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Abstract  

     This paper focuses on choosing a spatial mixture model with implicitly includes 

the time to represent the relative risks of COVID-19 pandemic using an appropriate 

model selection criterion. For this purpose, a more recent criterion so-called the 

widely Akaike information criterion (WAIC) is used which we believe that its use so 

limitedly in the context of relative risk modelling. In addition, a graphical method is 

adopted that is based on a spatial-temporal predictive posterior distribution to select 

the best model yielding the best predictive accuracy. By applying this model selection 

criterion, we seek to identify the levels of relative risk, which implicitly represents the 

determination of the number of the model components of all regions over independent 

time periods. The estimation of parameters and the model selection are both 

performed in a Bayesian framework. Also, the means of estimated relative risk for the 

selected mixture model are mapped to give a clearer picture of distributing the disease 

risks in each district. 

 

Keywords: Mixture model, Widely Akaike information criterion, Relative risk, 
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 في العراق 19-كوفيد زماني لتحديد مستويات خطورة وباء  -نموذج خليط مكاني 
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  الخلاصة 
لتمثيل الخطورات  لبحث على اختيار نموذج خليط مكاني مع الاخذ بنطر الاعتبار الزمن ضمنيا  يركز هذا ا      

معيار اكثر حداثة يسمى    تم استخدام باستخدام معيار اختيار نموذج ملائم. لهذا الغرض,  19-النسبية لوباء كوفيد
معيار معلومات اكياكي الموسع والذي نعتقد بان استخدامه في سياق نمذجة الخطورة النسبية هو محدود جدا.  

زماني لاختيار افضل نموذج  -على توزيع لاحق تنبوئي مكاني  بالاضافة لذلك, تم تبني طريقة رسومية تستند 
افضل دقة تنبؤي. بتطبيق معيار اختيار النموذج, نسعى من خلال هذا البحث لتحديد مستويات الخطورة  يعطي  

النسبية, والتي تمثل ضمنيا تحديد عدد مكونات النموذج, لكافة المناطق عبر فترات زمنية مستقلة. تم اجراء تقدير  
لمعلمات واختيار النموذج باستخدام اطار بيزي. ايضا, تم رسم متوسطات الخطورة النسبية المقدرة على الخريطة  ا

 لتعطي صورة واضحة لتوزيع خطورة المرض في كل منطقة.  
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1. Introduction 

    The health data about the spreading of a certain disease is typically reported as a statistical 

summary or information that differs from one region to region. This variation in data forms is 

called spatial variation or heterogeneity. One of the challenges is how to accommodate or 

capture this heterogeneity in data that can be not easy to modelling using standard statistical 

models. On the other side, the spatial modelling of heterogeneity maybe not enough to describe 

the evolution of disease over time. Hence, inserting time, as another dimension with the space, 

can form an important role in analyzing precisely the spread of the disease. Besides, mapping 

of this spatial-temporal heterogeneity can appear to the underlying structure of scattered 

infections data [1].  

 

     There have been many literatures focusing on the development of spatial and temporal 

modeling methods to accommodate this type of data heterogeneity. In the literature on relative 

risk, the measure of standardized mortality ratio (SMR) is the most often used as an 

epidemiological approach to map relative risk. However, this path has some cons. This measure 

gives unstable results, especially in small areas [2]. In addition, this approach cannot identify 

the high or low levels of risk of disease in infected regions under the research [3].  Despite of 

existence some traditional methods to classify health areas according to their relative risk such 

as the standardized mortality ratio (SMR) [2] and the Gamma–Poisson model which has been 

introduced abundantly by [4, 5, 6]. But, those methods have some disadvantages in describing 

the spatial distribution of the risk of the disease. To overcome these limitations. A flexible 

methodology called mixture modeling has long been used to treat such heterogeneity in data 

[7]. They have been used in many articles introduced to analyse the disease nature. For instance, 

to reveal the extreme mortality risks of breast cancer and Scottish lip cancer, a comparison 

using two types of mixture models was implemented by [8]  to how well each of these models 

determines the districts which have high risks. In [9], the authors developed a spatial mixture 

model to analyse the mortality of cancer of the larynx data among females in France. K. C. 

