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Abstract  
     the actual position and velocity of the sun and the  moon were calculated through 

one year , and the satellite position and velocity components (x,y,z, vx, vy, vz) were 

calculated as well as the momentum component at inclination (116.5˚) , argument of 

perigee (30˚), longitude  node angle (40˚), eccentricity (0.01), for different perigee 

heights (200,300,..,1000 km). The acceleration of perturbations calculated in this 

work is the sun and the moon attraction on the satellite, the solar radiation pressure, 

the atmospheric drag as well as the earth oblateness. The result shows that the 

perturbation forces of atmospheric drag acceleration are affected by altitude and the 

sun, moon attraction does not depend on distance from satellite but depend on the 

angle between (sun – earth – satellite) and (moon - earth – satellite). the earth 

oblateness acceleration does not depend on altitude of satellite and time but it 

depends on the position on its orbit and orbital inclination. It is found that the solar 

radiation pressure acceleration is depending on the angle (sun - earth – satellite) with 

a minimum value at (180˚).   
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الواطئة حداب تأثير مواقع الذمس والقمر و القمر الرناعي على قوى الاضطراب للمدارات التراجعية  
 

2فريد مرعب مهدي ،2مجيد محمود جراد ،1*عبد الرحمن حدين صالح  
، بغداد، العراقبغدادجامعة  ،كمية العمهم  ،قدم الفمك والفزاء1  

، الانبار، العراقجامعة الأنبار ،كمية العمهم،قدم الفيزياء 2  
 

 الخلاصة
تم حداب السهقع والدرعة الفعمية لمذسس والقسر خلال سشة واحدة ، و حداب مركبات السهقع والدرعة      

(x ،y ،z ،vx ،vy ،vz ( بالإضافة إلى مركبات الزخم عشد السيل )11615˚ )، ( ˚33) الحزيض مثابة دالة، 
       ( ، لارتفاعات مختمفة لمحزيض3131) الذذوذ السركزي  ،( ˚43الراعدة ) خط طهل العقدة زاوية

جذب الذسس والقسر عمى  اضظراب كم(1 في ىذا العسل تم حداب تعجيل 1333،  11…، 333 ,233)
ت القسر الرشاعي ، وضغط الإشعاع الذسدي ، وكبح الغلاف الجهي ، فزلا عن عدم كروية الأرض1 تبيش

قهى الاضظراب في تعجيل كبح الغلاف الجهي تعتسد عمى الارتفاع ، لا تعتسد جاذبية الذسس والقسر  الشتائج
 -أرض -قسر الرشاعي( و )قسر -أرض  –)شسس من القسر الرشاعي بل تعتسد عمى الزاوية البعد عمى 

 الزمن عمى  عن مركز الأرض ولا قسر صشاعي(1 لا يعتسد تعجيل تفمظح الأرض عمى ارتفاع القسر الرشاعي
 -ضغط الإشعاع الذسدي عمى الزاوية )شسس  تعجيليعتسد  السدار 1، بل يعتسد عمى مهقعو في مداره وميل 

 (1˚183) الزاوية عشد لوقسر الرشاعي( والقيسة الدنيا  -أرض 

            ISSN: 0067-2904 
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1. Introduction 
    The orbital perturbation may be defined as the deviation of elements from their mean values due to 

external forces. These forces may be classified into two types: gravitational and non-gravitational 

forces. The gravitational forces arise from the mutual gravitational attraction between various bodies 

such as earth-satellite or earth-moon. The non-gravitational forces arise from space environment such 

as radiation pressure, atmospheric drag, and geomagnetic field, etc. [1]  

     The perturbing forces that cause the satellite orbit to deviate from a theoretically regular orbital 

motion can be divided into two categories, conservative perturbing forces and non-conservative 

perturbing forces, the non conservative perturbing forces are due to other celestial bodies such as 

Moon, Sun and etc, while the solar pressure, atmospheric drag, non-homogeneity, and oblateness of 

the Earth are conservative perturbing forces. In this research, all perturbations types will be calculated 

and studied the effect of these perturbations on the satellite orbital elements through many periods for 

low retrograde satellite orbits  ( inclination > 90˚). [2- 4]  

To include the effects of the perturbations, the equations of motion can be written in a general form as 

[2] 

 ̈    
 ⃑

    ⃑                                                                                                                                       (1) 

Where: 

  ̈  is the acceleration of the satellite,           ,    is the distance from canter of earth to 

satellite.  ⃑  is the resultant vector of all the perturbing accelerations.  

