

ISSN: 0067-2904

Classification of the Projective Line over Galois Field of Order 31

Najm Abdulzahra Makhrib Al-Seraji , Ahmed Khallaf Essa*

Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

Received: 25/5/2022 Accepted: 30/8/2022 Published: 30/4/2023

Abstract

Our research is related to the projective line over the finite field, in this paper, the main purpose is to classify the sets of size K on the projective line PG (1,31), where K=3,...,7 the number of inequivalent K-set with stabilizer group by using the GAP Program is computed.

Keywords: Projective line, Stabilizer groups, Orbits.

تصنيف الخط الإسقاطي على حقل غالوا من الرتبة 31

نجم عبد الزهرة مخرب السراجي ، احمد خلف عيسى * قسم الرياضيات، كلية العلوم، الجامعة المستنصريه ، بغداد، العراق

الخلاصة

يتعلق بحثنا بالخط الإسقاطي على المجال المحدود ، والغرض الرئيسي في هذه الورقة هو تصنيف مجموعات الحجم K = 3,...,7 على الخط الإسقاط K = 3,...,7 عين المتكافئة ومجموعات التثبيت عبر برنامج K = 3,...,7 .

1. Introduction

By the axioms of projective geometry, every projective line has at least three points. In this paper, we represent the distinct points on the projective line PG (1,31), in the set of size K, K=3,...,7, the partition of the projective line is found and classified for each size.

As historical background, the line of small order is classified by Hirschfeld [1], and the geometry of the line of order seventeen was studied by Al-Seraji and Hirschfeld [2] in 2013. The classification of Projective line over Galois Field of order sixteen is done by Al-Seraji [3] in 2014, Al-Zangana in 2016 has been described the classification of the projective line of order nineteen [4]. Al-Seraji has been classified the projective line over Galois Field of order twenty-three [5] in 2015, and the classification of k-set in the projective line of order twenty-five is achieved by Al-Zangana and Shehab [6] in 2018. In 2021 Al-Zangana and Ibrahim [7] have been classified the projective line of order twenty-seven, and Al-Seraji and Musa [8] in 2021 have been given classification of the projective line of order twenty-nine.

^{*}Email: ahmdkhlfysya@gmail.com

2. The Projective Line PG (1, 31)

The projective line over the Galois field of order 31 has 32, which are represented the elements of the set.

$$F_{31} \cup \{\infty\} = \{\infty, 0, 1, 2, \dots, 30\}.$$

 $F_{31} \cup \{\infty\} = \{\infty, 0, 1, 2, \dots, 30\}.$ The order of the projective group PG (2,31) is 32 * 31 * 30 = 29760. This is the number of ordered sets of three points.

The polynomial function of degree two, $f(x) = x^2 - x - 14$ is a primitive over F_{31} when $F_{31} = \{1,2,\dots,30; 31 = 0\}$. On the PG (1,31) there are 32 points. They are generated by a non-singular matrix of size 2×2 ;

 $T = C(f) = \begin{pmatrix} 0 & 1 \\ 14 & 1 \end{pmatrix}$. Such $P(i) = (1,0) \cdot T^i$, $i = 0,\dots,31$. The points of PG (1,31) are given in the following table:

Table 1: This table illustrates the points of PG (1,31)

P(0) = (1.0)	P(8) = (12,1)	P(16) = (15,1)	P(24) = (18,1)
P(1) = (0.1)	P(9) = (13,1)	P(17) = (28,1)	P(25) = (4,1)
P(2) = (14, 1)	P(10) = (1,1)	P(18) = (24,1)	P(26) = (9,1)
P(3) = (3,1)	P(11) = (7,1)	P(19) = (8,1)	P(27) = (14,1)
P(4) = (19,1)	P(12) = (25,1)	P(20) = (5,1)	P(28) = (11,1)
P(5) = (10,1)	P(13) = (22,1)	P(21) = (23,1)	P(29) = (27,1)
P(6) = (21,1)	P(14) = (6,1)	P(22) = (29,1)	P(30) = (16,1)
P(7) = (26, 1)	P(15) = (2,1)	P(23) = (17,1)	P(31) = (30,1)

Theorem 1: On PG (1,31), (< T >,·) is a cyclic group of order 32.

Proof:

The routine of the proof is to calculate the multiplications of two matrices T^i . $T^j \pmod{31}$

of powers i, j up to 31. For example,
$$T^{2}.T^{3} (mod \ 31) = \begin{pmatrix} 14 & 1 \\ 14 & 15 \end{pmatrix}. \begin{pmatrix} 14 & 15 \\ 24 & 29 \end{pmatrix} (mod \ 31) = \begin{pmatrix} 220 & 239 \\ 556 & 645 \end{pmatrix} (mod \ 31) = \begin{pmatrix} 3 & 22 \\ 29 & 25 \end{pmatrix} = T^{5}$$

$$T^{7}.T^{9} (mod \ 31) = \begin{pmatrix} 9 & 23 \\ 12 & 1 \end{pmatrix}. \begin{pmatrix} 14 & 13 \\ 27 & 27 \end{pmatrix} (mod \ 31) = \begin{pmatrix} 747 & 738 \\ 195 & 183 \end{pmatrix} (mod \ 31)$$

$$= \begin{pmatrix} 3 & 25 \\ 9 & 28 \end{pmatrix} = T^{16}$$

$$T^{15}.T^{17} (mod \ 31) = \begin{pmatrix} 27 & 29 \\ 3 & 25 \end{pmatrix}. \begin{pmatrix} 9 & 28 \\ 20 & 6 \end{pmatrix} (mod \ 31) = \begin{pmatrix} 823 & 930 \\ 527 & 234 \end{pmatrix} (mod \ 31)$$

$$= \begin{pmatrix} 17 & 0 \\ 0 & 17 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{2*2}$$

The rest can be similarly calculated to obtain the following table that proves our claim

<u> 1</u>	able 2:	i ne muitip	nications (oi two ma	atrices I	° . 1° (moa 31)		
		T	T^2	T^3	T^4		T ³¹	I_{2*2}
	T	T^2	T^3	T^4	T^5		I _{2*2}	T
	T^2	T^3	T^4	T^5	T^6		T	T^2
	T^3	T^4	T^5	T^6	T^7		T^2	T^3
	T^4	T^{5}	T^6	T^7	T^8		T^3	T^4
		٠	•	•	•	• • •	•	
			•	•			•	•
	T^{31}	I_{2*2}	T	T^2	T^3		T^{30}	T^{31}
	I_{2*2}	T	T^2	T^3	T^4		T^{31}	I_{2*2}

Table 2: The multiplications of two matrices T^i . $T^j (mod 31)$

3- The 3-Sets

Let $A = \{(1,0),(0,1),(1,1)\}$, so we compute the transformation to some set of size three as follows.

First, by computing the transformations between A and the sets $\{(2,1),(3,1),(4,1)\}$, we obtain the following matrices:

Matrix	order
$\begin{pmatrix}2&1\\25&29\end{pmatrix}$	2
$\begin{pmatrix} 29 & 30 \\ 27 & 30 \end{pmatrix}$	32
$\begin{pmatrix} 6 & 2 \\ 29 & 30 \end{pmatrix}$	6
$\begin{pmatrix} 25 & 29 \\ 4 & 1 \end{pmatrix}$	16
$\begin{pmatrix} 4 & 1 \\ 2 & 1 \end{pmatrix}$	16
${27 \choose 6}$	32

Now, let A be a transform to itself which gives the following:

Matrix	order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	1
$\begin{pmatrix} 30 & 0 \\ 1 & 1 \end{pmatrix}$	2
$\begin{pmatrix} 0 & 30 \\ 30 & 0 \end{pmatrix}$	2
$\begin{pmatrix} 0 & 1 \\ 30 & 30 \end{pmatrix}$	3
$\begin{pmatrix} 30 & 30 \\ 1 & 0 \end{pmatrix}$	3
$\begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix}$	2

Corollary: The matrices are isomorphism to S_3 , where $S_3 = \langle a, b : a^3 = I, b^2 = I; ab = ba^{-1} \rangle$.

Proof: We choose
$$a = \begin{pmatrix} 0 & 1 \\ 30 & 30 \end{pmatrix}$$
, $b = \begin{pmatrix} 30 & 0 \\ 1 & 1 \end{pmatrix}$
 $a.b = \begin{pmatrix} 0 & 1 \\ 30 & 30 \end{pmatrix}$. $\begin{pmatrix} 30 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix}$
 $b. a^{-1} = \begin{pmatrix} 30 & 0 \\ 1 & 1 \end{pmatrix}$. $\begin{pmatrix} 30 & 30 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix}$
So that $a.b = b.a^{-1}$.