Flórez et al. [10] used a Poisson mixture model to estimate the relative risk and cluster detection 

for the reported cases of varicella disease in Spain. S. K. Kadhem and S. A. Kadhim [11] 

Adopted a Markov model to analyse the absorbing case (death) of COVID-19 patients as a 

criterion to measure the risk rate in the Iraqi population. The contribution of this paper is to 

develop spatial modelling for the evolution of the COVID-19 infections in Iraq through 

independent fixed times. Actually, this work is developed from a previous work introduced by 

[12], who shows that spatial modelling using mixture models is an appropriate approach to 

analyse the COVID-19 infections. In other words, they modelled the relative risk of this 

pandemic through different fixed periods and each period has its own mixture model. The issue 

of determination of levels of relative risk, i.e. model selection has special importance in 

identifying and evaluating the disease risk which can form a key point in the working of health 

systems and also controls diseases [1]. So, this paper also contributes by introducing a model 

selection methodology using two approaches. The first approach is the model selection criterion 

which is so-called the widely Akaike information criterion (WAIC) introduced by [13]. The 

properties of this criterion were investigated by [14] and [15] using an application that included 

a hidden mixture modelling. The second approach is confined to supporting the model selected 

in the first approach by checking its predictive accuracy using the predictive posterior 

distribution. At each period, the model is selected that gives the best goodness of fit to the data 

using the above two tools. The aim of conducting such a study is to stimulate health 

organizations in revising their future plans for such infectious diseases. The results of this study 

give a warning to health organizations by determining the most affected regions. 
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     The structure of this paper is distributed as follows. In Section 2, the definition of the 

proposed model and approaches to model selection under the Bayesian principle is introduced. 

Section 3 includes the description of infection data of COVID19. In section 4, all results 

regarding the model estimation and selection are presented. Finally, section 5 shows the 

conclusions. 

 

2. Material and methods 

2.1 Bayesian spatial-temporal mixture model 

     Assume that there is a disease occurring within n regions and is also observed within 

𝑇 successive fixed time periods. The resulting observed infections count from that disease can 

define as 𝑦𝑖𝑡  where  𝑖 =  1,2, . . . , 𝑛;  𝑡 =  1,2, . . . , 𝑇 . For relatively rare diseases, the observed 

infections count yit is often modelled as a standard Poisson model so that  

               𝑦𝑖𝑡  ~ 𝑃𝑜𝑖𝑠(𝜃𝑖𝑡) ,                                         (1) 
where θit  is the mean parameter and its probability mass function is given by [16]:  

f(yit; θit) =  
𝜃𝑖𝑡

𝑦𝑖𝑡𝑒−𝜃𝑖𝑡

yit!
.                        (2) 

     Since disease occurs within a population at risk for the disease, the mean 𝜃𝑖𝑡 has to be 

modified by a population effect in some way. This modification is often done by two indicators 

such that  

𝜃𝑖𝑡 = 𝐸𝑖𝑡𝜆𝑖𝑡 .                                                   (3) 
     The first indicator 𝐸𝑖𝑡 refers to the population at risk and is often computed as the expected 

count. The 𝐸𝑖𝑡  is estimated based on a population number [9]: 

𝐸𝑖𝑡 = 𝑁𝑖𝑡 ×
∑ ∑ 𝑦𝑗𝑡

𝑇
𝑡=1

𝐿
𝑗=1

∑ ∑ 𝑁𝑗𝑡
𝑇
𝑡=1

𝐿
𝑗=1

 ,                                                           (4) 

     where 𝑁𝑖𝑡  is the size of the population of 𝑖𝑡ℎregion that observed at time 𝑡 (we here assume 

that population size for each region is fixed over all time periods) and 𝐿 is the number of all 

regions under study. The second indicator 𝜆𝑖𝑡  is known as a relative risk which is computed as 

𝜆𝑖𝑡 = 
𝑦𝑖𝑡

𝐸𝑖𝑡
 .  Since the values of 𝑦𝑖𝑡 and 𝐸𝑖𝑡 are not fixed and can change from one region to 

another region and from one time to another time, the values of relative risk as a result are 

affected and heterogeneous. Our focus is on modelling the heterogeneity in the values of relative 

risk which can be accommodated by a mixture model that takes into account the spatial trend 

as well the temporal of disease. Our focus is on modelling the heterogeneity in the values of 

relative risk which can be accommodated by a mixture model that takes into account the spatial 

trend as well as the temporal disease. In this case, a finite spatial-temporal mixture with 𝐾 

components will be developed to accommodate the heterogeneity in the relative risks. That 

means, the model in equation (2) is extended such that the mixture density, which is the 

weighted sum of Poisson densities for each region 𝑖 and each time point 𝑡, is obtained as follows 