 ⃑   ⃑               ⃑      ⃑            ⃑     ⃑       

    In the solar system, the magnitude of the    for all the satellite orbits is at least 10 times smaller 

than the central force or two-body accelerations, or            . 

2. Theory  

The mean motion (n) can be written as in the following equation: [5] 

  
  

 
 √

 

  
                                                            

    Where T is orbital period  of  the elliptical orbit, then: 

    √
  

 
                                                                   

     At any time the mean anomaly is used to describe the location of the satellite in an orbit.  
                                                                                                                                                 (4) 

   Where    is time of perigee passage. The eccentric anomaly (E) for the orbit calculated as: [5] 

                                                                                              

     Where   is the orbital eccentricity of the elliptical orbit   

     There are many methods to calculate (E), One of the analytical methods is used to solve Kepler’s 

equation by iterative methods only. A common way is to start with an approximation of        or 

and employ Newton’s method to calculate successive refinements    until the result changes by less 

than a specified amount from one iteration to the next. [6]  

Then, the value of eccentric anomaly used to calculate the true anomaly( f ) : 

   
 

 
 √

   

   
    

 

 
                                                   

    The general equation of motion can be written by using Newton's laws in motion with general 

gravitational law given as:[2- 4] 

 ̈  
 

  
  ⃑                                                                     

    The solution of the equation of motion written as a polar equation of a conic section which can be 

expressed by the following equation: [7]  

  
    ⁄

         
                                                           

     Where (h) is the angular momentum which is twice the rate of description of area by  the radius 

vector, the relation can write as: 
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                                                             (9) 

Where   is semi minor axis . the velocity is: [7] 

  ( ( 
 

 
 

 

 
))

   

                                           (10) 

To find the Cartesian coordinate (xw, yw, zw) for the satellite in its orbit the following equations will be 

used: [8]   

              

      √         

                                                                                    
By differentiation for (xw, yw, zw) for a satellite in its orbit, and use p=a(1-e²),    we get: [8] 

 ̇    √          

 ̇  √              
 ̇                                                                                                                                                        

The velocity  ̇  and a momentum can be written as: 

      ̇  √  

 
                                                                        

The momentum vector  ⃑⃑ can be analysed of components, where 

 ⃑⃑   ⃑   ⃑                                                                         

 ⃑⃑  *

  

  

  

+   [
   
   
 ̇  ̇  ̇

]                                              

     Euler angles            are used in Gauss Matrix to convert  the coordinates from satellite orbit 

plane to equatorial plane: [1,2,8] 

(
        
        

    
)  (

    ⁄

    ⁄

    ⁄

)    (
   

   

   

)                                                  

3. Calculation the Position of the Sun and Moon: 

     The Mean longitude       and the mean anomaly      of the sun are given by:[9] 

                                                     (17) 

                                                   (18) 

The longitude of the Sun can be calculated by using the formula: 

                                          

                                                                                                                            
Where ( n ) is the number of days since the epoch J2000.0 which can be obtained by: 

                                                                  (20) 

     The right ascension of  the sun  (αs) and declination  (δs ) can be calculated from:   

        
         

     
                                                              

                                                                                 
     Where ε, the obliquity of the ecliptic , is given by:[9] 

                                             
                   

              (23) 

     Where (T1) is the number of Julian centuries beginning of 1st January 1900 can be calculated as : 

[9] 

   
          

     
                                                             

     While the number of Julian centuries beginning of 1st January 2000 can be calculated as : 

   
            

     
                                                         

The Sun radial distance is : 

   
       

  

                       
                                  

http://en.wikipedia.org/wiki/Euler_angles
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     where (rs ) is the heliocentric distance of planet, (ae ) is the semi major axis of Earth, (ee ) is the 

eccentricity of Earth orbit. The position components distance in Cartesian coordinate can be calculated 

using equatorial coordinate as the following: [2, 9] 

                        
                         
                                                                                                                                                  (27) 

     The distance of the Sun from the Earth centre can be also found as: [8] 

   √  
    

    
                                                     

     The Moon's longitude is given by: [10] 

λl = 218.32 + 481267.883T2 + 6.29 sin (134.9 + 477198.85T2 ) -1.27 sin (259.2 – 413335.38   ) +0.66 

sin (235.7+ 890534.23   ) + 0.21 sin (269.9 + 954397.7   ) – 0.19 sin (357.5 + 35999.05   ) – 0.11 

sin (186.6 + 966404.05 T2)                                                                                                                  (29) 

