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Abstract:

In these notes, our goal is to give some results on criterion for complex analytic
map-germs by their tangent spaces with respect to ©* -equivalence where 0 is the
module of complex analytic vector fields on (C",0).In addition, we give some
results about ©% -trivial analytic family, the direct product and direct sum of map-
germs.
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1. Introduction

The study of vector fields in singularity theory is a central problem since there are very important
types of vector fields which we can integrate to produce diffeomorphisms that preserve a variety. In
[1] and [2], Damon used these types of diffeomorphisms to introduce a generalized version of H—
equivalence of map-germs (the restriction of K —equivalence to those preserving some variety in the
domain of map-germ), which he calls V¥*-equivalence where V is a variety. That equivalence is an
important technical tool to study the differential geometric properties of the singularities of map-germs
(for more details see [3] and [4]).

In [5], we introduce a new version of equivalence relation of real and complex analytic map-germs
which called ®%-equivalence where @ is the module of real and complex analytic vector fields on
(€™, 0) such that every vector field in ® can be integrated to give a deffeomorphism. That equivalence
is just Damon’s V¥-equivalence when © is the module of vector fields tangent to a variety V € ¢".
We used 0% -equivalence as a technical tool to aid with the classification of map-germs up to the left-
right equivalence (small perturbations of the map do not change the differential geometric properties
of the singularities of the map).

In the present paper, we give more results of ®%-equivalence as criterion for complex analytic
map-germs by their tangent space, the relation between ©*-trivial and k-0%-trivial for all k > 1.
Also, we give some results on the direct product and direct sum of map-germs.
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2. Notation

In this section we give some notations which are used throughout this paper. Standard notations can
be found in [6] and in [1]. Let x = (x4, ..., x,) be a coordinate system in ¢". Let U; and U, be two
neighbourhoods of 0 in ¢®. Let h, h:¢™ — ¢™ be two complex analytic maps, then two such pairs
(Uq, h) and (U4 k) are germ-equivalent if there exists a neighbourhood U < U; N U, contains 0 such
that h(x) = h(x) for all x € U. A map-germ h: (¢",a) — (¢™, h(a)) will mean an equivalence class
of pairs (U, h) where a € ¢".

We write ¢{x} for the local ring of all complex analytic function-germs(¢",0) — €. This ring
contains a unique maximal ideal [6], consisting of function-germs vanishing at the origin, denoted by
M,. We denote by M, C{x}™ the set of all complex analytic map-germs h: (¢*,0) — (¢™,0) and it is
C{x}-module. Any complex analytic map-germ ¢: (¢*,0) - (¢",0) induces a ring homomorphism
@ My Cx}™ > My C{x}™ by 9" (h) = h o @

Let (TC™,0) be the tangent bundle of (¢™,0) and let m,,: (T¢™,0) - (¢™,0) be the natural
projection map, we define the complex analytic vector field along h: (¢, 0) — (€™, 0), denoted 6(h),
to be
6 (h) ={Complex analytic map-germs &: (€™, 0) — (TC™, 0) such that h = 7, o £}

Note that 6(h) is a free ¢{x}-module of rank m, i.e., 8(h) = ¢{x}™. For the identity map-germ
id,: (€™, 0) = (¢, 0) we have that 6(id,) = C¢{x}™ and we can write a vector fields on (C", 0) as an
n-tuple of elements of C{x}. If & is a vector field on (C", 0), then we write it as

we write

axi'
i=1
Remark 2.1: Throughout this paper all map-germs and vector fields which we consider will be
complex analytic.
3. @%-equivalence of map-germs
Definition 3.1:[5]

Suppose that h, h: (¢, 0) — (¢™,0) are map-germs. Let ® be a module of vector fields on (C",0).
We say that h and h are ©% -equivalent, denoted by h~@xﬁ if there exists ¢ € © that can be integrated
to give a deffeomorphism ¢: (¢", 0) - (¢", 0) and an invertible matrix M: (¢", 0) — (GL(¢™),0) such
that 2(x) = M(x). h(p(x)) for each x € (¢",0).

