear in this paper see [4]. The main computing tool is the mathematical 
programming language GAP [5]. 

 

 

 

2- Conic Representation Through 5-arc   

According to Lemma 1.4 and Theorem 1.5, to give a conic with different form through the standard 

frame, it has to be finding the inequivalent 5-arcs. 
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Theorem 2.1: In (2,23)PG , there are six projectively inequivalent 5-arcs through the standard frame 

2  as given in Table-1. 

Table 1-Inequivalent 5-arcs in (2,23)PG  

Stabilizer 5-arc iA 

I 2 {7} 1A 

2Z 
2 {8} 2A 

2Z 
2 {10} 3A 

2Z 
2 {14} 4A 

2Z 
2 {16} 5A 

2Z 
2 {28} 

6A 

 

In the following, the conic form through each 5-arc 
iA  that listed in Table 1 and its parametrazion 

has been given. 
  

1

2 *

0 1 0 2 1 2 239 10 {P(9( 2 ),9(1 12 ),12 )|  F }AC X X X X X X t t t t t        

2 3

2 *

0 1 0 2 1 2 2311 11 {P(20( 2 ),11(1 12 ),12 )|  F }A AC C X X X X X X t t t t t         

4

2 *

0 1 0 2 1 2 234 5 {P(16( 2 ),4(1 12 ),12 )|  F }AC X X X X X X t t t t t                                             (1) 

5

2 *

0 1 0 2 1 2 2310 11 {P(3( 2 ),10(1 2 ),12 )|  F }AC X X X X X X t t t t t        

6

2 *

0 1 0 2 1 2 239 8 {P(2( 2 ),14(1 12 ),12 )|  F }AC X X X X X X t t t t t        

Where  
* { }.q qF F   

Since there is a unique conic up to projectivity, so it is enough to fixed one conic form to fined the 

number of k  arcs on the conic. 

Theorem 2.2: The number of inequivalent incomplete k  arcs; 5,6, ,12k  , on the  conic in 

(2,23)PG   and stabilizer group types are given in Table-2. 
 

Table 2-Inequivalent, incomplete k  arcs on the conic 

4-arc 5-arc 6-arc 7-arc 8-arc 9-arc 10-arc 11-arc 12-arc 

N4=4 N5=6 N6=22 N7=36 N8=83 N9=125 N10=196 N11=227 N12=268 

1: I  

43:V  

1: I  

25: Z  

5: I  

29 : Z  

44 :V

33: S  

61: D  

 

21: I

215: Z  

44 : I  

229 : Z  

47 :V  

42 : D  

81: D  

 

93: I  

227 : Z  

32 : Z  

33: S  

132: I  

254 : Z  

410 :V  

185: I  

241: Z

111: D  

190: I  

257 : Z  

31: Z  

410 :V  

41: Z  

34 : S  

81: D  

111: Z  

41: A  

61: D  

121: D  

 

3- Projective Line (1,23)PG  
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Each point P( , )x y with 0y  in (1, )PG q  is determined by the non-homogeneous 

coordinate x y ; the coordinate for P(1,0) is  . So, the points of (1, )PG q can be represented by the 

set 

1 2{ } { , , , , | }q q i qF t t t t F                                                                         (2) 

On (1,23)PG , the projective line over Galois field of order 23, there are 24 points. The points of 

(1,23)PG  are the elements of the set 

23 { } { ,0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}F                                             

A tetrad is of type H  if the cross-ratio is 1, 2  or 1 2 12 . Since the equation 012   has 

no solution in 23F , so there is no tetrad of type E . Therefore, there are three types of tetrads of type 

N . Let tetrads of cross 

ratio 3,8,11, 2, 7, 10    denote by 
1N ,  tetrads of cross-ratio 4,6,9, 3, 5, 8    denote by 

2N and 

tetrads of cross-ratio 5,7,10, 4, 6, 9    denote by 
3N .  

Let 
1( , )k q be the set of all inequivalent k  sets through the standard frame 

1  in (1, )PG q  and 

2 ( , )C k q be the set of all inequivalent k  arcs on the conic through the standard frame 
2  in 

(2, )PG q . 

It is clear that from (1) and (2), there is one to one corresponding between a projective line and a conic 
as given below. 