[17]:  

𝒇(𝒚𝒊𝒕, 𝜴, 𝑬𝒊𝒕) =∑𝒘𝒋𝒕

𝑲

𝒋=𝟏

𝒇(𝒚𝒊𝒕, 𝝀𝒋𝒕, 𝑬𝒊𝒕),                                 (𝟓) 

                        With 0 < 𝑤𝑗𝑡 < 1 and ∑ 𝑤𝑗𝑡
𝐾
𝑗=1 = 1 for all 𝑡,  

where Ω =  (𝝀,𝒘) represents a collection of the model parameters and 𝑤𝑖𝑡 refers to the mixing 

weighing. In the context of latent class models, a process called the hidden allocation or data 

augmentation [18] is often included to interpretation purposes and to simplify the computational 

complexities of such models [19]. Let  𝐳 =  {𝑧𝑖𝑗𝑡}, 𝑖 =  1, 2, . . . , 𝑛;  𝑡 =  1, 2, . . . , 𝑇 ;  𝑗 =

 1, 2, . . . , 𝐾  be an allocation vector that indicate the component to which 𝑦𝑖𝑡  belongs, where 𝐾 
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refers to the components or groups number in the model, so that 𝑧𝑖𝑗𝑡  𝜖 {0,1} and ∑ 𝑧𝑖𝑗𝑡 = 1.𝐾
𝑗=1  

The 𝑝𝑚𝑓 of the complete data (𝑦𝑖𝑡;  𝑧𝑖𝑗𝑡) is  

𝑓(𝑦𝑖𝑡, 𝑧𝑖𝑗𝑡|𝜆, 𝑤, 𝐸) =∏𝑤
𝑗𝑡

𝑧𝑖𝑗𝑡

𝐾

𝑗=1

𝑝[𝑦𝑖𝑡|𝜆𝑗𝑡, 𝐸𝑖𝑡]
𝑧𝑖𝑗𝑡

.                              (6) 

     The joint complete posterior distribution for the model parameters can be given by: 

𝑓(𝜆, 𝑤, 𝑧|𝑦, 𝐸)  ∝ 𝑓(𝑦, 𝑧|𝜆, 𝑤, 𝐸)𝑓(𝑧|𝑤)𝑓(𝜆)𝑓(𝑤),                                   (7) 
     where the first term in equation (7) represents the complete data likelihood, the second term 

represents the posterior of allocation variables, the third term represents the prior on the relative 

risk parameter and the fourth term represents the prior on the mixing weights. For completing 

the specification of the Bayesian model, the priors of unknown model parameters have to be 

specified. The prior on the mixing weights 𝑤 are given independently Dirichlet distribution 

with hyper-parameter 𝜂: 

 

𝑓(𝑤|𝑦, 𝑧) ∝ ∏ 𝑤
𝑗𝑡

𝑅𝑗𝑡+𝜂𝑗𝑡+1 = 𝐷𝑖𝑟𝑖𝑐ℎ𝑒𝑙𝑡 (𝑅𝑗𝑡 + 𝜂𝑗𝑡),    
𝐾
𝑗=1   for each 𝑡       (8) 

where ηjt > 0 for each  t   is hyper-parameters of the Dirichlet distribution and  Rjt =

∑ 𝕀zlt=j
n
l=1 , j = 1,2, … , K,  denote the allocation sizes.  The prior on the component-specific 

relative risk parameter λ, we independently assume a Gamma distribution as a conjugate prior 

[20], on each distinct relative risk parameter 𝜆𝑧𝑖𝑡  ≡  𝜆𝑗  such that 

        𝑓(𝜆𝑗|𝛼, 𝛽)~ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽), 

=
𝜆𝑗
𝛼−1 𝑒−𝛽𝜆𝑗𝛽𝛼

𝛤(𝛼)
,          𝜆𝑗 > 0;  𝛼 > 0, 𝛽 > 0, 

     where 𝛼 and 𝛽 are hyper-parameters that represent the shape and rate or inverse scale 

parameters of the Gamma distribution respectively. The   Gamma prior density above has mean 

