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Abstract: 

  This paper deals with numerical approximations of a one-dimensional semilinear 

parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem 

of the considered problem and discuss its convergence and blow-up properties. 

Secondly, we propose both Euler explicit and implicit finite differences methods 

with a non-fixed time-stepping procedure to estimate the numerical blow-up time of 

the considered problem. Finally, two numerical experiments are given to illustrate 

the efficiency, accuracy, and numerical order of convergence of the proposed 

schemes.  
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شبه خطية احادية البعد مع مقطع تدرج قطع مكافئ العددي لمعادله لتفجيرزمن ا  
 

2خلف نامال نعما،   2رعد عواد حميد ،*1معن عبد الكاظم رشيد  

قسم الرياضيات, كلية التربية الاساسية, الجامعة الستنصرية, بغداد, العراق1  
تكريت, تكريت, العراققسم الرياضيات, كلية التربية للعلوم الصرفة, جامعة 2  

 
 الخلاصة
شبه خطية أحادية البعد مع مقطع متدرج. أولًا قطع مكافئ التقريبات العددية لمعادلة  بحثال اتناول هذي       

المدروسة ونناقش خصائص تقاربها وتفجيرها. ثانيًا ، نقترح كلًا من  سالة، نشتق المسالة شبه المقطعة للم
طريقتي الفروقات المنتهية الصريحة والضمنية لأويلر مع تطبيق اسلوب غير ثابت للخطوة الزمنية ، لتقدير 

رجة يتين لتوضيح الكفاءة والدقة وددالمدروسة. أخيرًا ، تم إجراء تجربتين عد سالةوقت التفجير العددي للم
 .لتقارب العددي للطرق المقترحةا

 

1. Introduction 

     There is a large number of semilinear partial differential equations of the parabolic type 

whose solution for a given initial data cannot be extended globally in time and becomes 

unbounded in finite time. This phenomenon is called blow-up, and it can occur in semilinear 

equations, if the heat source is strong enough, see [1-4]. 
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     In this paper, we study a one-dimensional semilinear heat equation with a gradient term 

associated with homogeneous Dirichlet boundary conditions:  

     

{

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢
𝑝 − |𝑢𝑥|

𝑞 , (𝑥, 𝑡) ∈ (0,1)  × (0, 𝑇),

 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0    ,     𝑡 ∈  (0, 𝑇),
𝑢(𝑥, 0) = 𝑢0(𝑥) ,      𝑥 ∈ (0,1)  

}                                   (1) 

 

      Where  𝑝 > 1, 𝑝 > 𝑞, 1 < 𝑞 ≤
2𝑝

𝑝+1
 . The initial data 𝑢0 ∈ 𝐶

2(𝑅) is a non-constant, 

nonnegative function in [0,1] , symmetric and satisfies 𝑢0(0) = 𝑢0(1) = 0 . We also assume 

that ‖𝑢0‖∞ is large enough. In addition, this condition holds: 𝑢0𝑥𝑥 + 𝑢0
𝑝 − |𝑢0𝑥|

𝑞
≥ 0. 

Here (0, 𝑇) is the maximal time interval on which ‖𝑢(. , 𝑡)‖∞ =max𝑥∈𝐵𝑅|𝑢(𝑥, 𝑡)| < ∞.  The 

time 𝑇 may be finite or infinite. When 𝑇 is infinite, we say that the solution 𝑢 exists globally. 

When 𝑇  is finite, we have 

lim𝑡→𝑇  ‖𝑢(. , 𝑡)‖ = +∞ , 

 

       If this happens, we say that the solution 𝑢 blows up in a finite time and 𝑇 is called the 

blow-up time.  The parabolic equation in (1) is known as Chipot–Weissler equation [5]. 

Actually, problem (1) is related to a popular model arising in the study of the dynamic of 

population [5]. We note that the gradient term may have a damping effect working against 

blow up. Therefore, many authors are interested in studying the influence of the gradient term 

on blow-up properties, such as blow-up set and blow-up rate estimates, see for instance [6-

10].  