The proper subgroups are:

Order 2:
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 30 & 0 \\ 1 & 1 \end{pmatrix} \right\}$$
Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 30 \\ 30 & 0 \end{pmatrix} \right\}$
Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix} \right\}$
Order 3: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 30 & 30 \end{pmatrix}, \begin{pmatrix} 30 & 30 \\ 1 & 0 \end{pmatrix} \right\}$
Order 3: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 30 & 30 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 30 & 30 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 30 & 30 \end{pmatrix} \right\}$

Now, The partition of PG(1,31) by the projectivity of the set of size 3 except A is divided into six orbits one orbit is of size two, the other one is of size three and four orbits are of size six.

4- The 4-Sets

The previous results give the following theorem.

Theorem 2: In PG(1,31), there are exactly six projectivity distance 4-set. Proof:

The previous results give the following table:

Table 3: Six projectively distance 4-set in PG(1,31).

Table 5: Six projectively distance 4-set in FG(1,51).				
B_i	Stabilizer group	Generators		
$B_1 = \mathbf{A} \cup \{2\}$	D_4	$<\frac{X}{X+30},\frac{29}{X+29}>$		
$B_2 = A \cup \{3\}$	$Z_2 \!\! imes \!\!Z_2$	$<\frac{28}{30X},\frac{X+28}{X+30}>$		
$B_3 = \mathbf{A} \cup \{4\}$	$Z_2{ imes}Z_2$	$<\frac{27}{30X},\frac{X+27}{X+30}>$		
$B_4 = \mathbf{A} \cup \{5\}$	$Z_2 \times Z_2$	$<\frac{26}{30X},\frac{X+26}{X+30}>$		
$B_5 = \mathbf{A} \cup \{6\}$	A_4	$<5X + 1, \frac{25}{30X}>$		
$B_6 = \mathbf{A} \cup \{12\}$	$Z_2 \times Z_2$	$<\frac{19}{30X},\frac{X+19}{X+30}>$		

The partition of PG (1,31) by the projectivities of the set of size 4 are obtained by computing the generator matrix for each B_i , i=1,...,6, by GAP, The results are listed in the following table.

Table 4: The generator matrix for each B_i , i=1,...,6

B_i	Partition B_i^c
$\boldsymbol{B_1}$	$\{3,4,11,16,17,22,29,30\}, \{5,9,13,14\}. \{6,26,18,12\}, \{7,27,21,15\}, \{8,10,23,25\}, \{19,20,24,28\}$
\boldsymbol{B}_2	{2,17,28,30},{4,24,9,21},{5,13,6,16},{7,27,20,11},{8,12,29,14},{10,22,26,18},{15,25,19,23}
B_3	$\{2,29\}, \{3,22,23,15\}, \{5,7,16,8\}, \{6,11,10,19\}, \{9,28,25,20\}, \{12,21\}, \{13,17,26,24\}, \{14,18,30,27\}$
B_4	$\{2,18,19,28\}, \{3,12,26,30\}, \{4,9,16,10\}, \{6,25\}, \{7,14,15,21\}, \{8,20,22,27\}, \{11,23,29,13\}, \{17,24\}\}$
\boldsymbol{B}_{5}	$\{2,11,9,15,19,3,14,25,30,27,12,16\},\{4,21,18,29,28,17,8,10,13,24,20,22\},\{5,26,7,23\}$
\boldsymbol{B}_{6}	{2,6,5,21},{3,4,18,11},{7,15,29,25},{8,17,10,26},{9,22,30,19},{13,20},{14,23,16,24},{27,28}

From Table 4, we note that there are 40 orbits, so can we construct 40 set of size five in PG (1,31). The next table gives the equivalent set of size five.

Table 5: This table illustrates the equivalent set of size five

1	$B_1 U \{3\} \rightarrow B_2 U \{2\}$	16	$B_2 U \{4\} {\longrightarrow} B_4 U \{17\}$
2	$B_1 \cup \{3\} \rightarrow B_3 \cup \{2\}$	17	$B_2 \cup \{7\} \rightarrow B_2 \cup \{15\}$
3	$B_1 \cup \{5\} \rightarrow B_1 \cup \{19\}$	18	$B_2 \cup \{7\} \rightarrow B_4 \cup \{7\}$
4	$B_1 \cup \{5\} \rightarrow B_3 \cup \{14\}$	19	$B_2 \cup \{7\} \rightarrow B_4 \cup \{11\}$
5	$B_1 \cup \{5\} \rightarrow B_4 \cup \{2\}$	20	$B_2 \cup \{7\} \rightarrow B_6 \cup \{7\}$
6	$B_1 \cup \{5\} \rightarrow B_6 \cup \{9\}$	21	$B_2 \cup \{8\} \rightarrow B_3 \cup \{12\}$
7	$B_1 \cup \{5\} \rightarrow B_6 \cup \{14\}$	22	$B_2 \cup \{8\} \rightarrow B_6 \cup \{3\}$
8	$B_1 \cup \{6\} \rightarrow B_1 \cup \{7\}$	23	$B_2 \cup \{10\} \rightarrow B_3 \cup \{6\}$
9	$B_1 \cup \{6\} \rightarrow B_2 \cup \{5\}$	24	$B_2 \cup \{10\} \rightarrow B_3 \cup \{13\}$
10	$B_1 \cup \{6\} \rightarrow B_4 \cup \{3\}$	25	$B_2 \cup \{10\} \rightarrow B_5 \cup \{4\}$
11	$B_1 \cup \{6\} \rightarrow B_5 \cup \{2\}$	26	$B_2 \cup \{10\} \rightarrow B_6 \cup \{8\}$
12	$B_1 \cup \{6\} \rightarrow B_6 \cup \{2\}$	27	$B_3 \cup \{9\} \rightarrow B_4 \cup \{8\}$
13	$B_1 \cup \{8\} \rightarrow B_3 \cup \{5\}$	28	$B_3 \cup \{9\} \rightarrow B_6 \cup \{27\}$
14	$B_1 \cup \{8\} \rightarrow B_4 \cup \{4\}$	29	$B_4 \cup \{6\} \rightarrow B_5 \cup \{5\}$
15	$B_2 \cup \{4\} \rightarrow B_3 \cup \{3\}$		

5-The 5-Sets

These previous results give the following theorem.

Theorem (3): In PG (1,31), there are exactly 11 projectively distance 5-sets.

Proof: The previous results give the following table:

C_i	Stabilizer group	Generators
$C_1 = B_1 U \{3\}$	Z_2	< 30X + 3 >
$C_2 = B_1 U \{5\}$	I	< X >
$C_3 = B_1 U \{6\}$	I	< X >
$C_4 = B_1 U \{8\}$	Z_2	$<\frac{29}{30x}>$
$C_5 = B_2 \cup \{4\}$	Z_2	< 30X + 4 >
$C_6 = B_2 \cup \{7\}$	I	< X >
$C_7 = B_2 \cup \{8\}$	Z_2	$<\frac{23X+8}{30X+8}>$
$C_8 = B_2 \ U\{10\}$	I	< X >
$C_9 = B_3 \cup \{9\}$	Z_2	$<\frac{5X}{9X+26}>$
$C_{10} = B_4 \cup \{6\}$	\mathcal{S}_3	$<\frac{26}{30X+5},\frac{26}{30X}>$
$C_{11} = B_6 U \{13\}$	D_5	$<\frac{30}{X+18},\frac{30}{30X}>$

The partition of PG(1,31) by the mapping of the set of size 5 is obtained by computing the generator matrix for each C_i by GAP. The results are listed in the following table:

Table 6: The generator matrix for each C_i by GAP is computed.