Definition 3.2:[5]
Let h: (€™, 0) — (€™, 0) be a map-germ and let ® be a module of vector fields on (C",0).

@) The Jacobian of h with respect to @ is the submodule of ¢{x}™ given by
Jo(h) =< §(M)I§ € © N M, ¢{x}" >.

) The ©% -tangent space, denoted by T gx (h), is the submodule of ¢{x}™ given by
Tex(h) = Jo(h) + h"(My)C{x}™,

where h* (M) C{x}™ is ¢{x}-module generated by the components (0, ...,0, h;,0, ...,0) with

h; in any position.

3 The % -normal space, denoted by Ngx (h), given by
N () = C{x}™
ox () = T e (h)
Definition 3.3:
Suppose that h, A: (C™,0) - (¢™, 0) are map-germs. Let ® be a module of vector fields on (C",0).
We say that the tangent spaces T gx (h) and T gx (h) are ®%-equivalent, denoted by Tox(h) = Tgx (h)

if there exists a deffeomorphism @: (¢*, 0) — (¢, 0) such that ®*(Tgx (h)) = Tgx (h).
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4. @% -trivial family of map-germs

For any vector field & = Y7, a; i_ on (€™, 0). We can consider ¢ as a vector field on ¢" x €7 by

ax;

i=1 i=1
where §; = 0 for all 1 < i < q. Similarly the maximal ideal 9t,, can be considered as the ideal which
it generates in M, 4.

Definition 4.1:[5]

Suppose that H: (€™ x ¢, 0 x 0) — (€™, 0) is a one-parameter family of map-germs with H(0,t) =
0 for small t € C. Let © be a finitely generated module of vector fields on (¢",0) and t, € T where T
is open subset of €. if there exists vector field ¢ € @ that can be integrated to give a one-parameter
family of diffeomorphisms ®: (¢ x ¢, 0 x 0) - (¢",0) with ®(x,0) = x for all x € ¢, ®(0,t) =0
for small t € ¢ and an invertible matrix M: (C™ x ¢, 0 x 0) - (GL(C™),0). Then we say that

(1) H is @% trivial if M(x, t). H(®(x,t),t) = H(x, to).
) H is k-0%-trivial if M(x,t). H(®(x, t),t) = H(x, ty) + Y(x,t) for some Y €
ME+L¢{x, t}™ and an integer k > 1.

Obviously an % -trivial family is k-©%-trivial for any k > 1. In this paper we will show that the
converse is true in case the family is k-@%-trivial for all k > 1. Before give the theorem we need the
following:

Theorem 4.2:[5]
Suppose that H: (€™ x ¢, 0 x 0) — (¢™,0) is a one-parameter family of map-germs with H(0,t) =
0 for small t € €. Let © be a finitely generated module of vector fields on (C",0) and t, € T where T
is open subset of €. if there exists vector field ¢ € © that can be integrated to give a one-parameter
family of diffeomorphisms ®: (¢ x ¢, 0 x 0) - (¢",0) with ®(x,0) = x for all x € ¢, ®(0,t) =0
for small t € ¢ and an invertible matrix M: (¢™ x ¢, 0 x 0) - (GL(¢™),0). Then
(1) Hise-rivial if - € < E(H)|§ € 0 N MG > + H (W) G, 1},
@ H is kFirivial if 2le< EH)IE€ONMOE > +H (M) +
MEFL¢{x, 3™, for some ¢ € METL¢{x, t}™ and an integer k > 1.