 

      In fact, by the maximum principle [11], we can easily show that the solutions to problem 

(1) are increasing in time, symmetric, and positive. Moreover, by standard parabolic theory 

[12] the existence and uniqueness of local solution to problem (1) are held. On the other hand, 

for  𝑝 > 𝑞  or  1 < 𝑞 ≤
2𝑝

𝑝+1
  and under some restricted assumptions on the initial function, 𝑢0, 

it has been proved that the blow-up in this problem can occur in finite time at a single point, 

see [6,8]. Moreover, it has been shown that ‖𝑢(𝑡)‖
∞

 and ‖∇𝑢(𝑡)‖
∞

 are bounded on any 

interval [0, 𝑡] with  𝑡  < 𝑇.  In addition, for 1 < 𝑞 <
2𝑝

𝑝+1
, the blow-up rate can be estimated as 

follows [7, 9]:  

𝐴(𝑇 − 𝑡)
−
1
𝑝−1 ≤ ‖𝑢(𝑡)‖

∞
≤ 𝐵(𝑇 − 𝑡)

−
1
𝑝−1 ,   𝐴, 𝐵 > 0. 

 

      In [13], Kawohl and Peletier showed that the gradient damping term prevents blow up, if 

 1 < 𝑝 ≤ 𝑞  . 
  Many authors have been concerned with numerical computation of solutions of nonlinear 

parabolic equation for some special cases (see [14-17]). However, the numerical blow-up 

solutions for many other parabolic problems need to be investigated. One of the most studied 

cases is the following problem: 

 

{

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢
𝑝,   0 < 𝑥 < 1 , 𝑡 > 0,

 𝑢(𝑥, 𝑡) = 0    ,   𝑥 = 0,1, 𝑡 ∈ (0, ∈ 𝑇)

𝑢(𝑥, 0) = 𝑢0(𝑥) ,        0 < 𝑥 < 1
 

}                                               (2) 
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         In [14], the numerical blow-up solution and the blow-up time for the problem (2), where 

𝑝 = 2, were computed using Euler explicit and linear implicit finite differences methods with 

a non-fixed time-stepping formula:  

 

𝑘𝑛 = {
min (

ℎ2

2
 ,

ℎ𝛼

‖𝑈ℎ
𝑛‖
∞

 )       for explicit Scheme 

                  
ℎ𝛼

‖𝑈ℎ
𝑛‖
∞

           for implicit scheme     
} , 𝑛 ≥ 0 , 𝛼 > 0 

 

        where 𝑈ℎ
𝑛 is the numerical solution vector obtained from solving Euler explicit (implicit) 

finite differences equation, at time level 𝑛, associated with  the space-step h.   

 Clearly, this time-step approaches zero as time goes to the blow-up time. In fact, near the 

blow-up time, this technique can prevent any possible instability. Moreover, in this way, the 

numerical order of convergence can be increased, and we can obtain more accurate results.  

 In [16], the numerical blow-up solutions and the blow-up times to problem (2), where  

𝑝 = 3,4,5 , were computed using explicit and linear implicit Euler finite difference methods 

with a certain initial function. In addition, another time-stepping formula, depending on 𝑝, 

was proposed as follows:  

 

𝑘𝑛 = {
min (

ℎ2

3
 ,

ℎ𝛼

(‖𝑈ℎ
𝑛‖
∞
)𝑝
 )       for explicit Scheme 

                  
ℎ𝛼

(‖𝑈ℎ
𝑛‖
∞
)𝑝
           for implicit scheme     

} , 𝑛 ≥ 0 , 𝛼 > 0 

  

       The obtained results show that by dealing with this numerical treatment, we can get 

accurate results with the higher order of numerical convergence, especially when  𝛼 ≥ 2.  
 Later, in [18-20], the numerical blow-up solutions to problem (1) were studied.  

  

       In [20], It was proved that the blow-up solution and numerical blow-up time of the 

semidiscrete problem of (1) converges to the theoretical ones, as the space-step is refined. In 

addition, the numerical solution blows up in a finite time. Moreover, the numerical blow-up 

time and the numerical blow up rate have been estimated. 

 

  This paper is devoted to the numerical study of the problem (1) using Euler explicit and 

implicit schemes with a proposed non-fixed time-stepping technique.  

 

    This paper is divided into five sections. In the next section, semidiscrete approximation 

problem of (1) is derived. Moreover, some theorems regarding the convergence and blow-up 

of the semidiscrete problem are stated. In section three, we derive two fully discrete 

approximation equations of (1): Euler explicit and implicit finite difference equations. 