C_i	Partition C_i^c			
\mathcal{C}_1	$\{4,30\},\{5,29\},\{6,28\},\{7,27\},\{8,26\},\{9,25\},\{10,24\},\{11,23\},\{12,22\},\{13,21\},\{14,20\},\{15,19\},\{16,18\},\{17\},\{17\},\{17\},\{17\},\{17\},\{17\},\{17\},\{17$			
C_2	There are 27 orbits of single points			
C_3	There are 27 orbits of single points			
C_4	$\{3,11\},\{4,16\},\{5,19\},\{6,21\},\{7,18\},\{9,14\},\{10,25\},\{12,26\},\{13,24\},\{15,27\},\{17,22\},\{20,28\},\{23\},\{29,30\}$			
C_5	{2},{5,30},{6,29},{7,28},{8,27},{9,26},{10,25},{11,24},{12,23},{13,22},{14,21},{15,20},{16,19},{17,18}			
C_6	There are 27 orbits of single points			
C_7	{2,9},{4,25},{5,10},{6,11},{7,14},{12,22},{13},{15,16},{17,28},{18,26},{19,30},{20,23},{21,29},{24,27}			
C_8	There are 27 orbits of single points			
C 9	$\{2,27\},\{3,19\},\{5,20\},\{6,12\},\{7,30\},\{8\},\{10,17\},\{11,24\},\{13,23\},\{14,18\},\{15,28\},\{16,26\},\{21,25\},\{22,29\}$			
C_{10}	{2,4,9,18,19,28},{3,12,25},{7,11,14,23,26,30,},{8,13,17,20,24,29,},{10,15,16,21,22,27,}			
C_{11}	{2,17,11,16,3,28,10,21,23,27},{4,5,6,7,9,8,18,19,25,26},{14,20,22,24,30},{15,29}			

6-The set of size six

From Table 6, we note that there are 187 orbits, so can we construct 187 set of size six in PG(1,31), next table gives the equivalent set of size six.

Table 7: The equivalent set of size six are given.

1	C_1 U $\{4\} \rightarrow C_5$ U $\{2\}$	37	C_1 U $\{14\} \rightarrow C_2$ U $\{29\}$
2	$C_1 \cup \{4\} \rightarrow C_5 \cup \{2\}$ $C_1 \cup \{5\} \rightarrow C_1 \cup \{12\}$	38	
3	$C_1 \cup \{5\} \rightarrow C_1 \cup \{12\}$ $C_1 \cup \{5\} \rightarrow C_2 \cup \{3\}$	39	$C_1 \cup \{14\} \rightarrow C_6 \cup \{28\}$ $C_1 \cup \{14\} \rightarrow C_7 \cup \{19\}$
4		40	1 () , ()
5	$C_1 \cup \{5\} \rightarrow C_3 \cup \{29\}$	41	$C_1 \cup \{14\} \rightarrow C_9 \cup \{2\}$
6	$C_1 \cup \{5\} \rightarrow C_7 \cup \{17\}$ $C_1 \cup \{5\} \rightarrow C_8 \cup \{17\}$	42	$C_1 \cup \{15\} \rightarrow C_2 \cup \{11\}$ $C_1 \cup \{15\} \rightarrow C_3 \cup \{22\}$
7	$C_1 \cup \{5\} \rightarrow C_8 \cup \{17\}$ $C_1 \cup \{6\} \rightarrow C_2 \cup \{30\}$	43	$C_1 \cup \{15\} \rightarrow C_3 \cup \{22\}$ $C_1 \cup \{15\} \rightarrow C_6 \cup \{5\}$
8	$C_1 \cup \{0\} \rightarrow C_2 \cup \{30\}$ $C_1 \cup \{6\} \rightarrow C_3 \cup \{3\}$	44	$C_1 \cup \{15\} \rightarrow C_6 \cup \{5\}$ $C_1 \cup \{15\} \rightarrow C_6 \cup \{26\}$
9	1 , , , , ,	45	$C_1 \cup \{15\} \rightarrow C_6 \cup \{20\}$ $C_1 \cup \{15\} \rightarrow C_8 \cup \{20\}$
10	$C_1 \cup \{7\} \rightarrow C_3 \cup \{16\}$ $C_1 \cup \{7\} \rightarrow C_3 \cup \{30\}$	46	$C_1 \cup \{15\} \rightarrow C_8 \cup \{20\}$ $C_1 \cup \{16\} \rightarrow C_3 \cup \{4\}$
11	$C_1 \cup \{7\} \rightarrow C_3 \cup \{30\}$ $C_1 \cup \{7\} \rightarrow C_6 \cup \{2\}$	47	$C_1 \cup \{16\} \rightarrow C_3 \cup \{4\}$ $C_1 \cup \{16\} \rightarrow C_8 \cup \{30\}$
12	$C_1 \cup \{7\} \rightarrow C_6 \cup \{2\}$ $C_1 \cup \{7\} \rightarrow C_6 \cup \{17\}$	48	$C_1 \cup \{10\} \rightarrow C_8 \cup \{30\}$ $C_2 \cup \{6\} \rightarrow C_2 \cup \{25\}$
13	$C_1 \cup \{7\} \rightarrow C_6 \cup \{17\}$ $C_1 \cup \{7\} \rightarrow C_7 \cup \{15\}$	49	$C_2 \cup \{0\} \rightarrow C_2 \cup \{25\}$ $C_2 \cup \{6\} \rightarrow C_3 \cup \{5\}$
14	$C_1 \cup \{7\} \rightarrow C_7 \cup \{13\}$ $C_1 \cup \{8\} \rightarrow C_3 \cup \{17\}$	50	$C_2 \cup \{6\} \rightarrow C_3 \cup \{5\}$ $C_2 \cup \{6\} \rightarrow C_4 \cup \{20\}$
15	$C_1 \cup \{8\} \rightarrow C_3 \cup \{17\}$ $C_1 \cup \{8\} \rightarrow C_4 \cup \{3\}$	51	$C_2 \cup \{6\} \rightarrow C_8 \cup \{5\}$
16	$C_1 \cup \{8\} \rightarrow C_4 \cup \{5\}$ $C_1 \cup \{8\} \rightarrow C_5 \cup \{6\}$	52	$C_2 \cup \{6\} \rightarrow C_8 \cup \{5\}$ $C_2 \cup \{6\} \rightarrow C_{10} \cup \{2\}$
17	$C_1 \cup \{8\} \rightarrow C_7 \cup \{2\}$	53	$C_2 \cup \{0\} \rightarrow C_{10} \cup \{2\}$ $C_2 \cup \{7\} \rightarrow C_3 \cup \{24\}$
18	$C_1 \cup \{8\} \rightarrow C_7 \cup \{2\}$ $C_1 \cup \{8\} \rightarrow C_8 \cup \{28\}$	54	$C_2 \cup \{7\} \rightarrow C_3 \cup \{24\}$ $C_2 \cup \{7\} \rightarrow C_6 \cup \{14\}$
19	$C_1 \cup \{8\} \rightarrow C_8 \cup \{28\}$ $C_1 \cup \{9\} \rightarrow C_2 \cup \{17\}$	55	$C_2 \cup \{7\} \rightarrow C_7 \cup \{6\}$
20	$C_1 \cup \{9\} \rightarrow C_2 \cup \{17\}$ $C_1 \cup \{9\} \rightarrow C_4 \cup \{29\}$	56	$C_2 \cup \{7\} \rightarrow C_8 \cup \{25\}$
21	$C_1 \cup \{5\} \rightarrow C_4 \cup \{25\}$ $C_1 \cup \{9\} \rightarrow C_5 \cup \{7\}$	57	$C_2 \cup \{7\} \rightarrow C_{11} \cup \{4\}$
22	$C_1 \cup \{9\} \rightarrow C_6 \cup \{4\}$	58	$C_2 \cup \{7\} \rightarrow C_{11} \cup \{4\}$ $C_2 \cup \{8\} \rightarrow C_4 \cup \{5\}$
23	$C_1 \cup \{9\} \rightarrow C_9 \cup \{22\}$	59	$C_2 \cup \{8\} \rightarrow C_9 \cup \{5\}$
24	$C_1 \cup \{10\} \rightarrow C_2 \cup \{16\}$	60	$C_2 \cup \{9\} \rightarrow C_4 \cup \{23\}$
25	$C_1 \cup \{10\} \rightarrow C_2 \cup \{10\}$ $C_1 \cup \{10\} \rightarrow C_4 \cup \{17\}$	61	$C_2 \cup \{10\} \rightarrow C_4 \cup \{9\}$
26	$C_1 \cup \{10\} \rightarrow C_5 \cup \{17\}$	62	$C_2 \cup \{10\} \rightarrow C_9 \cup \{7\}$
27	$C_1 \cup \{10\} \rightarrow C_8 \cup \{2\}$	63	$C_2 \cup \{12\} \rightarrow C_3 \cup \{20\}$
28	$C_1 \cup \{10\} \rightarrow C_8 \cup \{21\}$	64	$C_2 \cup \{12\} \rightarrow C_8 \cup \{16\}$
29	$C_1 \cup \{11\} \rightarrow C_4 \cup \{4\}$	65	$C_2 \cup \{13\} \rightarrow C_6 \cup \{29\}$
30	$C_1 \cup \{11\} \rightarrow C_6 \cup \{30\}$	66	$C_2 \cup \{13\} \rightarrow C_7 \cup \{20\}$
31	$C_1 \cup \{13\} \rightarrow C_2 \cup \{4\}$	67	$C_2 \cup \{14\} \rightarrow C_2 \cup \{20\}$
32	$C_1 \cup \{13\} \rightarrow C_3 \cup \{11\}$	68	$C_2 \cup \{14\} \rightarrow C_6 \cup \{22\}$
33	$C_1 \cup \{13\} \rightarrow C_3 \cup \{25\}$	69	$C_2 \cup \{14\} \rightarrow C_8 \cup \{19\}$