𝛼/𝛽 and variance 𝛼/𝛽2. Sampling from the relative risk parameter and the parameter of mixing 

weights are implemented using the Gibbs sampler, an MCMC method that is based on sampling 

from conditional posterior distribution instead of the joint posterior. Given the observations,𝑦𝑖𝑡, 
the fully conditional posterior distribution of allocation probability 𝑧𝑖𝑗𝑡 can be obtained as   

𝑓(𝑧𝑖𝑡 = 𝑗|𝑦𝑖𝑡, 𝜆, 𝑤, 𝐸) ∝ 𝑤𝑗𝑡𝑃𝑜𝑖𝑠(𝑦𝑖𝑡|𝐸𝑗𝑡 , 𝜆𝑗𝑡)     =    
𝑤𝑗𝑡 𝑃𝑜𝑖𝑠(𝑦𝑗𝑡|𝐸𝑗𝑡𝜆𝑗𝑡)

∑ 𝑤𝑙𝑡𝑃𝑜𝑖𝑠 (𝑦𝑙𝑡|𝐸𝑙𝑡𝜆𝑙𝑡)
𝐾
𝑙=1

             (9) 

 

2.2Data source 

     This article focuses only on the observed number of infected people for the period from 

March to December 2021 which has the highest infections in Iraq. All information about the 

population of each province, infections and relative risk (the parameter of interest) are attached 

in the appendix. The number of infected people was directly obtained from the world health 

organization (WHO) (World Health Organization, 2021)[21]. According to the central 

statistical organization of Iraq (Central Statistical Organization of Iraq, 2019) (CSO)[22], the 

estimated population denoted 𝑏𝑦 𝑛𝑖 was provided based on the estimated census of 2019. The 

parameter of relative risk 𝐸𝑖𝑡  in equation 4 is computed based on the number of observed 

infections and populations for each province also provided in the appendix 

.   

2.3Determining the relative risk levels 

     This section is interested in determining for the spatial levels of relative risk of pandemic 

over independent times. For this purpose, two approaches have been employed. In the first 

approach, the WAIC model selection criterion is used to choose the best model to fit the 

infection data among several candidate models. In the second approach, a graphical tool which 

is represented by the predictive posterior distribution of infection data is adopted. This former 
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step is to examine the predictive accuracy of the model selected in the first approach.  

  
2.3.1The WAIC 

     Assume that a sequence of count data set 𝑦 = {𝑦𝑖𝑡} , 𝑖 =  1, 2, . . . , 𝑛 and 𝑡 =  1, 2, . . . , 𝑇  
that follows a mixture Poisson distribution with the parameters collection: (𝜆, 𝑤, 𝐸),  and a 

sequence of latent variables 𝑧 =  {𝑧𝑖𝑗𝑡}, 𝑖 =  1, 2, . . . , 𝑛; 𝑗 =  1, 2, . . . , 𝐾;  𝑡 = 1, 2, . . . , 𝑇  in 

which each 𝑧𝑖𝑗𝑡 is specified for each corresponding observation 𝑦𝑖𝑡, the integrated pointwise 

predictive density (ilppd) can be defined as follows: 

𝑖𝑙𝑝𝑝𝑑𝑦  = log∏∏𝑃𝑜𝑖𝑠𝑝𝑜𝑠𝑡

𝑇

𝑡=1

𝑛

𝑖=1

(𝑦𝑖𝑡), 

        =  ∑ ∑ log𝐸{𝑧,𝜆,𝑤}[𝑃𝑜𝑖𝑠(𝑦𝑖𝑗𝑡|𝑧𝑖𝑡, 𝜆, 𝑤)|𝒚]
𝑇
𝑡=1

𝑛
𝑖=1 , 

    = ∑∑∫ ∫ ∫ 𝑃𝑜𝑖𝑠(𝑦𝑖𝑡|𝑧𝑖𝑗𝑡 , 𝜆, 𝑤)𝑃𝑜𝑖𝑠 (𝒛, 𝝀,𝒘|𝒚)𝑑𝑧
𝑤𝜆𝑧

𝑇

𝑡=1

𝑛

𝑖=1

 𝑑𝜆 𝑑𝑤 (10) 

     The integrals in equation 10 can be approximated by the posterior draws of the model 

parameters (𝑧𝑚, 𝜆𝑚, 𝑤𝑚) that were obtained over the Gibbs sampling. Hence, the approximated 

ilppd can be then given as follows: 