 

      In section four, two numerical experiments are given to estimate the numerical blow-up 

time, error bounds and numerical order of convergence. The results are presented as tables 

and figures. In the last section, some conclusions and  possible future work are stated.  

 

2. The Semidiscrete Problem 

     Let I be a positive integer, and define the grid-points: 𝑥𝑖 = 𝑖ℎ,  0≤ 𝑖 ≤ 𝐼 ,  where  ℎ = 1 𝐼⁄  

. We can approximate the solution u of the problem (2) by the solution: 

𝑈ℎ(t) = (𝑈0(𝑡), 𝑈1(𝑡),…𝑈𝐼(𝑡))
𝑇 . 
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Spatial discretization of problem (1) yields a system of nonlinear ordinary differential 

equations:  

    

{

𝑑𝑈𝑖(𝑡)

𝑑𝑡
− 𝛿𝑥

2𝑈𝑖(𝑡) + |𝛿𝑥𝑈𝑖(𝑡)|
𝑞 = |𝑈𝑖(𝑡)|

𝑝 , 𝑡 ∈ (0, 𝑇) 𝑎𝑛𝑑 0 ≤ 𝑖 ≤ 𝐼

𝑈0(𝑡) =  𝑈𝐼(𝑡) = 0,        𝑡 ∈ (0, 𝑇)                                                            

𝑈𝑖(0) =  𝑈𝑖
0  ≥ 0          𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝐼.                                                   

                            

Here we define: 

 𝛿𝑥
2𝑈𝑖 =

𝑈𝑖+1−2𝑈𝑖+𝑈𝑖−1

ℎ2
  𝑎𝑛 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑈𝑥𝑥 

 𝛿𝑥
+𝑈𝑖 =

𝑈𝑖+1−𝑈𝑖

ℎ
,   𝛿𝑥

−𝑈𝑖 = 
𝑈𝑖−𝑈𝑖−1

ℎ
 𝑎𝑛𝑑  𝛿𝑥𝑈𝑖(𝑡) =

𝑈𝑖+1−𝑈𝑖−1

2ℎ
 = 

𝛿𝑥
+𝑈𝑖+𝛿𝑥

−𝑈𝑖

2
 

 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑈𝑥. 

The semidiscrete problem of (1) becomes: 

 

{

𝑑

𝑑𝑡
𝑈𝑖 −

𝑈𝑖+1−2𝑈𝑖+𝑈𝑖−1

ℎ2    
= 𝑈𝑖

𝑝 − (
𝑈𝑖+1−𝑈𝑖−1

2ℎ
)
𝑞

,    1 ≤ 𝑖 ≤ 𝐼 − 1

𝑈0(𝑡) = 𝑈𝐼 (𝑡) = 0  , 𝑡 ∈ (0, 𝑇)

𝑈𝑖(0) = 𝑢0(𝑥𝑖)  ,       0 ≤ 𝑖 ≤ 𝐼

}                  (3) 

 

Theorem 2.3, [20]: For all 𝑝 > 1 and 1 < 𝑞 ≤
2𝑝

𝑝+1
  ,   problem (3) has a unique maximal 

solution 𝑈ℎ ∈  𝐶
1 ((0, 𝑇ℎ), 𝑅

𝐼+1). 
 

Lemma 2.2, [20]: Let 𝑈ℎ ∈  𝐶
1 ((0, 𝑇ℎ), 𝑅

𝐼+1) be the solution of (3) with initial data 𝑈ℎ
0. If 

𝑈ℎ
0 ≥ 0, then 𝑈ℎ(𝑡) ≥ 0,   for all 𝑡 ∈ (0, 𝑇ℎ). 

 

Definition 2.1 [16]:  It is said that 𝑈ℎ blows up in finite time, if there exists  𝑇ℎ ≤ ∞ such 

that: 

I.‖𝑈ℎ(𝑡)‖∞ < ∞ , for t ∈ [0 , 𝑇ℎ ), 
II.‖𝑈ℎ(𝑡)‖∞ → ∞ , as t→ 𝑇ℎ  

− , 
 

where ‖𝑈ℎ(𝑡)‖∞ =max0<𝑖≤𝐼|𝑈𝑖(𝑡)| . 
 

     In the next theorem and under some assumptions, we show that the semidiscrete solution 

blows up in a finite time. 