34	$C_1 \cup \{13\} \rightarrow C_4 \cup \{15\}$	70	$C_2 \cup \{14\} \rightarrow C_8 \cup \{27\}$
35	$C_1 \cup \{13\} \rightarrow C_5 \cup \{5\}$	71	$C_2 \cup \{14\} \rightarrow C_9 \cup \{11\}$
36	$C_1 \cup \{14\} \rightarrow C_2 \cup \{22\}$	72	$C_2 \cup \{15\} \rightarrow C_3 \cup \{14\}$
73	$C_2 \cup \{15\} \rightarrow C_6 \cup \{16\}$	105	$C_3 \cup \{18\} \rightarrow C_5 \cup \{13\}$
74	$C_2 \cup \{18\} \rightarrow C_3 \cup \{13\}$	106	$C_3 \cup \{18\} \rightarrow C_8 \cup \{24\}$
75	$C_2 \cup \{18\} \rightarrow C_8 \cup \{6\}$	107	$C_3 \cup \{21\} \rightarrow C_8 \cup \{13\}$
76	$C_2 \cup \{21\} \rightarrow C_2 \cup \{26\}$	108	$C_3 \cup \{21\} \rightarrow C_9 \cup \{10\}$
77	$C_2 \cup \{21\} \rightarrow C_3 \cup \{9\}$	109	$C_3 \cup \{23\} \rightarrow C_4 \cup \{7\}$
78	$C_2 \cup \{21\} \rightarrow C_3 \cup \{19\}$	110	$C_3 \cup \{23\} \rightarrow C_6 \cup \{6\}$
79	$C_2 \cup \{21\} \rightarrow C_6 \cup \{13\}$	111	$C_3 \cup \{23\} \rightarrow C_8 \cup \{23\}$
80	$C_2 \cup \{21\} \rightarrow C_9 \cup \{14\}$	112	$C_3 \cup \{23\} \rightarrow C_9 \cup \{16\}$
81	$C_2 \cup \{23\} \rightarrow C_4 \cup \{13\}$	113	$C_3 \cup \{23\} \rightarrow C_{10} \cup \{10\}$
82	$C_2 \cup \{23\} \rightarrow C_5 \cup \{8\}$	114	$C_3 \cup \{26\} \rightarrow C_{10} \cup \{3\}$
83	$C_2 \cup \{23\} \rightarrow C_6 \cup \{24\}$	115	$C_3 \cup \{27\} \rightarrow C_7 \cup \{13\}$
84	$C_2 \cup \{23\} \rightarrow C_6 \cup \{25\}$	116	$C_4 \cup \{10\} \rightarrow C_9 \cup \{8\}$
85	$C_2 \cup \{23\} \rightarrow C_7 \cup \{4\}$	117	$C_5 \cup \{9\} \rightarrow C_8 \cup \{9\}$
86	$C_2 \cup \{24\} \rightarrow C_5 \cup \{14\}$	118	$C_5 \cup \{9\} \rightarrow C_9 \cup \{3\}$
87	$C_2 \cup \{24\} \rightarrow C_7 \cup \{21\}$	119	$C_5 \cup \{10\} \rightarrow C_6 \cup \{18\}$
88	$C_2 \cup \{27\} \rightarrow C_3 \cup \{28\}$	120	$C_5 \cup \{10\} \rightarrow C_8 \cup \{4\}$
89	$C_2 \cup \{27\} \rightarrow C_7 \cup \{5\}$	121	$C_5 \cup \{10\} \rightarrow C_8 \cup \{11\}$
90	$C_2 \cup \{27\} \rightarrow C_8 \cup \{8\}$	122	$C_5 \cup \{10\} \rightarrow C_9 \cup \{13\}$
91	$C_2 \cup \{27\} \rightarrow C_9 \cup \{6\}$	123	$C_5 \cup \{10\} \rightarrow C_{10} \cup \{8\}$
92	$C_2 \cup \{27\} \rightarrow C_{11} \cup \{2\}$	124	$C_5 \cup \{11\} \rightarrow C_6 \cup \{21\}$
93	$C_2 \cup \{28\} \rightarrow C_{11} \cup \{14\}$	125	$C_5 \cup \{11\} \rightarrow C_8 \cup \{15\}$
94	$C_3 \cup \{7\} \rightarrow C_6 \cup \{27\}$	126	$C_5 \cup \{12\} \rightarrow C_6 \cup \{12\}$
95	$C_3 \cup \{7\} \rightarrow C_{10} \cup \{7\}$	127	$C_5 \cup \{12\} \rightarrow C_7 \cup \{24\}$
96	$C_3 \cup \{8\} \rightarrow C_4 \cup \{6\}$	128	$C_5 \cup \{15\} \rightarrow C_6 \cup \{9\}$
97	$C_3 \cup \{8\} \rightarrow C_5 \cup \{16\}$	129	$C_5 \cup \{15\} \rightarrow C_9 \cup \{15\}$
98	$C_3 \cup \{8\} \rightarrow C_6 \cup \{10\}$	130	$C_6 \cup \{8\} \rightarrow C_7 \cup \{7\}$
99	$C_3 \cup \{8\} \rightarrow C_6 \cup \{19\}$	131	$C_6 \cup \{8\} \rightarrow C_9 \cup \{21\}$
100	$C_3 \cup \{8\} \rightarrow C_8 \cup \{7\}$	132	$C_6 \cup \{15\} \rightarrow C_{11} \cup \{15\}$
101	$C_3 \cup \{10\} \rightarrow C_4 \cup \{12\}$	133	$C_7 \cup \{12\} \rightarrow C_8 \cup \{12\}$
102	$C_3 \cup \{10\} \rightarrow C_8 \cup \{22\}$	134	$C_7 \cup \{12\} \rightarrow C_8 \cup \{26\}$
103	$C_3 \cup \{12\} \rightarrow C_3 \cup \{15\}$	135	$C_7 \cup \{18\} \rightarrow C_8 \cup \{14\}$
104	$C_3 \cup \{12\} \rightarrow C_6 \cup \{11\}$	136	$C_7 \cup \{18\} \rightarrow C_8 \cup \{29\}$

Theorem (4): In the PG (1,31), there are precisely 51 projectively distinct set of size six summarized as below.

Proof: We will symbolize E_i for $C_i \cup \{\text{the orbits}\}\$, the results as following $E_1 = C_1 \cup \{4\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $Z_2 \times Z_2 = \langle \begin{pmatrix} 30 & 0 \\ 4 & 1 \end{pmatrix}, \begin{pmatrix} 29 & 30 \\ 2 & 2 \end{pmatrix} \rangle = \langle 30X + 4, \frac{29X + 2}{30X + 2} \rangle$

The proper subgroups are:

Order 2:
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 30 & 0 \\ 4 & 1 \end{pmatrix} \right\}$$

Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 29 & 30 \\ 2 & 2 \end{pmatrix} \right\}$
Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 25 & 9 \end{pmatrix} \right\}$.

