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Abstract  

     Community detection is an important and interesting topic for better understanding 

and analyzing complex network structures. Detecting hidden partitions in complex 

networks is proven to be an NP-hard problem that may not be accurately resolved 

using traditional methods. So it is solved using evolutionary computation methods and 

modeled in the literature as an optimization problem.  In recent years, many 

researchers have directed their research efforts toward addressing the problem of 

community structure detection by developing different algorithms and making use of 

single-objective optimization methods. In this study, we have continued that research 

line by improving the Particle Swarm Optimization (PSO) algorithm using a local 

improvement operator to effectively discover community structure in the modular 

complex networks when employing the modularity density metric as a single-

objective function. The framework of the proposed algorithm consists of three main 

steps: an initialization strategy, a movement strategy based on perturbation genetic 

operators, and an improvement operator. The key idea behind the improvement 

operator is to determine and reassign the complex network nodes that are located in 

the wrong communities if the majority of their topological links do not belong to their 

current communities, making it appear that these nodes belong to another community. 

The performance of the proposed algorithm has been tested and evaluated when 

applied to publicly-available modular complex networks generated using a flexible 

and simple benchmark generator. The experimental results showed the effectiveness 

of the suggested method in discovering community structure over modular networks 

of different complexities and sizes. 

 

Keywords: Community detection, Modular networks, Particle swarm optimization 

algorithm, Solution improvement operator. 
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وجه العديد من الباحثين جهودهم البحثية لمعالجة    الأخيرة، السنوات    في   في الأدبيات كمشكلة تحسين.   تصميمها  و
مشكلة اكتشاف بنية المجتمع من خلال تطوير خوارزميات مختلفة والاستفادة من طرق التحسين احادية الهدف.  

  باستعمال  (PSO) من خلال تحسين أداء خوارزمية سرب الجسيماتواصلنا خط البحث هذا    الدراسة،في هذه  
مقياس كثافة    استعمال لاكتشاف بنية المجتمع بشكل فعال في الشبكات المعقدة القياسية عند    محلي عامل تحسين

يتكون إطار الخوارزمية المقترحة من ثلاث خطوات رئيسية؛ استراتيجية    الهدف. الوحدات النمطية كدالة احادية  
تتمثل الفكرة الرئيسية  المضطربة، وعامل التحسين.    يةعوامل الجين الالتهيئة، استراتيجية البحث التي تستند إلى  

الة أن غالبية  المعقدة الموجودة في المجتمعات الخطأ في ح  الشبكة لعامل التحسين في تحديد وإعادة تعيين عقد  
مما يجعل الأمر يبدو أن هذه العقد تنتمي إلى مجتمع    الحالية، لا تنتمي إلى مجتمعاتهم    الطوبولوجيةروابطهم  

التي تم إنشاؤها    القياسيةتم اختبار وتقييم أداء الخوارزمية المقترحة عند تطبيقها على الشبكات المعقدة  آخر.  
أظهرت    باستعمال وبسيط.  مرن  قياسي  بنية  مولد  عن  الكشف  في  المقترحة  الطريقة  فاعلية  التجريبية  النتائج 

 ذات التعقيدات والأحجام المختلفة. القياسيةالمجتمع عبر الشبكات 
 

1. Introduction 

     In the last decade, analyzing complex networks witnessed great interest since many complex 

systems that are present today, like social networks, collaboration networks, metabolic 

networks, neural networks, technological networks, and also political election networks, could 

be embodied and modeled as complex networks. Mathematically, a graph is considered an 

efficient way, and is often used in practice, to represent a complex network, where generally 

the graph nodes correspond to the objects of the complex network and the graph edges 

correspond to the connections between these objects. A key feature of most, if not all, complex 

networks is the community structure; based on that, research work related to the discovery of 

the hidden complex community structure has received the attention of a large number of 

investigators and researchers from various scientific disciplines. Informally speaking, the main 

function of network clustering (or detecting the community structure in a complex network) is 

to divide the entities of a complex network into a number of groups based on two fundamental 

conditions, namely, that the connections or links between entities in one cluster are dense while 

the links between various clusters are sparse. This is called a cluster, module, or the well-known 

common term, community [1-4]. In sum, research based on network analysis and partitioning 

it into clusters is necessary to comprehend its organization and determine its functions. 

Different technologies have been customized and developed for clustering networks over the 

past decade; some recent surveys can be found in [5, 6, 7]. 

 

     In most of the proposed studies, the problem of detecting community structure has been 

addressed as an optimization problem in terms of maximization or minimization of a specific 

objective function. The main purpose of developing optimization-based community detection 

algorithms is to try to find the optimal solution to the relevant problem, and this mainly depends 

on the adopted objective function formula and evolutionary operators. Oftentimes, optimizing 

this objective function is difficult and is known in the literature as an NP-hard problem. 

Therefore, numerous studies have been suggested based on adopting diverse metaheuristic 

algorithms like GA (Genetic Algorithm), MA (Memetic Algorithm), PSO (Particle Swarm 

Optimization) algorithm, and ACO (Ant Colony Optimization) algorithm [8-12, 3]. 