Theorem 4.3:[7, Artin Approximation Theorem]

Let fCx,y) = (fi(x,¥), .. fn(x,)) € Clx, ¥}, where x = (xy, ..., x,) and y = (yy, .o, yw )-
Suppose that for each k € N there exist yy 1, ..., Vi ny € My such that f(x, yi(x)) € MK+ for each i.
Then for any ¢ € N there exist y;, ..., yy € M, such that f(x,y;(x)) = 0 and for all 1, we have
YR,v(x) — yp(x) € M.

Theorem 4.4:

Let T be an open subset of ¢ with t, € T. Suppose that H: (¢ x ¢,0 x 0) - (¢™,0) is a one-
parameter family of map-germs with H(0,t) = 0 for small t € €. Let © be a finitely generated module
of vector fields on (C",0) such that every vector field in ® can be integrated to give a one-parameter
family of diffeomorphisms . If the family H is k-0%-trivial for all k > 1, then H is ®%-trivial.

Proof.
We need to find a vector field & € @ that can be integrated to give a one-parameter family of
diffeomorphisms @: (€™ x ¢, 0 x 0) — (¢",0) with ®(x,0) = x for all x € ¢, ®(0,¢) = 0 for small
t € ¢ and an invertible matrix M: (¢™ x ¢, 0 x 0) - (GL(¢™),0) such that
M(x,t). H(®(x,t),t) — H(x, ty) = 0.
We consider the following system
G: M(x,t).H(®(x, t),t) — H(x,ty) = 0.

Since the family H is k-©%-trivial for all k > 1. Then there exists vector field £ € © that can be
integrated to give a one-parameter family of diffeomorphisms ®®): (¢ x ¢, 0 x 0) — (¢",0) with
d® (x,0) = x for all x € ¢, ¥ (0,£) =0 for small t € ¢ and an invertible matrix M®): (¢™ x
¢,0 x 0) = (GL(C™),0) such that

M® (x, t). H(d® (x, 1), t) = H(x, to) + P(x, t)
for some ¢ € MEFLC{x, £}™. It follows
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M® (x, £). H(@® (x, 1), t) — H(x, to) € MEXLQ¢{x, E}™

We can see that the hypotheses of Artin approximation theorem are satisfied, i.e., the system G has
a convergent solution (&, M) such that M(x, t). H(®(x, t), t) — H(x, ty) = 0. In addition, we have that
d(x,t) — ®®(x,t) € M2C{x, t}" and M(x, t) — MP(x,t) € M2C{x, t}™. It follows, we have @ is
a diffeomorphism and M is an invertible matrix and hence we can take a vector field

E(x,t) = —(cb‘1(0 t),t) €O
O
Theorem 4.5: [8, The Krull Intersection Theorem]

Let R be a local Noetherian ring with maximal ideal 9t. For any finite module M and ideal I < Mt if
N is a submodule of M then N, (N +1™.M) =N
Theorem 4.6:

Suppose that H: (€™ x ¢, 0 x 0) - (€™, 0) be a map-germ with H(0,t) = 0 for small t € €. Let ©
be a finitely generated module of vector fields on (C",0) such that every vector field in ® can be
integrated to give a one-parameter family of diffeomorphisms. If for all k > 1,

A E< E(H)|E € ONMC{x}™ > + H* (M) C{x}™ + METLC{x, 3™,

ot
Then we have

Z—IZ €< EH)IE € 0N MLC{x}™ > + H (M) Clx, t}™

Proof.
Suppose that ‘;—:’ E< EH)IE €O NMC{xI™ > + H (M) C{xI™ + MEFLC{x, t}™. Then we

have that 3—:’ € Nix1(< EH)IEEBNMLC{X}" > + H (M, )C{x}™ + MEL¢{x, t}™). By using
Theorem 4.5, then we have that

L e< EH)IE €0 NMUC)" > + H (M) )™, o

Definition 4.7:

Let T be an open subset of ¢ with t, € T. Let h;: (€, 0) — (€™, 0) be a family of map-germs and
® be a finitely generated C{x}-module of vector fields on (C",0) such that every vector field in ® can
be integrated to give a one-parameter family of diffeomorphisms. We say that the family of ©%-
tangent spaces (T gx (ht))ee(r,t,) 1S a trivial family if Tgx (hy) = Tgx (h,) for each t € (T, to).
Theorem 4.8:

Let T be an open subset of ¢. Let h.:(¢",0) —» (C™,0) be a family of map-germs and ® be a
finitely generated ¢{x}-module of vector fields on (C",0). The family (h;)e(r,s,) is ©* -trivial if and
only if (Tgc (he))ee(rt,) 1S @ @ -trivial family.