 

Theorem 2.4 [20]  Let 𝑈ℎ be the nonnegative solution of (3) and we suppose that 𝐽(0) < 0, 

where  

𝐽(𝑡) =
1

2
∑
(𝑢𝑖(𝑡) − 𝑢𝑖−1(𝑡))

2

ℎ

𝐼

𝑖=1

−
1

𝑝 + 1
∑ℎ𝑢𝑖

𝑝+1(𝑡).

𝐼

𝑖=1

 

We also suppose that: 

1 <
𝑝 − 1

(2𝑝(𝑝 + 1))𝑝+1
=
𝑝 − 1

2
(
2

𝑝 + 1
)

1
𝑝+1⁄

    𝑖𝑓 𝑞 =
2𝑝

𝑝 + 1
  

𝑎𝑛𝑑 ‖𝑈ℎ(0)‖𝑝+1  >  (
𝑝+1

𝑝−1
)

1

𝛽
     𝑖𝑓 𝑞 <

2𝑝

𝑝+1
  

where 𝛽 = 𝑝 −
𝑞(𝑝+1)

2
.  Then, 𝑈ℎ  achieves blow up in a finite time 𝑇ℎ. 

The next theorem shows that:  𝑈ℎ(𝑡) → 𝑢ℎ(𝑡), ∀ 𝑡 ∈ (0 , 𝑇) , as ℎ → 0 .  
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Theorem 2.5, [20]: Let 𝑢ℎ(𝑡) be the exact solution of (1). We suppose that  𝑢ℎ(𝑡) ∈

𝐶4((0, 𝑇ℎ),ℝ
𝐼+1), 𝐽(0) < 0 and we assume that the initial condition 𝑈ℎ 

0  satisfies: 

                   ‖𝑈ℎ
0 − 𝑢ℎ(0)‖∞ = 𝑜

(1)     𝑎𝑠  ℎ → 0.                         

 

      Then, for ℎ sufficiently small, the problem (3) has a unique solution 

𝑈ℎ ∈ 𝐶
1([0, 𝑇ℎ), ℝ

𝐼+1) 
such that 

max
𝑡∈[0,𝑇]

‖𝑈ℎ(𝑡) − 𝑢ℎ(𝑡)‖∞ = 𝑂 (‖𝑈ℎ
0 − 𝑢ℎ(0)‖∞ + ℎ

2) , 𝑎𝑠 ℎ → 0 . 

The following theorems give estimations of the blow-up rate and blow-up time, respectively.  

 

Theorem 2.6 [20]:  Let  𝑈ℎ be a numerical solution to problem (3), which blows up in finite 

time 𝑇ℎ . Then, there exists 𝐴, 𝐵 > 0, such that  

𝐴(𝑇ℎ − 𝑡)
−
1
𝑝−1 ≤ max

1≤𝑖≤𝐼
𝑈𝑖(𝑡) ≤ 𝐵(𝑇ℎ − 𝑡)

−
1
𝑝−1 

 

Theorem 2.7 [20]: If  𝑈ℎ achieves blows up at 𝑇ℎ,  then 

𝑇ℎ ≤
1

(𝑝 − 1) (
𝑝 − 1
𝑝 + 1 −

‖𝑈ℎ(0)‖𝑝+1
−𝛽
) ‖𝑈ℎ(0)‖2

𝑝−1
. 

 

3. Euler Finite difference schemes 

      In this section, we derive the explicit (implicit) fully discrete finite difference formulas for 

the problem (1), by approximating the time derivative in problem (2), using the forward 

(backward) finite difference formula.   

 

3.1 Explicit Euler Scheme 
     Approximating the time-derivative in problem (3), using the forward finite difference 

formula, yields the explicit Euler formula for problem (1) as follows:  
𝑈𝑖
𝑛+1−𝑈𝑖