 $E_2 = C_1 \cup \{5\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$

 $E_3 = C_1 \cup \{6\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$\begin{pmatrix} 0 & 30 \\ 25 & 0 \end{pmatrix} = \frac{25}{30X}$	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 0 & 30 \\ 25 & 0 \end{pmatrix} \rangle = \langle \frac{25}{30X} \rangle$

 $E_4 = C_1 \cup \{7\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$

 $E_5 = C_1 \cup \{8\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$

 $E_6 = C_1 \cup \{9\}$, the stabilizer group of it in the following table

Matrices	Order

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$$

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$

 $E_7 = C_1 \cup \{10\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $I = <\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} > = < X >$

 $E_8 = C_1 \cup \{11\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$ \binom{0}{29} \frac{30}{0} = \frac{29}{30X} $	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 0 & 30 \\ 29 & 0 \end{pmatrix} \rangle = \langle \frac{29}{30X} \rangle$

 $E_9 = C_1 \cup \{13\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$

 $E_{10} = C_1 \cup \{14\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $I = <\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} > = < X >$

 $E_{11} = C_1 \cup \{15\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$

 $E_{12} = C_1 \cup \{16\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 1 & 1 \\ 29 & 30 \end{pmatrix} \rangle = \langle \frac{X+29}{X+30} \rangle$

 $E_{13} = C_2 \cup \{6\}$, the stabilizer group of it in the following table:

13	-2 - (·),	
	Matrices	Order

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$$

The generator matrix is $I = <\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} > = < X >$

 $E_{14} = C_2 U$ {7}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $I = \overline{\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)} > = \langle X \rangle$

 $E_{15} = C_2 \cup \{8\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1
$\binom{6}{1} \frac{3}{25} = \frac{6X+1}{3X+25}$	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 6 & 3 \\ 1 & 25 \end{pmatrix} \rangle = \langle \frac{6X+1}{3X+25} \rangle$

 $E_{16} = C_2 \cup \{9\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1
$\begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix} = \frac{x}{x+30}$	2
$\begin{pmatrix} 4 & 7 \\ 23 & 27 \end{pmatrix} = \frac{4X+23}{7X+27}$	2
$\begin{pmatrix} 27 & 3 \\ 8 & 4 \end{pmatrix} = \frac{27X+8}{3X+4}$	2

The generator matrix is $Z_2 \times Z_2 = \langle \begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix}, \begin{pmatrix} 4 & 7 \\ 23 & 27 \end{pmatrix} \rangle = \langle \frac{X}{X+30}, \frac{4X+23}{7X+27} \rangle$

The proper subgroups are

Order 2:
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix} \right\}$$

Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 4 & 7 \\ 23 & 27 \end{pmatrix} \right\}$
Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 27 & 3 \\ 8 & 4 \end{pmatrix} \right\}$.

Order 2:
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 4 & 7 \\ 23 & 27 \end{pmatrix} \right\}$$

Order 2:
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 27 & 3 \\ 8 & 4 \end{pmatrix} \right\}$$
.

 $E_{17} = C_2 U$ {10}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$\begin{pmatrix} 0 & 30 \\ 21 & 0 \end{pmatrix} = \frac{21}{30X}$	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 0 & 30 \\ 21 & 0 \end{pmatrix} \rangle = \langle \frac{21}{30X} \rangle$

 $E_{18} = C_2 \cup \{12\}$, the stabilizer group of it in the following table:

		Matrices	
			Order

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$$

$$\begin{pmatrix} 19 & 30 \\ 12 & 12 \end{pmatrix} = \frac{19X + 12}{30X + 12}$$

$$2$$

The generator matrix is $Z_2 = < \begin{pmatrix} 19 & 30 \\ 12 & 12 \end{pmatrix} > = < \frac{19X + 12}{30X + 12} >$

 $E_{19} = C_2 U$ {13}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1
$\binom{29 \ 30}{2 \ 2} = \frac{29X+2}{30X+2}$	2

The generator matrix is $Z_2 = < \begin{pmatrix} 29 & 30 \\ 2 & 2 \end{pmatrix} > = < \frac{29X+2}{30X+2} >$

 $E_{20} = C_2 U$ {14}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$

 $E_{21} = C_2 \cup \{15\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$\binom{28}{14} \frac{18}{3} = \frac{28X+14}{18X+3}$	2

The generator matrix is $Z_2 = < \begin{pmatrix} 28 & 18 \\ 14 & 3 \end{pmatrix} > = < \frac{28X + 14}{18X + 3} >$

 $E_{22} = C_2 U$ {18}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$\begin{pmatrix} 0 & 30 \\ 26 & 0 \end{pmatrix} = \frac{26}{30X}$	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 0 & 30 \\ 26 & 0 \end{pmatrix} \rangle = \langle \frac{26}{30X} \rangle$

 $E_{23} = C_2 \cup \{19\}$, the stabilizer group of it in the following table:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$$

$$\begin{pmatrix} 0 & 30 \\ 29 & 0 \end{pmatrix} = \frac{29}{30X}$$

$$\begin{pmatrix} 14 & 14 \\ 3 & 13 \end{pmatrix} = \frac{14X+3}{14X+13}$$

$$\begin{pmatrix} 3 & 17 \\ 5 & 28 \end{pmatrix} = \frac{3X+5}{17X+5}$$

$$\begin{pmatrix} 26 & 30 \\ 26 & 28 \end{pmatrix} = \frac{26X+26}{30X+28}$$

$$\begin{pmatrix} 19 & 1 \\ 29 & 30 \end{pmatrix} = \frac{19X+29}{X+30}$$
3

The generator matrix is $S_3 = \langle \begin{pmatrix} 14 & 14 \\ 3 & 13 \end{pmatrix}, \begin{pmatrix} 3 & 17 \\ 5 & 28 \end{pmatrix} \rangle = \langle \frac{14X+3}{14X+13}, \frac{3X+5}{17X+5} \rangle$

The proper subgroups are

Order 2:
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 30 \\ 29 & 0 \end{pmatrix} \right\}$$

Order 2:
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 17 \\ 5 & 28 \end{pmatrix} \right\}$$

Order 2:
$$\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 26 & 30 \\ 26 & 28 \end{pmatrix}\}$$

Order 3:
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 14 & 14 \\ 3 & 13 \end{pmatrix}, \begin{pmatrix} 19 & 1 \\ 29 & 30 \end{pmatrix} \right\}$$

The proper subgroups are

Order 2:
$$\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 30 \\ 29 & 0 \end{pmatrix}\right\}$$

Order 2: $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 17 \\ 5 & 28 \end{pmatrix}\right\}$

Order 2: $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 26 & 30 \\ 26 & 28 \end{pmatrix}\right\}$

Order 3: $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 14 & 14 \\ 3 & 13 \end{pmatrix}, \begin{pmatrix} 19 & 1 \\ 29 & 30 \end{pmatrix}\right\}$

Order 3: $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 19 & 1 \\ 29 & 30 \end{pmatrix}, \begin{pmatrix} 14 & 14 \\ 3 & 13 \end{pmatrix}\right\}$

 $E_{24} = C_2 \cup \{21\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $I = <\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} > = < X >$

 $E_{25} = C_2 U$ {23}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$

 $E_{26} = C_2 U$ {24}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$\begin{pmatrix} 1 & 1 \\ 29 & 30 \end{pmatrix} = \frac{X+29}{X+30}$	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 1 & 1 \\ 29 & 30 \end{pmatrix} \rangle = \langle \frac{X+29}{X+30} \rangle$

 $E_{27} = C_2 \cup \{27\}$, the stabilizer group of it in the following table:

Matrices	Order

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} = \mathbf{X}$$

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$

 $E_{28} = C_2 U$ {28}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$

 $E_{29} = C_3 \cup \{7\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1
$\begin{pmatrix} 1 & 1 \\ 29 & 30 \end{pmatrix}$	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 1 & 1 \\ 29 & 30 \end{pmatrix} \rangle = \langle \frac{X+29}{X+30} \rangle$

 $E_{30} = C_3 U$ {8}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$

 $E_{31} = C_3 \cup \{10\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$\begin{pmatrix} 8 & 4 \\ 14 & 23 \end{pmatrix} = \frac{8X+14}{4X+23}$	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 8 & 4 \\ 14 & 23 \end{pmatrix} \rangle = \langle \frac{8X+14}{4X+23} \rangle$

 $E_{32} = C_3 \cup \{12\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$\begin{pmatrix} 0 & 30 \\ 19 & 0 \end{pmatrix} = \frac{19}{30X}$	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 0 & 30 \\ 19 & 0 \end{pmatrix} \rangle = \langle \frac{19}{30X} \rangle$

 $E_{33} = C_3 U$ {18}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$ \binom{29}{2} \frac{30}{2} = \frac{29X+2}{30X+2} $	2

The generator matrix is $Z_2 = <\begin{pmatrix} 29 & 30 \\ 2 & 2 \end{pmatrix} > = <\frac{29X+2}{30X+2} >$