Proof.

Suppose that the family (h¢)ie(rt,) 1S O -trivial. Then there exists vector field £ € © that can be
integrated to give a one-parameter family of diffeomorphisms @®.: (€™, 0) — (¢", 0) with ®4(x) = x
for all x € ¢, ®.(0) = 0 for small ¢t € ¢ and an invertible matrix M;: (¢*, 0) —» (GL(¢™),0) such that
M. he(Py) = hy,. In other words, h;~gxh.,. Therefore, we have that Tgx(h;) = Tgx (hy). It
follows the family if (Tgx (h¢))te(rt,) 1S @ trivial.

Conversely, suppose that the family (T'gsx (h¢))ce(r,t,) IS trivial, then there exists a deffeomorphism
®,: (¢",0) - (¢",0) depending on t such that @, (Tgx(h)) = Tgx(he,) for t € (T,ty). By
replacing hy by ®;" o h, we may assume that Tgx (h¢) = Tgx (he,) holds in t € (T,t,). We have
hy € Tgx (hy) = Tgx (he,). Then we can write

Z aifi(he,) + ZZﬁu(htone,

i=1j=
where for all 1 <i<n,a; € ¢{x, t},fl € O N M, C{x}" and forall 1<i,j<m, B € C{x,t} and
ej = (0,...,1,0,...,0) € €™ which has zeroes except at position 0, where it has a 1.
Differentiating with respect to t we obtain
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dh al i
=i= “amg+2§hﬁmm@

i=1j=
It follows that - € Tou(he,) = @x(h ) in t € (T, t,). From Theorem 4.2, we have the family
(ht)tE(T,tO) is 0% -trIVIal. -

5. Criteria for % -equivalence
In this section, we will give criteria for % -equivalence with ©* -tangent spaces.
Definition 5.1:[9]

A mixed analytic module is a ¢-subspace Q of ¢{x}™, which can be written up to a suitable choice

of coordinates in (C",0) as a sum Q = Qg + Q; + -+ + Q, of finitely generated ({x}-submodules Q;
f C{x}™.
Theorem 5.2: [9, Hauser’s Theorem]

Let T be an open subset of ¢ with t, € T and (Q;):er be an analytic family of mixed modules in
C{x}™. If the family (Q.)cer satisfies Q. c Q. pointwise for any t € T, then Q; = Q; holds
analytically for ¢ in a zariski open subset T c T.

Theorem 5.3:

Suppose that k, h: (¢*,0) — (¢™, 0) are map-germs. Let @ be a finitely generated ¢{x}-module of
vector fields on (C",0). Then h and h are ©%-equivalent if and only if Tgx (h) = Tgx (R).

Proof.

Suppose that h and h are ©%-equivalent. Then there exists vector field ¢ € © that can be integrated
to give a deffeomorphism ¢: (€™, 0) — (€™, 0) and an invertible matrix M: (€™, 0) — (GL(¢™),0) such
that h = M.h o @.

(1)  Wewill show that Tgx (h o ) = ¢*(Tgx (h)).

By Chain Rule we have that
d(h o @) _z”:aq;i oh
6xi B 4 axl- axj ¢
j=1

= (a—ho Q, ...,a—ho (p).D(p,

0xq 0xy
where Dg is the Jacobian matrix of ¢, which is invertible since ¢ is a deffeomorphism. It follows that
Jo(ho ) = ¢*(Jo(h)). Hence Tou (h o 9) = ¢*(Tgx (R)).