𝑛

𝑘𝑛
=
𝑈𝑖+1
𝑛 −2𝑈𝑖

𝑛+𝑈𝑖−1
𝑛

ℎ2
+ 𝑘𝑛(𝑈𝑖

𝑛)𝑝 − 𝑘𝑛 (
𝑈𝑖+1
𝑛 −𝑈1−1

𝑛

2ℎ
)
𝑞

 , 1≤ 𝑖 ≤ 𝐼 − 1 

or 

𝑈𝑖
𝑛+1 = (1 − 2𝑟ℎ

𝑛)𝑈𝑖
𝑛 + 𝑟ℎ

𝑛(𝑈𝑖+1
𝑛 + 𝑈1−1

𝑛 ) + 𝑘𝑛(𝑈𝑖
𝑛)𝑝−𝑘𝑛 (

𝑈𝑖+1
𝑛 −𝑈1−1

𝑛

2ℎ
)
𝑞

 ,                       (4) 

         where 𝑈𝑖
𝑛  denotes the numerical of problem (1) at the point (𝑥𝑖, 𝑡𝑛),  

                        𝑥𝑖 = 𝑖ℎ ,   𝑡𝑛 = 𝑡𝑛−1 + 𝑘𝑛 ;    1≤ 𝑖 ≤ 𝐼 − 1 , 𝑛 = 1,2, …… 

             𝑈ℎ
𝑛 = (𝑈1

𝑛 , 𝑈2
𝑛…𝑈𝐼−1

𝑛 )𝑇,     𝑟ℎ
𝑛 =

𝑘𝑛

ℎ2
 

  

      To ensure that is the stability condition of the explicit Euler scheme for heat equation, 

[14]: 
𝑘𝑛

ℎ2
≤ 1, is satisfied and to increase the order of convergence, we choose the time-steps as 

follows:  

𝑘𝑛 = 𝑚𝑖𝑛 (
ℎ2

3
 ,

ℎ𝛼

‖𝑈ℎ
𝑛‖
∞

)    , 𝛼 > 0                                    (5) 

We can write the problem (4) in matrix form as follows:  

𝑈ℎ
𝑛+1 = (𝐼 + 𝑟ℎ

𝑛𝐻)𝑈ℎ
𝑛 + 𝑘𝑛𝐹ℎ

𝑛    ,                      (6) 
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where       𝐻 =

( 1) ( 1)

2 1 0

1 2 1

0 1 2
m m  

 
 


 
 
 

 

 ,  

  𝐹𝑛
𝑛 = ((𝑈1

𝑛)𝑝 − 𝑘𝑛 (
𝑈2
𝑛−𝑈0

𝑛

2ℎ
)
𝑞

, (𝑈2
𝑛)𝑝 − 𝑘𝑛 (

𝑈3
𝑛−𝑈1

𝑛

2ℎ
)
𝑞

, …… (𝑈𝐼−1
𝑛 )𝑝 − 𝑘𝑛 (

𝑈𝐼
𝑛−𝑈𝐼−2

𝑛

2ℎ
)
𝑞

)
𝑇

   

3.2 Linear Implicit Euler Scheme  
Approximating the time-derivative in problem (3), using the backward finite difference 

formula, yields the implicit formula Euler for problem (1) as follows:  

𝑈𝑖
𝑛+1 − 𝑈𝑖

𝑛

𝑘𝑛
=
𝑈𝑖+1
𝑛+1 − 2𝑈𝑖

𝑛+1 +𝑈𝑖−1
𝑛+1

ℎ2
+ 𝑘𝑛(𝑈𝑖

𝑛)𝑝 − 𝑘𝑛 (
𝑈𝑖+1
𝑛 − 𝑈1−1

𝑛

2ℎ
)

𝑞

 

or  

(1 + 2𝑟ℎ
𝑛)𝑈𝑖

𝑛+1 − 𝑟ℎ
𝑛(𝑈𝑖+1

𝑛+1 + 𝑈𝑖−1
𝑛+1) = 𝑈𝑖

𝑛 + 𝑘𝑛(𝑈𝑖
𝑛)𝑝 − 𝑘𝑛 (

𝑈𝑖+1
𝑛 −𝑈1−1

𝑛

2ℎ
)
𝑞

 ,                         (7) 

where 1 ≤ 𝑖 ≤ 𝐼 − 1 , 

𝑘𝑛 = (
ℎ𝛼

‖𝑈ℎ
𝑛‖
∞

)    , 𝛼 > 0                                          (8) 

We can write the problem (4) in matrix form as follows:  

(𝐼 − 𝑟ℎ
𝑛𝐻)𝑈ℎ

𝑛+1 = 𝑈ℎ
𝑛 + 𝑘𝑛𝐹ℎ

𝑛                                              (9)  

where 𝐻 is defined as in (6). 