*(1, )

[ , ] ( )

qPG q F C

x y t P t

 
 

Therefore; there is a one to one corresponding between the inequivalent k  sets through the standard 

frame 1  in (1, )PG q  and incomplete k  arcs on the conic through the standard frame 2 up to 

projectivity, where 
1

( 3)
2

k q  . 

Let denote these bijectivity by the map 1 2: ( ,23) ( ,23)k k C k   , then 5 1 2: ( ,23) ( ,23)k C k    

is defined as follows: 

5 1 3( ) ;A P       5 4 6( ) ;A P   

5 2 2( ) ;A P      5 5 4( ) ;A P   

5 3 5( ) ;A P      5 6 1( ) .A P   

Corollary 3.1: The number of inequivalent k  sets in (1,23)PG and its stabilizer group types is the 

same as given in Table-2. 

Example 3.2:  

In Table-3 and Table- 4, the inequivalent pentads ( 5 sets) and hexads ( 6 sets) through the 

standard frame  1 { , 0, 1}    and its partition to is tetrads (pentads) with stabilizer group types 

have been given. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3- Inequivalent pentads in (1,23)PG  
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Stabilizer Type of  Tetrads The pentad iP 

2Z 
1 1 2HHN N N 

1 1 { 1,2}P    
1P 

2Z 
2 3 3 2HN N N N 

2 1 { 1,4}P    
2P 

I 3 2 1 3HN N N N 
3 1 { 1,5}P    

3P 

2Z 
1 2 2 1 2N N N N N 

4 1 {3,4}P   
4P 

2Z 
1 3 3 1 1N N N N N 

5 1 {3,7}P   
5P 

2Z 
1 3 2 2 3N N N N N 6 1 {3,14}P   

6P 
 

Table 4- Inequivalent hexad in (1,23)PG  

iH  The hexad Types of pentads Stabilizer 

1H  {  , 0, 1, 22, 2, 3 } 
1 1 1 4 1 4  PPPP PP  4V  

2H  {  , 0, 1, 22, 2, 4 } 1 2 1 3 5 4  PP PP P P  I  

3H  {  , 0, 1, 22, 2, 5 } 
1 3 2 3 1 2  PP P P PP  2Z  

4H  {  , 0, 1, 22, 2, 6 } 
1 2 3 5 3 3  PP P P P P  I  

5H  {  , 0, 1, 22, 2, 7 } 
1 3 2 4 4 6  PP P P P P  I  

6H  {  , 0, 1, 22, 2, 9 } 
1 3 1 5 5 3  PP PP P P  2Z  

7H  {  , 0, 1, 22, 2, 10 } 
1 3 3 5 6 4  PP P P P P  I  

8H  {  , 0, 1, 22, 2, 11 } 
1 1 3 3 6 6  PPP P P P  2Z  

9H  {  , 0, 1, 22, 2, 12} 
1 1 1 1 1 1  PPPPPP  6D  

10H  {  , 0, 1, 22, 4, 5 } 
2 3 6 2 6 3  P P P P P P  2Z  

11H  {  , 0, 1, 22, 4, 6} 
2 2 6 6 2 2  P P P P P P  4V  

12H  {  , 0, 1, 22, 4, 9 } 
2 3 4 3 2 4  P P P P P P  2Z  

13H  {  , 0, 1, 22, 4, 10 } 
2 3 6 5 5 4P P P P P P  I  

14H  {  , 0, 1, 22, 4, 14  } 
2 3 2 6 3 6  P P P P P P  2Z  

15H  {  , 0, 1, 22, 4, 17 } 
2 2 3 3 3 3P P P P P P  4V  

16H  {  , 0, 1, 22, 5, 7 } 
3 3 6 4 4 6P P P P P P  2Z  

17H  {  , 0, 1, 22, 5, 9 } 3 3 3 3 3 3P P P P P P  
3S  

18H  {  , 0, 1, 22, 5, 13} 
3 3 5 6 5 6  P P P P P P  2Z  

19H  {  , 0, 1, 22, 5, 18 } 
3 3 3 3 5 5  P P P P P P  4V  

20H  {  , 0, 1, 3, 4, 9 } 4 4 4 4 4 4P P P P P P  3S  

21H  {  , 0, 1, 3, 4, 11 } 4 5 4 6 5 6P P P P P P  2Z  

22H  {  , 0, 1, 3, 7, 10 } 5 5 5 5 5 5P P P P P P  
3S  
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4- Splitting (1,23)PG  

Each 12-set 
i , and its complement 

c

i  partition (1,23)PG . Clearly, the stabilizer group 
i

G
of  

i   also fixes the complement 
c

i . So, if  (1,23)PG  is partition into two 12-sets { ; }c

i i   , 

then the stabilizer group of  the partition   is: 

(i) If 
i  projectively inequivalent to its complement 

c

i , then c
i

G


is 
i

G
therefore; the stabilizer 

group of the partition is also 
i

G
. 