The Moon's latitude is given by: 

                                                               
                                          
                                                                                                                                        

     The Moon's distance from the centre of the Earth can be calculated as the following:   

rl = 385000 – 20905 cos Ml  – 3699 cos (2Dsl – Ml) – 2956 cos (2 Dsl ) – 570 cos (2 Ml ) + 246 cos (2 

Ml – 2 Dsl ) – 152 cos (Ml + MS – 2 Dsl )                                                                                              (31) 

     Where Ml is mean anomaly of the Moon, MS is mean anomaly of the Sun and  Dsl  is the difference 

between the mean longitudes of the Sun and the Moon, which are functions of Julian centuries (T2000) 

and calculated as: [9] 

                                    

                                                                                                                         (32) 

 
                                    

Used the following formulae to transformation elliptical coordinates to equatorial coordinates (  ,   ),. 

                        –                           

                                                                                                                                (33) 

 

     The position components distance in Cartesian coordinate can be calculated using equatorial 

coordinate as the following :[2] 

                     
                    

                                                                                                                                                   (34) 

 

The distance of the Moon from the Earth centre can be also found as: 

   √  
    

    
                                                                       (35) 

4. The Non-spherical Earth Perturbation:  

     The Earth is flattened somewhat at the poles and bulges correspondingly at the equator. Such a 

shape is called an oblate spheroid. The difference between the equatorial and polar radii is (21.4) 

kilometers. Another surface commonly used in geodesy is the geoid, which is the equipotential surface 

that coincides on the average with mean sea level in the oceans. The surface gravitation was 

representing by the series of spherical harmonics represented by the symbol (J) .  The zonal harmonic 

(J0) expresses the overall size of the geoid, while (J1), the first degree harmonic determines the center 

point of the geoid in the north-south direction. The other harmonics represent deviations from the 

spherical shape. A harmonics locational factors values are available in the literature for the basic 

models of the form of the earth by satellites records as: [11,12] 

                                                               
             

     Mathematical expressions for Cartesian coordinates and use accelerating instead of potential as 

follow equation: [12] 
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  ⃑               ̈  
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Where: 
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5. Atmospheric Drag Perturbation:  

     Drag is a resistance offered by the atmosphere to the satellite. it is caused by frequent collisions of 

gas molecules with the satellite. Drag force acts in a direction opposite to the direction of its motion. It 

is the major cause of orbital decay for satellites in LEO. This drag is the greatest during launch and 

reentry. the action of drag on a satellite will cause it to spiral back into the atmosphere, eventually to 

disintegrate or burn up. If a space vehicle comes within (120 to 160 km) of the Earth's surface, 

atmospheric drag will bring it down in a few days, with final disintegration occurring at an altitude of 

about (80 km). Atmospheric drag resulting in satellite re-entry can be described by the following 

sequence: [13,14]   

lower altitude → denser atmosphere → increased drag → increased heat → usually burns on re-

entry. 

 The drag caused by the Earth's atmosphere also causes satellites to spiral downward. Together with 

the oblateness of the Earth, The relation that describes the acceleration due to the atmospheric drag 

( ⃑Drag) is : [15] 

 ⃑Drag  
 

 
 

   

 
    

  ⃑    

‖ ⃑    ‖
                                                                                     (38) 

     Where:   is the atmospheric density value, (CD =2.2) is the drag coefficient, A is the projected area 

in the direction of the velocity vector relative to the atmosphere, m is a total mass of the satellite and 

      is the velocity of the satellite relative to the atmosphere.  

6. Solar Radiation Pressure (SRP): 

     Solar radiation pressure (SRP) is force acting on the satellite's surface caused by sunlight. The force 

acting directly on the satellite is proportional to the effective satellite surface, to the reflectivity of 

surface and to the solar flux; it is inversely proportional to the velocity of light. The acceleration result 

from solar radiation pressure is:[16]   

             
 

 
                                               (39 ) 

     Where:    is reflectivity coefficient, A is cross section area of the satellite, m is mass of satellite,   

is shadow function, (is equal 1 for complete sunlight, 0 for umbra phase and 0 <   < 1 for penumbra 

phase).     is solar radiation pressure for sunlight (equal  
 

 
 ) , where E is solar constant (1358 w/m

2
), C  

is vacuum speed of light. 