𝑖𝑙𝑝𝑝𝑑𝑦̂ = 
1

𝑀
 ∑ ∑∑log𝑃𝑜𝑖𝑠 (𝑦𝑖𝑡

𝑇

𝑡=1

𝑛

𝑖=1

𝑀

𝑚=1

|𝝀
𝑧𝑖𝑗𝑡
(𝑚)

(𝑚)
, 𝒘

𝑧𝑖𝑗𝑡
(𝑚)

(𝑚)
,                              (11)   

 Where 𝜆
𝑧𝑖𝑗𝑡
(𝑚)

(𝑚)
 and 𝑤

𝑧𝑖𝑗𝑡
(𝑚)
(𝑚)

 represent the 𝑚𝑡ℎ state-based relative risk and risk weight, respectively. 

To avoid the bias, Gelman et al. (2014) [21] proposed adding a correction term or so-called 

effect number of parameters 𝑝𝑊𝐴𝐼𝐶 which is based on computed the variance of individual terms 

in the ilppd, which is defined as follows: 

𝑝𝑊𝐴𝐼𝐶 = ∑∑𝑉𝑧,𝜆,𝑤 [log 𝑃𝑜𝑖𝑠(𝑦𝑖𝑡 |𝑧, 𝜆, 𝑤)],

𝑇

𝑡=1

𝑛

𝑖=1

 

  = ∑ ∑ ∑ 𝑉𝑧,𝜆,𝑤
𝑇
𝑡=1

𝑛
𝑖=1

𝑀
𝑚=1 [log 𝑃𝑜𝑖𝑠 (𝑦𝑖𝑡|𝜆

𝑧𝑖𝑗𝑡
(𝑚)

(𝑚)
, 𝑤

𝑧𝑖𝑗𝑡
(𝑚)
(𝑚)

)].                       (12) 

The WAIC is constructed as follows: 

𝑊𝐴𝐼𝐶 = −2 𝑖𝑙𝑝𝑝𝑑𝑦̂ +2𝑝𝑊𝐴𝐼𝐶 .                                       (13) 

 

2.3.2The predictive posterior distribution 

     After the implementation of the model selection step using the criterion presented in the 

previous section, the posterior predictive distribution (PPD [21] can be used as a graphical tool 

to assess the adequacy of the selected model. Given the estimation of the model parameters 

sampling through an MCMC,   (𝑤𝑗𝑡
(𝑚)

, 𝜆𝑗𝑡
(𝑚)

;𝑚 = 1,2, … . , 𝑀)   and observed infections data 

𝒚 =  (𝑦1𝑡, 𝑦2𝑡, . . . , 𝑦𝑛𝑡) for each region 𝑖 at the time 𝑡, the PPD for predicted infections, 

𝑦𝑖𝑡
∗ ;  𝑖 =  1, 2, . . . , 𝑛;  𝑡 =  1, 2, . . . , 𝑇  of the Poisson mixture model can be defined as follows: 

𝑃𝑟( 𝑦𝑖𝑡
∗ |𝒚) =  ∫ ∫ 𝑃𝑜𝑖𝑠(𝑦𝑖𝑡

∗

𝑧λ

|𝜆, 𝑤, 𝐸, 𝑧)𝑃𝑜𝑖𝑠𝑝𝑜𝑠𝑡(𝜆, 𝑤, 𝐸, 𝑧|𝑦)𝑑𝑧𝑑𝜆,    (14) 

        where 𝑃𝑜𝑖𝑠𝑝𝑜𝑠𝑡(𝜆, 𝑤, 𝐸, 𝑧|𝑦) represents the joint complete posterior distribution. Given 

samples of the relative risk parameter, 𝜆𝑗𝑡
(𝑚)

, and latent variables, 𝑧𝑗𝑡
(𝑚)

 are drawn from an 

MCMC run, the predictive data of a Poisson mixture model can be approximated as  

𝑦𝑖𝑡
∗~ 𝑃𝑜𝑖𝑠 (𝐸𝑖𝑡𝜆

𝑧𝑖𝑗𝑡
(𝑚)

(𝑚)
) ; 𝑖 = 1,2, … , 𝑛; 𝑡 = 1,2, … , 𝑇.                               (15) 
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2.4 The model implementation 