 

Remark 2.1: In order to find  𝑈ℎ
𝑛 , at each time level, the linear system (9) should be solved. 

 

Definition 2.2  [15]: It is said that the solution 𝑈ℎ
𝑛, of a fully discrete finite difference formula 

blows up in a finite time, 𝑇ℎ , if   

1- ‖𝑈ℎ
𝑛‖∞ → ∞ 𝑎𝑠 𝑛 → ∞ 

2- 𝑇ℎ = ∑ 𝑘𝑛
∞
𝑛=0  , 

3- 𝑘𝑛
𝑛→∞
→    0 

 

Remark 2.2:  The blow-up time of any fully discrete problem (explicit or implicit Euler 

scheme) is considered a numerical blow-up time to the original problem (1). In fact, the value 

of the numerical blow-up time is dependent on the value of the space-step h and on the time 

steps formula of  𝑘𝑛 .    

 

Remark 2.3, We know that, for any time-interval: [0, 𝑡], the order of convergence for both 

explicit (implicit) Euler methods is O(𝑘 + ℎ2),  where 𝑘 = max𝑛 𝑘𝑛 , [14]. However, with the 

time-stepping formulas (5) and (8), the order of convergence takes the form:  O(ℎ𝜶),   for   

𝛼 ≤ 2. 
 

4. Numerical Results and Discussions  

    Due to the nonlinear terms appearing in problem (1), the real (exact) solutions to the 

problems (1) cannot be found. Therefore, in this section, we use both explicit and implicit 

Euler methods, with the time-stepping formulas (5) and (8), to compute the numerical blow-

up solution for two numerical experiments. The first example is taken with  𝑞 =
2𝑝

𝑝+1
 , while 

the second example is taken with  𝑞 <
2𝑝

𝑝+1
 . At various mesh size: 𝐼 = {20,40,80, 160,320}, 

and for 𝛼 = 1,2, all numerical computations are done with the use of  Matlab (R2020a) 

software.  The numerical results will show that the numerical blow-up solution for each of the 
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considered problems becomes unbounded after some finite time-level. In fact, we are not 

interested in the values of the numerical blow-up solutions to these problems, as much as the 

numerical blow-up times. The numerical blow-up time is taken when the condition: 

‖𝑈𝑛
𝑚‖∞ ≥ 10

6  holds, and the value 𝑡𝑛 = ∑ 𝑘𝑛
𝑚
𝑛=0  is considered the numerical blow-up time 

to the studied problems. In addition, for any fixed space-step ℎ, we compute the error bonds 

between 𝑇2ℎ and 𝑇ℎ using the error-formula [16]: 𝐸ℎ = |𝑇2ℎ − 𝑇ℎ|. Finally, we estimate the 

numerical order of convergence using the formula [14]: 

𝑆ℎ =
𝑙𝑜𝑔(𝐸2ℎ 𝐸ℎ)⁄

𝑙𝑜𝑔(2)
  

 

Example1:   Consider the following problem, with  𝑝 = 4, 𝑞 =
2𝑝

𝑝+1
     

{

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢
4 − |𝑢𝑥|

8/5       , 𝑥 ∈ (0,1) , 𝑡 > 0

𝑢(𝑥, 𝑡) = 0 ,                                 , 𝑥 = 0,1  
𝑢(𝑥, 0) = 30(sin 𝜋𝑥)           , 𝑥𝜖 (0,1)

}                         (10) 

   The next tables show the number of iterations, when numerical blow-up occurs, the 

numerical blow-up times, and the central processing unit times (CPUTs) in second, the 

numerical blow-up time errors-bounds, and the numerical orders of convergence.   

Tables (1) and (2) show the numerical results of the problem (10), using the explicit Euler 

method with taking 𝛼 = 1 and 2, respectively. Tables (3) and (4), show the numerical results 

of the problem (10), using the implicit Euler method with taking 𝛼 = 1 and 2, respectively. 

 

Table 1: Example 1, (𝑝 = 4, 𝑞 = 1.6),  Explicit Euler scheme, 𝛼 = 1 

I 𝒎 𝑻𝒉 CPUT 𝑬𝒉 𝑺𝒉 

20 4  5.7318𝑒−04 0.029719 ……………… ………. 