7. Third Body problem: 

     The term (third body) refers to any other body in space beside the Earth which could have a 

gravitational influence on the satellite such as Moon and Sun, the Sun is extremely massive, while the 

Moon is very close. The third body perturbation becomes more relevant for high altitude orbits that are 

when the atmospheric drag effect begins to diminish. the third body force is perturbation proportion to 

Earth’s gravitational force, therefore, the greater effect is happening on the high altitude orbits. The 
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solar gravity perturbations can be modeled as a third body effect in inertial geocentric axes using the 

equation: [17,18] 

 ̈      (
 ⃑⃑   ⃑⃑

|    | 
 

 ⃑⃑ 

  
 )                                               

     Where: ( µs= GMs = 1.327124 ×10
11 

(N. km
2
 / kg )),       radial distance between center of Sun and 

center of Earth, which vary between (147 х 10
6
 km and 152 х 10

6
 km) along a year,      radial 

distance between the satellite and the center of Earth.     
The effects of the Moon will be treated as a third body acting on the satellite. Although the mass of the 

Moon is much lower than that of the Sun the reduced distance between perturbing body and satellite 

makes the Lunar perturbation about equal to the Solar. Re-writing equation (28), replacing the Solar 

variables by the equivalent Lunar ones:[18,19]  

 ̈     (
 ⃑⃑   ⃑⃑

|    | 
 

 ⃑⃑ 

  
 )                                            

     Where ( µL = GML = 4.902794 × 10
3
 (N. km

2
 / Kg )),         radial distance between center of Moon 

and  center of Earth which must be calculated. 

8. The solution of the perturbed equation: 
    There are many methods to solve the equations of perturbation, Runge Kutta method is used to 

solve the equations of motion of a satellite which are described by the following system of six 

ordinary linear differential equations to obtain satellites position and velocity vector in time. [3,4,18] 
  

  
  ̇   

  

  
  ̇            

  

  
  ̇                                                

                                    
  ̇

  
  ̈  ∑

    

   ∑                 

                               
  ̇

  
  ̈  ∑

    

   ∑                  

                               
  ̇

  
  ̈  ∑

    

    ∑                                                                                   

      

     The classical Runge-Kutta algorithm is of 4
th
 order and has 4 stages. The stage number indicates 

how often the right hand function f (x, t) has to be evaluated. The new state vector can be obtained 

by:[4,18] 

        
     

 
                                       

hstep is stepped width in time. Where the four derivatives k1 through k4 are computed as follows: 

                                                  
     

 
      

                     
     

 
          (            )                                                                                

 

9. The algorithm :The programs were design to solve kepler equation and calculate the following: 

a. Calculate the Julian date from(2018:01:01:12:0:0) and beyond then calculate the delta Julian date. 

b. Calculating the period with assume semi-major axis and assume step=period/1000 , where the 

period is not constant when the perturbation included. 

c. Calculate the position and velocity for satellite and its coordinates ( x, y, z, vx, vy, vz),  for one 

period without perturbation.  

d. Calculate the variation of the position of sun and moon from earth and satellite during one year, 

and calculate the sun and moon attraction perturbations at all step of time, and using the acceleration at 

the end of periods to plot the figures. 

e. Calculate the atmospheric drag acceleration for heights (100,200,---1000 km). 

f. Calculate the position, velocity and the angular momentum for satellite, and its components(x, y, z, 

vx, vy, vz), for one period with perturbation.  

g. Compare the results with and without perturbation. 

 

 

 

10. Results and Discussion: 
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     Adoption of The orbital elements of satellite with (h =200 km, e = 0.01, Ω = 40˚, ω = 30˚, i = 

116.5˚). and calculate of the coordinates of the position, velocity and its component with the time and 

mean anomaly with and without perturbations. the results were as follows: 

First: calculate the state vectors of satellite without perturbation: 

1- Figure-1 represents the change of the distance of satellite position with the mean anomaly within 

one day (16 periods) and without perturbations. It shows from the figure that the value of the distance 

varies between (6578,165039 - 6711,057259) km, and the maximum and minimum value are fixed as 

well as the period as (1.49 hours). 

2- Figure-2: represents the change of the velocity with the mean anomaly within one day (16 periods) 

without perturbations, where the change of velocity values are constant between (7, 82307 - 7,668157) 

km /sec. 