     For each time period, one model is specified. The estimation of the model parameters for 

each time period is obtained separately by running the Gibbs sampler. For the relative risk 

parameter 𝜆 a non-informative Gamma hyperprior is used with hyperparameters: 𝛼 = 0.001 

and 𝛽 = 0.001 and for the allocation probabilities 𝑤 the Dirichlet distribution is considered: 

𝑤~ 𝐷𝑖𝑟(𝑤𝑗, 𝜂) as a prior distribution where  𝜂 = 1∀ 𝑗. The number of components K is 

assumed to be fixed but unknown number of components. In other words, a maximum term on 

the number of components which is 𝐾𝑚𝑎𝑥 =  6, i. e. 𝐾 =  2, 3, 4, 5, 𝐾𝑚𝑎𝑥 of models for each 

time period that being fitted for our data. Selecting the level of relative risk for all provinces at 

each time period t is identified using the WAIC criterion. After that, a graphical checking by 

the posterior predictive distribution to examine the goodness of fit of the model selected by the 

criterion is done. The sampler is run for 30000 iterations and the last 15000 iterations were 

adopted for inference. The problem of the identifiability in model was addressed by imposing 

artificial constraints on the relative risk parameter such that: 𝜆1  <  𝜆2  < . . . <  𝜆𝐾. The 

convergence of the posterior distributions is verified by running three different chains for every 

parameter with different initial values. The convergence of the model is checked using the 

Gelman-Rubin statistic. For stability, the precision of the posterior mean of parameters is 

verified by checking the Monte Carlo error. Three different chains were run together to check 

the convergence for all parameters of the model using the Gelman-Rubin statistic. For checking 

the precision of the posterior mean for all parameters, the Monte Carlo error is employed for 

this purpose. 
 
3. Discussion of experimental results 

     The data of COVID19 infections for the period from March-December 2021 based on a 

Bayesian spatio-temporal Poisson mixture model is analysed. In the first stage, the results of 

model selection are presented in Table 1 which illustrates that the provinces take different 

choices with respect to the levels (components) of the relative risk. These different levels of 

relative risk suggesting to the heterogeneity in infections through the different time periods. As 

we can see from Table 1 that two levels of relative risk are enough to accommodate the 

heterogeneity in the number of infected people in the months: March, April and June, while 

three levels of relative risk are representing the heterogeneity in infections for all rest of the 

months. Two levels of relative risk can be interpreted as the more stable for infections in 

concerning months of March, April and June throughout Iraq which are probably classified as 

low and high risk. On the other hand, the relative risk is classified as three levels in the rest 

months that indicate to unstable infection numbers which can be classified as low, medium and 

high. The distribution of the spatio- temporal areal allocation to the levels (components) of the 

relative risk over time is given in Figure 2 where each map is allocated to a certain time period. 

This different classification in levels of relative risk at different time periods can be important 

for the health organizations in Iraq to diagnose in which month the increasing in levels of risk 

is. The goodness of fit is also examined by the posterior predictive distribution for the models 

selected by the WAIC. The 95% prediction interval obtained by the posterior predictive 

distributions and the mean of observed infections for each province and each time period were 

drawn as shown in Figure 1 which appears somewhat match. The estimation of the model 

parameters selected by WAIC for each time period is presented in Table 2. From the same table, 

in March 2021, it can be seen that about 55% of provinces were assigned to a low level of 

relative risk of COVID-19 and about 45% were assigned to a high level. In April 2021, 60% 

were assigned to a low level equal to 0.801 and 40% of provinces were assigned to a high level 

with a relative risk average equal to 1.779. In May 2021, with an average of 1.878, about 44% 

of provinces were assigned to a high level of risk. About 60% of provinces also were assigned 
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to a high level with an average equaling 1.710 in June 2021. In July 2021, most provinces were 

assigned to a medium level of risk with an average equal to 1.285. From August to December 

2021, provinces with high proportions were assigned to a low level of relative risk of COVID-

19 with averages: 0.888, 0.988, 0.971, 0.765 and 0.723 respectively. 

 

Table 1: The results of the model selection over the period from March to December 2021.The 

numbers in bold font represent the smallest value introduced by the WAIC among values of the 

models fitted to the data. 