2 By the product rule we have
oMf) _\, Of 0
ax;  0x; axl
for any map-germ £: (€*, 0) — (€™, 0) and an invertible matrix M: (¢*, 0) — (GL(¢C™),0).
It follows Tgx(M. f) = Tgx (f) .
Now, we have that
Tox (h) = Tgx(M.h o @)
=Tgx(ho @) from (2),

= ¢ (Tox (M), from (1).

Conversely, suppose that Tgx (h) and T gx (h) are ®%-equivalent. Then there exists a deffeomorphism
®: (€7, 0) > (€7, 0) such that ®*(Tgx (h)) = Tgx (h). By replacing h by ®* o h we may assume that
Tox (h) = Tgx(h) holds. Let T be an open connected and relatively compact subset of ¢ and we
consider the family (hy)qer Where h.(x) = (1 — t)h(x) — th(x). Note that hy = hand hy = h

We will show that the family (h;).er is % -trivial. Let § € ® N M, C{x}™. Then we have &(h,) =
(1 — ©)&(h) — té(h). Therefore, we have Jg(h,) SJo(h) and it follows Tgx(h;) S Tgx(h).
Hauser’s Theorem implies that Tgx (hy) = Tgx(h) in t € T —S where S c T is a finite set. From
Theorem 4.8, we can see that the family (h,)cr is ©%-trivial and hence we have that h~@xﬁ. m
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6. A direct product of map-germs
Definition 6.1:
Let h: (¢"1,0) - (¢™1,0) and h: (¢"2,0) - (¢™2,0) be map-germs. We define the direct product
h ® h: (€™ x ¢"2,0 x 0) > (€"2 ® €™M2,0 X 0) by h ® h(x,y) = (h(x), h(¥)).
Definition 6.2:
Let ©; = {§§}]r;1 be a set of vector fields on (¢™,0), i = 1,2. Then the product of ©,and ©,,

denoted ©; x ©,, is the set of vector fields on (¢"1 x ("1, 0 x 0) define by

0, x 0, = {&}, .., 8,8, .. & }.
Theorem 6.3:
Let T be an open subset of ¢. Let h.:(¢™,0) - (¢™1,0) and h,: (¢"2,0) - (¢™2,0) be two

families of complex analytic map-germs with t € T and let ©; = {Eﬁ}; be a finitely generated ¢{x}-

module of complex analytic vector fields on (¢, 0), i = 1,2. If b, ® ﬁt~@1x@27‘h0 ® h, for all
teT.Then ht~®1:;<h0 and ht~®23<h0.
Proof.

Since h; ® ht~®1X®2:;<h0 &® hy for all t € T. Then Telxezf’f(ht ® hy) = Telxezx(ho ® hy) and
hence the family (h; ® hy)ser is ©; X 0, -trivial, i.e., there are a (m; + m,) X (m; + m,)- matrix

M M
M‘(M3 M4)

and an (m; + m,)-column g) with entries in C{x, y, t} such that

(
oh,

(aa t> <]®1<()ht) ]ez(zht)> T (ht)
ot

Then, we obtain
Ohy
e ®y=0-Jo, (he) + Mypy=q. hy,
and similarly for k.. Applying Theorem 5.2, we have h, and h.are trivial families. O

7. A direct sum of map-germs
Definition 7.1:[5]
Suppose that g, g: (€*,0) — (¢, 0) are function-germs. Let ® be a module of vector fields on
(C",0).
1) We say that g and § are @®-equivalent, denoted by g~z g if there exists vector field
& € 0 that can be integrated to give a deffeomorphism ¢: (€*,0) —» (€*,0)such that § = g o

2 The ©®-normal space Ngx (h), is given by

C{x}
Ngx(h) = ——=
o (1) Jo(9)
3 A function-germ g is said to be a relative quasihomogenous (RQH for short) if

g €Jo(9).
Lemma 7.2:[10, Lemma 1.7]