3- Figure-3: shows the change of position compounds (x, y, z) with the mean anomaly during one 

period without perturbations, where the compounds change regular periodically between positive and 

negative values, indicating the validity of the results. 

4- Figure-4: shows the change of velocity compounds (vx, vy, vz) with the mean anomaly during one 

period without perturbations. It shows that values change regularly between negative and positive 

values. As shown from the figure, the values of (vz) change more than the values of (vx, vy) due to the  

high inclination orbit (116.5˚).  

5- Figures-(5, 6): shows that the values of distance (r) and velocity (v) are changed with mean anomaly 

during one period without perturbations, it shows that the values of distance (r) varies between 

(6578,165039-6711,067259) km, and the values of velocity (v) varies between (7,82307- 7,668,157) 

km /sec. The values of  rmin correspond to vmax values and vice versa. 

 

 
   Figure 1-variation of position due to mean  Figure 2-variation of velocity due to mean 

   anomaly at one day without perturbation            anomaly  at one day without perturbation 

 
    Figure 3-ariation of x,y,z  Position component  Figure 4- variation of vx, vy, vz velocity 

    with Mean Anomaly  at one period without           component with Mean Anomaly  at one 

    perturbation                                               period without perturbation 
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      Figure 5-variation of Position with Mean            Figure 6- variation of velocity with Mean 

      Anomaly at one period without perturbation        Anomaly at one period without perturbation 

 

Second: calculation of the moon and the sun equatorial coordinates and distances from the earth 

1- Figure-7: shows the change in the distance of the moon from the center of the earth within one year. 

It shows that the values of the distance during the anomalistic month  (27.55455) day vary between the 

value of maximum and minimum,  which is not fixed from month to month. It is also view that the 

values of (rperigee) change more than (rapogee), because of the change in the effect of the sun's attraction 

to the moon resulting from the rotation of the earth and the moon around the sun. 

2- Figure-8: shows the change of the right ascension of the Moon during one year between (0-360˚). 

We found that the number of lunar periods during one year is (13.369) periods. 

3- Figure-9: shows the change in the declination of the moon during one year between the maximum 

value and the minimum value (13,369) times, and the minimum values change during 2018 between  

(-19.89˚ , -21.649˚), while the maximum values  vary  between (20.111˚ ,  21.494˚). 

 
      Figure 7-variation of Moon position with ∆         Figure 8- variation of Moon Right Ascension 

      Julian date at year (2018)                              with ∆ JD at year (2018) 

 
Figure 9-variation of Moon Declination with ∆ JD at year (2018) 

Third: calculation of acceleration attraction of the sun and the moon on the low earth orbit satellite. 
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1- Figure-10 shows the change in the lunar attraction perturbation with the moon- satellite distance 

during one period, It is clear that the acceleration varies between (7,120210861 * 10
-10

 - 11,64525787 

* 10
-10

) km /sec , and  The minimum value of acceleration when the moon at the distance 

(356731,2942)km. 

2- Figure-11 shows that the acceleration of the sun's attraction perturbation varies between 

(2,757376704*10
-10

 - 4,006389882*10
-10

) km 
2
/sec. 

3- Figures-(12,13) shows the change of acceleration of the moon and the sun attraction perturbation 

with time in one period at the same values in paragraphs (1,2) above.   

 

 
           Figure 10- variation of Moon attraction per       Figure 11-variation of Sun attraction per 

           with Moon-Satellite distance for one Period       with Sun-Satellite distance for one Period at 

            at 2018:01:01:12:00:00                                     2018:01:01:12:00:00 

 

 
Figure 12-variation of Moon attraction per   Figure 13-variation of Sun attraction per 

with ∆ Julian date for one Period at                with ∆ Julian date for one Period at 

              2018:01:01:12:00:00                                  2018:01:01:12:00:00 

 

Fourth: the other perturbation calculation 

1- Figure-14 shows the change in atmospheric drag perturbation with the high of perigee point of the 

orbit, it is clear that the drag perturbation decreases significantly with the increase in height, this 

change can be described by the relation (adrag α e
-hp

). The drag values appeared higher than usual 

values, because the orbit is retrograde, where the relative velocity between the atmosphere and the 

satellite is higher. 

2- Figure-15 represents the change of solar radiation pressure perturbation with the distance of the 

satellite from the sun; from the figure we show that the relationship between the change of distance 

and perturbation is linear. 