 $E_{34} = C_3 U$ {21}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$ \binom{0}{29} \frac{30}{0} = \frac{29}{30X} $	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 0 & 30 \\ 29 & 0 \end{pmatrix} \rangle = \langle \frac{29}{30X} \rangle$

 $E_{35} = C_3 U$ {23}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$

 $E_{36} = C_3 \cup \{26\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1
$\begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix} = \frac{x}{x+30}$	2
$ \binom{20}{22} \frac{24}{11} = \frac{20X + 22}{24X + 11} $	2
$ \binom{11}{9} \frac{4}{20} = \frac{11X+9}{4X+9} $	2

The generator matrix is $Z_2 \times Z_2 = \langle \begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix}, \begin{pmatrix} 20 & 24 \\ 22 & 11 \end{pmatrix} \rangle = \langle \frac{X}{X+30}, \frac{20X+22}{24X+11} \rangle$

The proper subgroups are:

Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix} \right\}$ Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 20 & 24 \\ 22 & 11 \end{pmatrix} \right\}$ Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 11 & 4 \\ 9 & 20 \end{pmatrix} \right\}$

 $E_{37} = C_3 \cup \{27\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1
$\begin{pmatrix} 30 & 0 \\ 2 & 1 \end{pmatrix} = 30X + 2$	2
$\begin{pmatrix} 1 & 1 \\ 25 & 30 \end{pmatrix} = \frac{X+25}{X+30}$	2
$\begin{pmatrix} 1 & 1 \\ 4 & 30 \end{pmatrix} = \frac{X+4}{X+30}$	2

The generator matrix is $Z_2 \times Z_2 = \langle \begin{pmatrix} 30 & 0 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 25 & 30 \end{pmatrix} \rangle = \langle 30X + 2, \frac{X + 25}{X + 30} \rangle$

The proper subgroups are:

Order 2:
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 30 & 0 \\ 2 & 1 \end{pmatrix} \right\}$$

Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 25 & 30 \end{pmatrix} \right\}$
Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 4 & 30 \end{pmatrix} \right\}$.

 $E_{38} = C_4 \cup \{10\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$ $\begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix} = \frac{X}{X+30}$	1
$\begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix} = \frac{X}{X+30}$	2
	2
$\binom{29}{4} \binom{6}{2} = \frac{29X+4}{4X+2}$	2

The generator matrix is $Z_2 \times Z_2 = \langle \begin{pmatrix} 2 & 8 \\ 27 & 29 \end{pmatrix}, \begin{pmatrix} 29 & 6 \\ 4 & 2 \end{pmatrix} \rangle = \langle \frac{2X + 27}{8X + 29}, \frac{29X + 4}{4X + 2} \rangle$

The proper subgroups are:

Order 2:
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 30 \end{pmatrix} \right\}$$

Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 8 \\ 27 & 29 \end{pmatrix} \right\}$
Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 29 & 6 \\ 4 & 2 \end{pmatrix} \right\}$.

 $E_{39} = C_5 U$ {9}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$ \binom{28}{3} \frac{30}{3} = \frac{28X+3}{3X+3} $	2

The generator matrix is $Z_2 = < \begin{pmatrix} 28 & 30 \\ 3 & 3 \end{pmatrix} > = < \frac{28X+3}{3X+3} >$

 $E_{40} = C_5 U$ {10}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1

The generator matrix is $I = <\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} > = < X >$

 $E_{41} = C_5 \cup \{11\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$ \binom{30 23}{11 1} = \frac{30X + 11}{23X + 1} $	2

The generator matrix is $Z_2 = < \begin{pmatrix} 30 & 23 \\ 11 & 1 \end{pmatrix} > = < \frac{30X + 11}{23X + 1} >$

 $E_{42} = C_5 U$ {12}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1
$\begin{pmatrix} 0 & 30 \\ 19 & 0 \end{pmatrix} = \frac{19}{30X}$	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 0 & 30 \\ 19 & 0 \end{pmatrix} \rangle = \langle \frac{19}{30X} \rangle$

 $E_{43} = C_5 U$ {15}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$\begin{pmatrix} 1 & 1 \\ 27 & 30 \end{pmatrix} = \frac{x+27}{x+30}$	2

The generator matrix is $Z_2 = \langle \begin{pmatrix} 1 & 1 \\ 27 & 30 \end{pmatrix} \rangle = \langle \frac{X+27}{X+30} \rangle$

 $E_{44} = C_6 \cup \{8\}$, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$ \binom{27}{1} \frac{26}{4} = \frac{27X+1}{26X+4} $	2

The generator matrix is $Z_2 = <\begin{pmatrix} 27 & 26 \\ 1 & 4 \end{pmatrix} > = <\frac{27X+1}{26X+4} >$

 $E_{45} = C_6 U$ {15}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1
$\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} = 2X+1$	5
$\begin{pmatrix} 4 & 0 \\ 3 & 1 \end{pmatrix} = 4X + 3$	5
$\begin{pmatrix} 8 & 0 \\ 7 & 1 \end{pmatrix} = 8X + 7$	5

$$\binom{16}{15} \quad 0 \\ 15 \quad 1$$
 = 16X+15

The generator matrix is $Z_5 = \langle \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \rangle = \langle 2X + 1 \rangle$

 $E_{46} = C_6 U$ {20}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$\begin{pmatrix} 0 & 27 \\ 10 & 28 \end{pmatrix} = \frac{10}{27X + 28}$	3
$\begin{pmatrix} 1 & 1 \\ 11 & 30 \end{pmatrix} = \frac{\mathbf{X} + 11}{\mathbf{X} + 4}$	2
$ \binom{28}{3} \frac{30}{3} = \frac{28X+3}{30X+3} $	2
$ \binom{24}{18} \frac{30}{0} = \frac{24X + 18}{30X} $	3
$\begin{pmatrix} 18 & 4 \\ 8 & 13 \end{pmatrix} = \frac{18X+8}{4X+13}$	2

The generator matrix is
$$S_3 = <\begin{pmatrix} 1 & 1 \\ 11 & 30 \end{pmatrix}, \begin{pmatrix} 24 & 30 \\ 18 & 0 \end{pmatrix} > = <\frac{X+11}{X+4}, \frac{24X+18}{30X} >$$

The proper subgroups are:

The proper subgroups are:

Order 2:
$$\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 11 & 30 \end{pmatrix}\right\}$$

Order 2: $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 28 & 30 \\ 3 & 3 \end{pmatrix}\right\}$

Order 2: $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 18 & 4 \\ 8 & 13 \end{pmatrix}\right\}$

Order 3: $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 27 \\ 10 & 28 \end{pmatrix}, \begin{pmatrix} 24 & 30 \\ 18 & 0 \end{pmatrix}\right\}$

Order 3: $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 24 & 30 \\ 18 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 27 \\ 10 & 28 \end{pmatrix}\right\}$

 $E_{47} = C_6 U$ {23}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{X}$	1
$\begin{pmatrix} 0 & 30 \\ 24 & 0 \end{pmatrix} = \frac{24}{30X}$	2
$\begin{pmatrix} 11 & 11 \\ 16 & 29 \end{pmatrix} = \frac{11X+16}{11X+29}$	3
$\begin{pmatrix} 3 & 1 \\ 24 & 30 \end{pmatrix} = \frac{3X+24}{X+30}$	3
$ \binom{16}{14} \frac{20}{15} = \frac{16X + 20}{14X + 15} $	2
$\begin{pmatrix} 8 & 30 \\ 23 & 23 \end{pmatrix} = \frac{8X+23}{30X+23}$	2

The generator matrix is
$$S_3 = <\begin{pmatrix} 11 & 11 \\ 16 & 29 \end{pmatrix}, \begin{pmatrix} 16 & 20 \\ 14 & 15 \end{pmatrix}> = <\frac{11X+16}{11X+29}, \frac{16X+20}{14X+15}>$$

The proper subgroups are:

The proper subgroups are:

Order 2:
$$\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 30 \\ 24 & 0 \end{pmatrix}\right\}$$

Order 2: $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 16 & 20 \\ 14 & 15 \end{pmatrix}\right\}$

Order 2: $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 8 & 30 \\ 23 & 23 \end{pmatrix}\right\}$

Order 3: $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 11 & 11 \\ 16 & 29 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 24 & 30 \end{pmatrix}\right\}$