Let I c ¢{x} and J c ¢{x} be ideals and assume we are given an isomorphism of (-algebras

¢*:@ - &f} Then there exists a deffeomorphism ¢: (¢", 0) - (¢", 0) with ¢*(I) =] such that ¢*

induces ¢*.
Proposition 7.3:

Suppose that g, g: (¢", 0) - (C,0) are function-germs. Let ® be a module of vector fields on (C",
0). If g~gzg with g is a RQH, then § is a RQH.
Proof.

Since g~grg.Then, there exists vector field ¢ € © that can be integrated to give a deffeomorphism
@: (¢, 0) - (€™, 0) suchthat § = g o . Now,
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gisaRQH =g €Jo(g)
= (g) cJo(9)
= Jo(9) + (9) =Jo(9)
= 0" (Jo(9) + (90 = 0" (Jo(9))
= Jo(go @) +(gop)=Jo(g°¢)
= Jo(@) +(9) =Jo (@)
= (g) € Jo(g)
= g €Jo(J)
= g isa RQH.
O
Definition 7.4:[5]
Let h:(C"1,0) - (¢,0) and g:(¢"z,0) - (¢, 0) be function-germs. We define the direct sum
h@® g: (€™ x ¢"2,0 x 0) - (¢,0) by (h & g)(x,y) = h(x) + g().
Theorem 7.5:
Let ©; = {Ej}]ril be a finitely generated ¢{x}-module of vector fields on (¢™,0), i =1,2. Let

h, h: (¢"1,0) > (¢,0) and g, g: (¢™2,0) — (¢, 0) be function-germs with g~e,2g and g is a RQH.
Then

(h® g)~®1X®2x(E @® g) if and only if h and h are ©, 7 -equivalent.

Proof.

First, since g~¢_=g. Then a similar argument in the proof of Theorem 4.3 shows that

Jo,(9) = Jo,(g). Hence, we have that N@ZR(g) =N = ().
Second, we have
C{x,y}
No,xe, (0 ® 9) = 7—" Gz
1X02
— C{xy}
T <E(hDg)IEE€(01X02)N My, 41, Clx,y}M1H2>+(hDg)
_ C{x,y}
<€ (), 51, (W& (9),-82, (9)>+(hDg)
= Gixy) since g is a RQH
<&} (), 57, (W& (9), 87, (9)>+(h) '
_ C{xy}
T <€), & () h>+(E(9),... 8, (9))

From [11], page 181, we can see that
~ C{x) ¢y}
Nowxo (W ®9) = gy =iy s © @), .. 2 ()

N xo,(h® g) = Ng 1(h) @ Ng x(g)

i.e.,

Similarly we have
Nolx@27‘~(h ®g)= Neﬁ‘(h) ® Ng = @
Now, suppose that (h @ g)~91X@2x(h @® §). Then, from Theorem 5.3, we get
Telxezgf(h D 9) =T o,x(h D J).
Hence, N o, %(h @ g) = Nelxoz“(h ®g).
From above we have
Nelx(h) ® Nezﬁ(g) = Nelx(h) ® Nezyz(g). 3

It follows from the cancellation Theorem in [12] we have that Nelx(h) = Nelx(h). From Lemma
7.2, we get T x(h) = Telx(fz). Hence, hand h are ©,% -equivalent.

Conversely, suppose that h and h are ©,%-equivalent. Then Nelx (h) = Nelx(ﬁ). Therefore we

have
N@)lx(h) ® Ngzk(g) = Nelx(h) ® Nezﬁ(g).
It follows
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No o, x(h® g) =Ny o x(h D g).

Again from Lemma 7.2, we have

To o, x(h® g) =Tg o x(A D g).

Hence, we have that (h @ g)~®1X®2x(E ®J). O
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