(ii) If i  projectively equivalent to its complement 
c

i , then the stabilizer group of the partition is 

i
G

union of all linear transformations between 
i  and 

c

i . And in this case, the stabilizer group of 

the partition generated always by two elements one of them belong to the 
i

G and the other is 

projectivity between 
i

G  and   
c

i .  

Theorem: The projective line (1,23)PG  has 

(i) 90 projectively distinct partitions into two equivalent 12-sets (EQ); 
(ii) 178 projectively distinct partitions into two inequivalent 12-sets (NEQ). 
 

Table 5- Partition of (1,23)PG into two 12-sets 

NEQ:{ ; }c

i i   EQ:{ ; }c

i i   

Total:178 Total:90 

122: I  

246 : Z  

48:V  

32 : S  

268: Z  

41: Z  

410 :V  

31: S  

41: D  

61: D  

81: D  

111: D  

121: D  

41: S  

241: D  

 

Example: (i) The unique 12-set  j = 1P { 3, 5, 6, 12, 13, 19, 20} , which has stabilizer group of 

type 12D , and its complement 
c

j ={ 4, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 21} partition the projective 

line such that 
c

j j  . The stabilizer group of the partition is of type 24D as given bellow: 

2 24 1

24 2 , (8 10) (11 9) | 1,D a t b t t a b ba ab         . 

(ii) The 12-set  k = 1P { 3, 4, 5, 7, 8, 17, 19}, which has stabilizer group of type 3S , and its 

complement 
c

k ={ 6, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21}are partition the projective line such that 

c

k k   . The stabilizer group of the partition is also 3S as given bellow: 

2 3 1

3 (5 4 ) (4 4), 2 (9 8) | 1,S a t t b t a b ba ab          . 
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Theorem: The projective line (1,23)PG split into six disjoint harmonic tetrads and six disjoint tetrads 

of type , 1,2,3iN i  . These partitions are not unique.  

Proof : The GAP programming has been used to splitting the projective line into six disjoint tetrads. 
 (i) Partitions into Harmonic tetrads;  

 

1 1

2 2

3 3

4 4

5

{ , 0, 1, -1 },                   ( ) 1;

{ 2, 2, 3, 3 },             ( ) 11;

{ 4, 4, 5, 5 },             ( ) 2;

{ 6, 6, 7, 8 },             ( ) 1;

{ 7, 9, 10, 11 },

a CR a

a CR a

a CR a

a CR a

a

   

    

   

    

    5

6 6

      ( ) 2;

{ 8, 9, 10, 11 },             ( ) 11.

CR a

a CR a



   

  

 (ii) Partitions into tetrads of types 1N ; 

1 1

2 2

3 3

4

{ , 0, 1, 2 },                          ( ) 2;

{ 1, 2, 3, 4 },                      ( ) 8;

{ 3, 4, 5, 5 },                      ( ) 10;

{ 6, 6, 7, 7 },                      

a CR a

a CR a

a CR a

a

    

   

    

   4

5 5

6 6

( ) 3;

{ 8, 8, 9, 11 },                        ( ) 10;

{ 9, 10, 10, 11 },             ( ) 8.

CR a

a CR a

a CR a



   

    

 

 (iii) Partitions into tetrads of types 2N ; 

1 1

2 2

3 3

4 4

5

{ , 0, 1, 3 },                ( )= 3;

{  1, 2, 2, 7 },        ( )=9;

{ 3, 4, 4, 5 },             ( )= 8;

{ 5, 6, 6, 8 },             ( )=6;

{ 7, 8, 9, 10 },            

a CR a

a CR a

a CR a

a CR a

a

   

   

   

  

 5

6 6

       ( )=9;

{ 9, 10, 11, 11 },    ( )= 5;

CR a

a CR a    

 

(iv) Partitions into tetrads of types 3N ; 
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4 4

5 5
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