Order 3: $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 24 & 30 \end{pmatrix}, \begin{pmatrix} 11 & 11 \\ 16 & 29 \end{pmatrix}\right\}$

Order 3:
$$\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 11 & 11 \\ 16 & 29 \end{pmatrix}, \begin{pmatrix} 24 & 30 \end{pmatrix}\}$$

Order 3: $\{\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 1 & 11 \end{pmatrix}, \begin{pmatrix} 11 & 11 \\ 11 & 11 \end{pmatrix}\}$

 $E_{48} = C_7 U$ {12}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$\begin{pmatrix} 0 & 30 \\ 28 & 0 \end{pmatrix} = \frac{28}{30X}$	2

The generator matrix is
$$Z_2 = \langle \begin{pmatrix} 0 & 30 \\ 28 & 0 \end{pmatrix} \rangle = \langle \frac{28}{30X} \rangle$$

 $E_{49} = C_7 U$ {18}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$\begin{pmatrix} 1 & 1 \\ 13 & 30 \end{pmatrix} = \frac{X+13}{X+30}$	2

The generator matrix is
$$Z_2 = \langle \begin{pmatrix} 1 & 1 \\ 13 & 30 \end{pmatrix} \rangle = \langle \frac{X+13}{X+30} \rangle$$

 $E_{50} = C_8 U$ {18}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1
$\begin{pmatrix} 0 & 8 \\ 6 & 13 \end{pmatrix} = \frac{6}{8X+13}$	3
$\begin{pmatrix} 1 & 1 \\ 28 & 30 \end{pmatrix} = \frac{X + 28}{X + 30}$	2
$(7 23)_{-\frac{7X+29}{2}}$	2
	3
$ \binom{13}{18} \frac{30}{18} = \frac{13X+18}{18X+18} $	2

The generator matrix is
$$S_3 = <\begin{pmatrix} 0 & 8 \\ 6 & 13 \end{pmatrix}, \begin{pmatrix} 7 & 23 \\ 29 & 24 \end{pmatrix} > = <\frac{6}{8X+13}, \frac{7X+29}{23X+24} >$$

The proper subgroups are:

Order 2:
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 28 & 30 \end{pmatrix} \right\}$$

Order 2: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 7 & 23 \\ 29 & 24 \end{pmatrix} \right\}$

Order 2:
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 13 & 30 \\ 18 & 18 \end{pmatrix} \right\}$$

Order 3: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 8 \\ 6 & 13 \end{pmatrix}, \begin{pmatrix} 21 & 30 \\ 7 & 0 \end{pmatrix} \right\}$
Order 3: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 21 & 30 \\ 7 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 8 \\ 6 & 13 \end{pmatrix} \right\}$

 $E_{51} = C_9 U$ {2}, the stabilizer group of it in the following table:

Matrices	Order
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = X$	1

The generator matrix is $I = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle = \langle X \rangle$.

The partition of PG(1,31) by the projectivities of the set of size 6 are obtained by computing the generator matrix for each E_i , i = 1,...,51, by GAP

The results are listed in the following table:

Table 8: The partition of PG(1,31) are computed

Tat	le 8: The partition of $PG(1,31)$ are computed.				
$\boldsymbol{E_i}$	Partition E_i^c				
$\boldsymbol{E_1}$	$\{5, 30, 22, 13\}, \{6, 29, 17, 18\}, \{7, 28, 14, 21\}, \{8, 27, 12, 23\}, \{9, 26, 15, 20\}, \{10, 25\}, \{11, 24, 19, 16\}$				
$\boldsymbol{E_2}$	There are 26 orbits of single points				
E_3	$\{4,17\},\{5,26\},\{7,23\},\{8,24\},\{9,11\},\{10,13\},\{12,16\},\{14,27\},\{15,19\},\{18,21\},\{20,22\},\{25,30\},\{28,29\}$				
E_4	There are 26 orbits of single points				
E_5	There are 26 orbits of single points				
$\boldsymbol{E_6}$	There are 26 orbits of single points				
E_7	There are 26 orbits of single points				
E_8	{4,16},{5,19},{6,21,},{7,18},{8},{9,14},{10,25},{12,26},{13,24},{15,27},{17,22},{20,28},{23},{29,30}				
E_9	There are 26 orbits of single points				
E_{10}	There are 26 orbits of single points				
E_{11}	There are 26 orbits of single points				
E_{12}	$\{4,11\}, \{5,24\}, \{6,7\}, \{8,23\}, \{9,28\}, \{10,25\}, \{12,15\}, \{13,19\}, \{14,20\}, \{17,30\}, \{18,21\}, \{22,29\}, \{26,27\}\}$				
E_{13}	There are 26 orbits of single points				
E ₁₄	There are 26 orbits of single points				
E_{15}					
E_{16}	$\{3,17,14,13\},\{4,22,15,21\},\{6,26,19,20\},\{7,27,24,28\},\{8,10\},\{11,29,25,23\},\{12,18,30,16\}$				
E_{17}					
E_{18}	$\{3,18\}, \{4,11\}, \{6,21\}, \{7,29\}, \{8,10\}, \{9,30\}, \{13,20\}, \{14,16\}, \{15,25\}, \{17,26\}, \{19,22\}, \{23,24\}, \{27\}, \{28\}$				
E_{19}	{3,4},{6,18},{7,21},{8,23},{9,20},{10},{11,16},{12,27},{14,28},{15,26},{17,29},{19,24},{22,30},{25}				
E_{20}	There are 26 orbits of single points				
E ₂₁	{3,30},{4,24},{6,17},{7,11},{8,9},{10,26},{12,20},{13,22},{14,27},{16,23},{18,25},{19,28},{21,29}				
E_{22}	$\{3,12\},\{4,9\},\{6\},\{7,14\},\{8,20\},\{10,16\},\{11,23\},\{13,29\},\{15,21\},\{17,24\},\{19,28\},\{22,27\},\{25\},\{26,30\},\{26,20\},$				
E_{23}	$\{3,11,12,29,26,30\},\{4,16\},\{6,14,25,9,10,21\},\{7,28,15,20,18,27\},\{8,22,17\},\{13,24,23\}$				
E_{24}	There are 26 orbits of single points				
E_{25}	There are 26 orbits of single points				
E_{26}	$\{3,16\},\{4,11\},\{6,7\},\{8,23\},\{9,28\},\{10,25\},\{12,15\},\{13,19\},\{14,20\},\{17,30\},\{18,21\},\{22,29\},\{26,27\}\}$				
E_{27}	There are 26 orbits of single points				
E_{28}	There are 26 orbits of single points				
E_{29}	$ \{3,16\}, \{4,11\}, \{5,24\}, \{8,23\}, \{9.28\}, \{10,25\}, \{12,15\}, \{13,19\}, \{14,20\}, \{17,30\}, \{18,21\}, \{22,29\}, \{26,27\} $				
E_{30}	There are 26 orbits of single points				