40 5 2.2669𝑒−04 0.036778 3.4649e−04 ………. 

80 5 8.8563𝑒−05 0.059531 1.3813e−04 1.3268 

160 7 4.0668e−05 0.097946 4.7895e−05 1.5281 

320 10 2.2157e−05 0.183912 1.8511e−05 1.3715 

 

Table 2: Example 1, (𝑝 = 4, 𝑞 = 1.6), Explicit Euler scheme, 𝛼 = 2 

I 𝒎 𝑻𝒉 CPUT 𝑬𝒉 𝑺𝒉 

20 6 5.0988e−05 0.046419 ………… ……… 

40 10 2.1303e−05 0.035923 2.9685e−05 …….. 

80 26 1.4350e−05 0.072242 6.9530e−06 2.0940 

160 115 1.2769e−05 0.092594 1.5810e−06 2.1368 

320 608 1.2434e−05 0.215225  3.3500e−07 2.2386 

 
Table 3: Example 1, (𝑝 = 4, 𝑞 = 1.6), Implicit Euler scheme, 𝛼 = 1 

I 𝒎 𝑻𝒉 CPUT 𝑬𝒉 𝑺𝒉 

20 4 5.7364𝑒−04 0.217158 ………… ……….. 

40 5 2.2681e−04 0.137601 3.4683e−04 ………. 

80 5 8.8594e−05 0.244363 1.3822e−04 1.3273 

160 7 4.0677e−05 0.610380 4.7917e−05 1.5284 

320 10 2.2160e−05 1.925436 1.8517e−05 1.3717 
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Table 4: Example 1, (𝑝 = 4, 𝑞 = 1.6), Implicit Euler scheme, 𝛼 = 2 

I 𝒎 𝑻𝒉 CPUT 𝑬𝒉 𝑺𝒉 

20 6 5.1000e−05 0.092471 ………… ………. 

40 10 2.1306e−05 0.142232 2.9694e−05 ……….. 

80 26 1.4350e−05 0.230562 6.9560e−06 2.0938 

160 115 1.2770e−05 0.602143 1.5800e−06 2.1383 

320 608 1.2434e−05 1.870587 3.3600e−07 2.2334 

 

     The next figure presents the time evolution in the numerical blow-up solution of problem 

(10) arising from using explicit (implicit) methods, with ℎ = 320 and 𝛼 = 2.  

 

 
(A)                                                                    (B) 

Explicit scheme                                              Implicit scheme 

Figure 1: Evolution in time arising from using explicit and implicit schemes to compute the 

numerical solution of Example1, with ℎ = 320, 𝛼 = 2  

 

Example2:   Consider the following problem, with  𝑝 = 5, 𝑞 <
2𝑝

𝑝+1
     

{

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢
5 − |𝑢𝑥|

3/2       , 𝑥 ∈ (0,1) , 𝑡 > 0

𝑢(𝑥, 𝑡) = 0 ,                                 , 𝑥 = 0,1  

𝑢(𝑥, 0) = 30(𝑥 − 𝑥2)          , 𝑥𝜖 (0,1)

}                             (11) 

 

   The next tables show the number of iterations when numerical blow-up occurs, the 

numerical blow-up times, and the central processing unit times (CPUTs) in second, the 

numerical blow-up time errors-bounds, and the numerical orders of convergence.   

Tables (5) and (6), show the numerical results of problem (11), using explicit Euler method 

with taking 𝛼 = 1 and 2, respectively. Tables (7) and (8), show the numerical results of 

problem (11), using implicit Euler method with taking 𝛼 = 1 and 2, respectively. 

 

Table 5: Example 2,  (𝑝 = 5, 𝑞 = 1.5), Explicit Euler scheme, 𝛼 = 1 

I 𝒎 𝑻𝒉 CPUT 𝑬𝒉 𝑺𝒉 

20 5 0.0016 0.054653 ……….. ………. 

40 5 5.3751e−04 0.059133 0.0011 ………. 

80 7 2.2594e−04 0.068583 3.1157e−04 1.8199 

160 12 1.3023e−04 0.141722 9.5710e−05 1.7028 

320 31 9.4431e−05 0.167853 3.5799e−05 1.4188 
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Table 6: Example 2, (𝑝 = 5, 𝑞 = 1.5), Explicit Euler scheme, 𝛼 = 2 

I 𝒎 𝑻𝒉 CPUT 𝑬𝒉 𝑺𝒉 

20 6 2.5521e−04 0.029813 ………. ………. 