3- Figure-16 represents the change of the solar radiation pressure perturbation with the mean anomaly 

angle, we find that the SRP is periodic rotation with mean anomaly and have a minimum value at (M = 

180˚) where the satellite on the other side of the sun. 
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4- Figure-17: shows the earth oblateness acceleration (aj2) has a periodic variation with the satellite 

distance from the earth center. That is clear view two big peaks nested with a small peak. The same 

behavior sees for (aj2) with the mean anomaly but in a different phase as in Figure-18, because the 

distance depends on the mean anomaly where the orbit is an ellipse.  

5- Figure-19 shows the variation of the satellite distance with delta Julian date in a unit (day) under all 

perturbations for one period. The perturbations are very small; their effect does not appear clearly 

through one period. The position variation between (6578.165039 – 6711.057312) km and (∆r = 

132.892273) km. this variation is not the same for all periods. As well as the variation of the velocity 

with delta Julian date as shown in Figure-20, the minimum velocity appears at the same time of 

perigee distance and vice versa. 

6- Figures (21, 22) show the angular momentum of the satellite variation with delta Julian date through 

10 days (160 periods). it's clear that the angular momentum is constant without perturbation along the 

orbit and along the time, but with perturbation the angular momentum has a secular curvature 

increased with a small magnitude depend on the perturbations effects. 

7- Figure-23: shows that the perigee distance is constant with time for Keplerian orbit without 

perturbations, but it is decreased linearity with time under all perturbations as the Figure-24. The slop 

= 0.00458/10 = 0.458 meter per day, that mean the low orbit at ( hp = 200 km) will be decreases with 

time under atmospheric drag perturbation. 

8- Figure-25: shows the apogee distance is decreased as a concave curve with all perturbations through 

10 days with magnitude (0.598 meter per day). From Figures-(24, 25) we can find that the low orbit 

close circle under the atmospheric drag perturbation. 

9- Figure-26: shows the minimum velocity (vapogee) is slowly increased with time under perturbations 

as a concave curve with magnitude (∆vapogee = 0.00457 m/s per day. The strange thing that the velocity 

at perigee (vmaximum) is decrease with time even if the rperigee is decrease also as the Figure-27. The 

decreasing value is (∆vapogee= 0.00156 m/s per day). 
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          Figure 16-variation of Solar R. P. Acc.       Figure 17- variation of Earth Oblatness Acc. 

          with Mean Anomaly  at one Period             with Earth-Satellite distance at one Period 

 

  
Figure 18-variation of Earth Oblatness     Figure 19-variation of Position under all        

        Acc. with Mean Anomaly at one Period     perturbations with Julian date for one Period 
 

 
 

      Figure 20- variation of Velocity under all     Figure 21- variation of Angular momentum (without 

perturbations with Julian date for one Period       perturb.) with Julian date for ten days (160 Periods) 
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          Figure 22-variation of Angular momentum    Figure 23 -variation of position at perigee 

         under perturbation with Julian date for ten        with delta Julian date during 10 days  without 

         days (160 Periods)                                   perturbations 

 

 
Figure 24-variation of position at perigee under      Figure 25-variation of position at apogee 

all perturbations with delta Julian date during          under all perturbations with delta Julian date 

10 days                                                           during 10 days   

 

 
Figure 26- variation of velocity at apogee under     Figure 27-variation of velocity at perigee 

all perturbations with delta Julian date  during  under all perturbations with delta Julian 

10 days date                                                              during 10 days 

 

11. Conclusions 

1- All values indicate that the perturbation acceleration effect on the distances and velocity are very 

small through the period, but the effect is more important after many hundreds of periods. 

2- The drag acceleration perturbation is inversely proportional with high of the satellite. 

3- Angular momentum is increased under the effect of all perturbations for low orbits that causes a 

variation on orbital elements after several periods. 
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4- The effect of attraction of the sun and moon is as a minimum value when the satellite in orbit is 

perpendicular to the sun or moon. 

5- The acceleration of sun and moon attraction do not depend on the distance of the satellite from the 

sun or moon directly but depends on the angle (sun - Earth - satellite) and (moon - Earth - satellite). 

6- The earth oblateness perturbation depends on the position of the satellite in orbit and orbital 

inclination, more than the distance of the satellite from the earth and this effect is periodic or not 

accumulated with the date. 

7- The atmospheric drag perturbation beyond height (1000 km) is neglected. 
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