E_{31}	$ \{3,25\}, \{4,29\}, \{5,20\}, \{7,19\}, \{8,11\}, \{9,23\}, \{12,26\}, \{13,21\}, \{14,22\}, \{15,30\}, \{16,28\}, \{17,18\}, \{24,27\} \} $		
E_{32}	$ \{3,4\}, \{5,21\}, \{7,15\}, \{8,17\}, \{9,22\}, \{10,26\}, \{11,18\}, \{13,20\}, \{14,23\}, \{16,24\}, \{19,30\}, \{25,29\}, \{27,28\} \} $		
E_{33}	$ \{3,4\}, \{5,13\}, \{7,21\}, \{8,23\}, \{9,20\}, \{10\}, \{11,16\}, \{12,27\}, \{14,28\}, \{15,26\}, \{17,29\}, \{19,24\}, \{22,30\}, \{25\} \} $		
E_{34}	$\{3,11\},\{4,16\},\{5,19\},\{7,18\},\{8\},\{9,14\},\{10,25\},\{12,26\},\{13,24\},\{15,27\},\{17,22\},\{20,28\},\{23\},\{29,30\},\{20,28\},$		
E_{35}	There are 26 orbits of single points		
E_{36}	$\{3,17,11,29\},\{4,22,23,25\},\{5,9,14,13\},\{7,27,16,30\},\{8,10,12,18\},\{15,21,20,19\},\{24,28\}$		
E_{37}	$\{3, 30, 19, 14\}, \{4, 29, 13, 20\}, \{5, 28, 10, 23\}, \{7, 26\}, \{8, 25, 15, 18\}, \{9, 24, 21, 12\}, \{11, 22, 17, 16\}$		
E_{38}	$\{3,17\}, \{4,27,22,7\}, \{5,23,9,25\}, \{6,15,26,21\}, \{11,24,29,28\}, \{12,20,18,19\}, \{13,30,14,16\}$		
E_{39}	$ \{2,28\}, \{5,6\}, \{7,20\}, \{8,29\}, \{10,26\}, \{11,27\}, \{12,14\}, \{13,16\}, \{15,19\}, \{17,30\}, \{18,22\}, \{21,24\}, \{23,25\} $		
E_{40}	There are 26 orbits of single points		
E_{41}	$\{2,18\},\{5,7\},\{6,21\},\{8,28\},\{9,17\},\{10,20\},\{12,16\},\{13,25\},\{14,26\},\{15,24\},\{19,29\},\{22,30\},\{23,27\}\}$		
E_{42}	$ \{2,6\}, \{5,21\}, \{7,15\}, \{8,17\}, \{9,22\}, \{10,26\}, \{11,18\}, \{13,20\}, \{14,23\}, \{16,24\}, \{19,30\}, \{25,29\}, \{27,28\} \} $		
E_{43}	$\{2,29\}, \{5,8\}, \{6,19\}, \{7,16\}, \{9,20\}, \{10,11\}, \{12\}, \{13,24\}, \{14,27\}, \{17,26\}, \{18,30\}, \{21\}, \{22,23\}, \{25,28\}, \{25,$		
E_{44}	$\{2,27\},\{4,30\},\{5,26\},\{6,14\},\{9,19\},\{10,15\},\{11,13\},\{12,18\},\{16,20\},(17,28\},\{21,22\},\{23,24\},\{25,29\}$		
E_{45}	$\{2,5,11,23,16\},\{4,9,19,8,17\},\{6,13,27,24,18\},\{10,21,12,25,20\},\{14,29,28,26,22\},\{30\}$		
E_{46}	$\{2,29,28,13,8,16\},\{4,18,9,5,6,22\},\{10,30,26,23,17,25\},\{11,27\},\{12,21,14,19,15,24\}$		
E ₄₇	$\{2,5,24,20,19,30\},\{4,28,29,8,25,12\},\{6,10,27\},\{9,21,18\},\{11,16,17,14,15,26\},\{13,22\}$		
E_{48}	$\{2,17\},\{4,24\},\{5,13\},\{6,16\},\{7,27\},\{9,21\},\{10,22\},\{11,20\},\{14,29\},\{15,25\},\{18,26\},\{19,23\},\{28,30\}$		
E_{49}	$\{2,15\},\{4,16\},\{5,20\},\{6,10\},\{7,24\},\{9,26\},\{11,21\},\{12,22\},\{13,28\},\{14\},\{17,29\},\{19\},\{23,27\},\{25,30\},\{16\},\{16\},\{17,29\},\{19\},\{19\},\{19\},\{19\},\{19\},\{19\},\{19\},\{1$		
E ₅₀	$\{2,28,26,17,22,30\},\{4,27,5,20,16,21\},\{6,25,8,19,13,14\},\{7,23,24,15,9,11\},\{12,29\}$		
E_{51}	There are 26 orbits of single points		

7-The set of size seven

From Table 8, we note that there are 853 orbits, there are 851 are inquivalent 7-Set as given in the following table:

Table 9: This table gives the 853 orbits.

Stabilizer	I	Z_2	Z_3	Z_6	D_5
Number	710	125	13	1	2

Where
$$Z_3 = \langle \begin{pmatrix} 0 & 8 \\ 16 & 3 \end{pmatrix} \rangle = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 8 \\ 6 & 13 \end{pmatrix}, \begin{pmatrix} 21 & 30 \\ 7 & 0 \end{pmatrix} \right\}$$

$$Z_6 = \langle \begin{pmatrix} 0 & 8 \\ 16 & 3 \end{pmatrix} \rangle$$

$$= \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 16 \\ 14 & 14 \end{pmatrix}, \begin{pmatrix} 16 & 16 \\ 14 & 30 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 28 & 30 \end{pmatrix}, \begin{pmatrix} 28 & 30 \\ 3 & 0 \end{pmatrix}, \begin{pmatrix} 17 & 1 \\ 28 & 14 \end{pmatrix} \right\}.$$
So Conclusions

A summary of this paper is given in the following table:

Table 10: The summary of the work

Set of size K	Number of inequivalent set
3	1
4	6
5	11
6	51
7	851

- For every $x, y \in PG$ (1,31), there exist $g \in \langle T \rangle$ such that y = xg since the action of $\langle T \rangle$ is transitive.
- The open problem, There is a possibility to study the sets on PG (1,q), where $q \ge 32$.

References

- [1] J. W. P. HIRSCHFELD, *Projective geometries over finite fields, Oxford Univ. Press, Oxford*, 1979. https://global.oup.com/academic/product/projective-geometries-over-finite-fields-9780198 502951?cc=us&lang=en&.
- [2] J.W. P. Hirschfeld, and N. A. M. Al-Seraji, "The Geometry of The line of order Seventeen and its Application to Error-correcting Codes," *Al-Mustansiriyah journal of Science*, vol. 24, no. 5, pp.217-230, 2013. https://www.iasj.net/iasj/download/3e9e51375615b006.
- [3] N. A. M. Al-Seraji, "Classification of the Projective line over Galois Field of order sixteen", *Al-Mustansiriyah journal of Science*, vol. 24, no. 6, pp. 119-128, 2014 . https://www.researchgate.net/publication/336059931.
- [4] E. B. Al-Zangana and J. W. P. Hirschfeld, "Classification of the projective line of order nineteen and its application to error-correcting codes" in 2nd International conference of mathematics and its applications, Al-Basra University Iraq vol. 34, pp 196-211, 2016. https://iasj.net/iasj/download/8e84e5888fd9c089.
- [5] N. A. Al-Seraji, "Classification of the projective line over Galois field of order 23". *Journal of college of education, Al-Mustansiriyah University*, vol.3, pp. 231-252, 2015. https://www.researchgate.net/publication/336059627____.
- [6] E. B. AL-Zangana & E. A. S. Shehab, "Classification of k-Sets in PG(1,25), for k=4,...,13". *Iraqi Journal of Science*, vol. 59, no. (1B), pp. 360–368, 2018. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/97.
- [7] M. M. Ibrahim and E B Al-Zangana, "Classification of Subsets in Finite Projective Line Over Galois Field of Order 27", *J. Phys.: Conf. Ser.* **1818** 012087, 2021. https://iopscience.iop.org/article/10.1088/1742-6596/1818/1/012087/pdf.
- [8] N. A. Al-Seraji¹ and F. A. Musa, 2021. "Classifications of subsets in the finite projective line" *Journal of Physics Conference Series*, 1879 032028, 2021. https://iopscience.iop.org/article/10.1088/1742-6596/1879/3/032028/pdf.
- [9] Group G. A. P., "GAP-Groups Algorithms Programming- a System for computation Discrete Algebra", 2019. URLhttps://www.gap-system.org
- [10] D. C. van Leijenhorst, "Orbits on the projective line". *J. Combin. Theory Ser. A*, vol. 31, pp. 146–154,1981.

 <a href="https://reader.elsevier.com/reader/sd/pii/009731658190011X?token=A0D2F11CCD676DE491E86D31051E6C6E1894E195E994F3BD37D4DA5E2BEBE4DD14A4D95B0C2A3FC4A798304DFA81634B&originRegion=eu-west-1&originCreation=20220525112058.
- [11] Makhrib Al-Seraji, Najm Abdulzahra, E. A. Alnussairy, and Z. S. Jafar. "The group action on the finite projective planes of orders 53, 61, 64." *Journal of Discrete Mathematical Sciences and Cryptography*, vol. 23, no.8, pp. 1573-1582, 2020. https://www.tandfonline.com/doi/abs/10.1080/09720529.2020.1773020.
- [12] N. A. M. Al Seraji, and R. A. B. Al-Ogali, "The group action on a projective plane over finite field of order 16". *Iraqi Journal of Science*, vol. 58, no. 3, pp. 1477-1486. 2017. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/5825.
- [13] S. M. A. Al-Subahawi, and N. A. M. Al Seraji, 2020. "Partition on the projective plane over Galois field of order 11^m m=1,2,3, S", *Iraqi Journal of Science*, SI.1(28), 2020. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/2265.