40 11 1.2083e−04 0.035168 1.3428e−04 ………. 

80 36 8.8559e−05 0.059698 3.2271e−05 2.0580 

160 171 8.1216e−05 0.093408 7.3430e−06 2.1358 

320 926 7.9642e−05 0.160853 1.5740e−06 2.2219 

 

Table 7: Example 2,  (𝑝 = 5, 𝑞 = 1.5), Implicit Euler scheme, 𝛼 = 1 

I 𝒎 𝑻𝒉 CPUT 𝑬𝒉 𝑺𝒉 

20 5 0.0016 0.157623 ………. ……….. 

40 5 5.3963e−04 0.172961 0.0011 ……… 

80 7 2.2649e−04 0.271017 3.1314e−04 1.8126 

160 12 1.3024e−04 0.624415 9.625e−05 1.7019 

320 31 9.4437e−05 1.888455  3.5803e−05 1.4267 

 

Table 8: Example 2,  (𝑝 = 5, 𝑞 = 1.5), Implicit Euler scheme, 𝛼 = 2 

I 𝒎 𝑻𝒉 CPUT 𝑬𝒉 𝑺𝒉 

20 6 2.5560e−04 0.099255 ………. ……… 

40 11 1.2093e−04 0.122657 1.3467e−04 ………. 

80 36 8.8588e−05 0.266631 3.2342e−05 2.0579 

160 171 8.1223e−05 0.621645 7.3650e−06 2.1347 

320 926 7.9643e−05 1.861569 1.5800e−06 2.2208 

 

       The next figure presents the time evolution in the numerical blow-up solution of problem 

(11) arising from using explicit (implicit) methods, with ℎ = 320 and 𝛼 = 2.  

  
(A)                                                                    (B) 

Explicit scheme                                              Implicit scheme 

Figure 2 : Evolution in time arising from using explicit and implicit schemes to compute 

numerical solution of Example2, with ℎ = 320, 𝛼 = 2  
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From the numerical results of Example 1 and Example 2, the following observations can be 

pointed out: 

1. When  1 < 𝑞 ≤
2𝑝

𝑝+1
 , and the size of the initial function is large enough, the reaction term 

is dominated and the gradient term cannot prevent blow-up. Moreover, the numerical blow-up 

can only occur at a single point (𝑥 = 0.5), and that confirms the known theoretical blow-up 

results of the problem (1), see [8]. 

2. The blow-up time errors-bounds decrease when the space-steps are refined. This indicates 

that the numerical blow-up times sequence 𝑇ℎ is convergent as the space-step approaches 

zero.  

3. The order of convergence of the numerical blow-up times,  𝑆ℎ  is close to or larger than the 

value of  𝜶,   which means, the numerical order of convergence is:  O(ℎ𝜶+𝜖), where 𝜖 > 0.     
4. Due to dealing with the time-stepping formulas (5) and (8), for large 𝜶, the required 

number of iterations to achieve blow-up, increases, compared with taking a small value to 𝜶.  
5. We see that the CPU times are increasing, as we refine the spatial step, or if we compare 

CPUT of the implicit method with that of the explicit method.  

6. Figures 1 and 2 show that, in each of the studied problems, the numerical blow-up growth-

rates, obtained from using the explicit Euler method, are almost the same as that obtained 

from using the implicit Euler method. 

 

5. Conclusions  
      This paper deals with numerical approximations of a one-dimensional semilinear 

parabolic equation with gradient term. Namely, we propose both Euler explicit and implicit 

finite difference methods with a non-fixed time-stepping procedure to estimate the numerical 

blow-up time of the considered problem. Finally, some numerical experiments are given to 

illustrate the efficiency, accuracy, and numerical order of convergence of the proposed 

technique. The obtained numerical results show that the used finite difference schemes with 

the proposed non-fixed time-stepping procedure can give accurate results with a high order of 

numerical convergence. Furthermore, the numerical results confirm that the blow-up can only 

occur at the center point. In future plans, one may study the numerical blow-up solutions of a 

semilinear coupled parabolic system with gradient terms [21]. 
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