 

K 

    March        April       May        June        July 

WAIC pWAIC  WAIC pWAIC WAIC pWAIC  WAIC pWAIC WAIC pWAIC 

2 187.775 5.443  183.737 5.099 187.766 4.644  179.556 6.323 185.655 5.258 

3 189.056 7.911  185.036 6.971 187.001 5.099  181.00 6.788 184.111 5.638 

4 192.112 9.776  187.555 8.226 188.221 6.222  182.00 7.256 185.665 6.551 

5 194.665 9.714  187.906 8.881 189.763 7.889  184.00 9.121 187.298 8.467 

6 195.512 10.116  188.099 9.151 190.141 9.031  186.00 9.202 188.712 9.323 

 

K 

 

August  September October  November December 

WAIC PWAIC  WAIC PWAIC WAIC PWAIC  WAIC PWAIC WAIC PWAIC 

2 184.877 4.012  187.332 4.441 185.761 3.996  194.985 5.774 190.985 4.816 

3 183.596 5.776  186.665 6.661 183.221 5.744  193.087 7.358 188.074 5.916 

4 185.239 8.161  188.654 8.139 185.873 7.404  204.826 9.225 191.573 8.664 

5 187.166 9.674  190.120 9.887 187.111 7.955  210.471 11.176 194.363 11.129 

6 188.971 11.017  191.306 10.443 190.344 10.532  213.829 15.851 198.855 13.397 

 
Table 2: Results of the estimation of the model parameters selected by the model selection 

criterion of all provinces over periods: March-December 2021. 

March  April  May  June  July 

𝒘 𝒋 𝜆 𝑗  𝑤 𝑗 𝜆 𝑗  𝑤 𝑗 𝜆 𝑗  𝑤 𝑗 𝜆 𝑗  𝑤 𝑗 𝜆 𝑗 

0.553 0.789  0.592 0.801  0.284 0.344  0.388 0.901  0.112 0.436 

0.447 1.872  0.408 1.799  0.273 0.952  0.612 1.710  0.611 1.285 

--- ---     0.443 1.878  --- ---  0.277 2.055 

August  September  October  November  December 

𝒘 𝒋 𝜆 𝑗 𝑤 𝑗 𝜆 𝑗 𝑤 𝑗 𝜆 𝑗 𝑤 𝑗 𝜆 𝑗 𝑤 𝑗 𝜆 𝑗 𝑤 𝑗 𝜆 𝑗 𝑤 𝑗 𝜆 𝑗 

0.521 0.888  0.544 0.988  0.667 0.971  0.556 0.765  0.502 0.723 

0.288 1.389  0.333 1.266  0.112 1.411  0.166 1.208  0.277 1.395 

0.191 2.321  0.123 2.117  0.221 2.993  0.278 2.687  0.221 2.916 
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Figure 1: The best spatial predictive performance for the models selected by the WAIC over 

period from March-December 2021, represented by 95\% posterior predictive intervals of the 

model. 
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Figure 2: Relative risk–based spatial classification of all provinces on the basis of the best 

model fits the infections data over the period from March to December 2021. 

 

4. Conclusion 

     This paper introduced a Bayesian spatio-temporal mixture model that classifies the 

provinces of Iraq infected by COVID-19 pandemic into levels of relative risk over fixed time 

periods. In other words, we developed a spatio-temporal mixture model in which the model is 

based on an unknown fixed number of risk levels (components) and all provinces under study 

has been assigned to range of relative risk, over different time periods, by means of independent 

allocation variables. The identification of levels of time-specific spatial relative risk is 

implemented by using WAIC criterion. Those identified levels of risk can have special 

importance for governments to review their health systems and also controls diseases. At the 

beginning of a pandemic, especially in March, April and June the situation in Iraq is classified 
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into two cases: low and high levels of risk with a high tendency to have a low risk. After that, 

with increasing the number of infections, the situation in the next months became more 

complicated due to appear high heterogeneity in the infections, hence, increasing the 

classification of levels of relative risk. Although, all provinces are tended to have a lower level 

of risk indicating a stable health case. In comparison, our proposed methodology, which is 

based on the classification principle is superior to the standardized mortality ratio (SMR) 

method introduced by [2],   as the former is able to identify the high or low levels of the risk of 

disease in infected regions. 

 

      In the development of our methodology, we seek to include as many as covariates in the 

model in order to obtain a more accurate estimation. Hence, the challenge that can be 

encountered in this case is to increase the dimensions of the model which needs to estimation 

method more developed.  
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