 

     Most community detection studies, such as those by Cao et al. and Liu et al. [13, 14], were 

developed based on metaheuristic algorithms by optimizing the well-known single-objective 

function, namely, modularity (𝑄), that was introduced by Newman and Girvan in 2004 [15]. In 

2007, Fortunato and Barthélemy [16] found that the community structure identified by the 

community detection methods based on optimizing the  𝑄 function is large and that these 

methods may be unsuccessful at detecting tiny community structures, which leads to the known 
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resolution limit problem. To avoid this problem, Li et al. [17] designed a modularity density 

(𝐷) function, and for exploring the structure of complex network communities at different 

resolution levels, they developed a generic modularity density (𝐷𝜆) by adding a special 

parameter (λ) to the 𝐷 function. The general modularity density (𝐷𝜆) represents the sum of the 

average 𝑄 metric's degree of the hidden communities in the complex networks [18]. The single-

objective community detection methods have proven effective in addressing the problem in 

both synthetic and real-world complex networks, most of which are based on evolutionary 

algorithms [8, 18- 20]. 

 

     The particle swarm optimization (PSO) algorithm is another well-regarded metaheuristic 

method that was initially suggested to tackle single-objective continuous optimization problems 

[21, 22]. PSO appoints a set of particles that explore the solutions by moving locally and 

globally in the search landscape to identify the optimal solution. The movement strategy of the 

employed particles is inspired by the movement mechanism of a bird swarm, where each 

particle saves its coordinate path in the search space and correlates with the best captured local 

and global solution (i.e., local and global optima) to the swarm [3,23,24]. To identify the best 

solution, the movement of each particle will direct toward the obtained local solution as well as 

the global solution. Thanks to PSO's effectiveness in resolving different continuous 

optimization problems [3]. 

  

     In order to address the problem of community structure detection more efficiently using the 

PSO algorithm, in this paper we have developed a framework called IPSO-Net (Improved PSO 

for community detection in a modular complex network) that integrates a framework of the 

Particle Swarm Optimization (PSO) algorithm introduced in 2018 by Abdollahpouri et al. [25] 

with an improvement operator introduced in 2019 by Moradi and Parsa [8], which relies on 

identifying and resetting the complex network nodes that appear to have been mapped into the 

wrong communities. The key characteristics of employing the PSO algorithm compared to the 

other existing methods are that it has a quick convergence speed with uncomplicated 

implementation and, moreover, a large number of different variants [3]. The proposed method 

(IPSO-Net) has employed the general modularity density as a fitness function and perturbation 

operators in terms of crossover and mutation within the PSO framework to discover 

communities in networks. For assessing its performance, several systematic experiments have 

been done on modular networks with different sizes and complexities. The obtained results 

showed that the integration between the PSO algorithm and the improvement operator has a 

positive effect and significantly enhances the performance of the PSO algorithm in terms of 

convergence reliability. 

     The remaining sections of the paper are organized as follows: Section 2 provides a brief 

overview of the relevant proposed works. Section (3) presents a detailed description of the 

proposed PSO algorithm in terms of the adopted fitness function (i.e., general modularity 

density optimization model) and perturbation operators, as well as a detailed explication of the 

solution improvement operator. In Section (4), the settings of the experiments are presented in 

terms of the dataset used, standard evaluation metrics, the setting of PSO parameters, and the 

experimental results. Finally, Section 5 summarizes the research work and presents some 

conclusions and future work. 

 

2. Literature Review 

     Recently, many research efforts have been made to adopt the PSO algorithm to capture 

hidden complex community structures in different types of networks [25- 30]. Abdollahpouri 

et al. [25] suggested a novel method, called PSO-Net, for community detection based on a new 

version of the PSO framework. The proposed algorithm selected the modularity function as an 
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objective function. Moreover, PSO-Net changed the particles’ moving strategy by applying a 

crossover operator between each particle and its personal best location and the global best 

location over the whole swarm. After that, the 1-point neighbor mutation operator was applied 

to avoid falling into a local optimal situation. Experiments confirmed the effectiveness of the 

proposed algorithm PSO-Net in discovering communities over real and synthetic networks. 

 

     Cai et al. [26] proposed Q-PSO, a new algorithm based on the modularity function, to 

accurately and effectively detect community structure in several representative complex 

networks and synthetic benchmark (LFR) networks. Chen et al. [27] put forward a novel 

algorithm, P-PSO (particle swarm optimization based on the Physarum model), for detecting 

communities by combining the computational power of a type of slime called Physarum. The 

P-PSO algorithm improved the effectiveness of PSO by identifying the outer edges of 

communities based on a Physarum-inspired network model.  

 

     Cai et al. [28] proposed a greedy discrete PSO algorithm to detect community structure in 

large-complex social networks. The statuses of particles were redefined based on a discrete 

scenario; and based on network topology, the status update rules were reconsidered. In addition, 

a greedy strategy is introduced to guide particles into a promising area. Shi et al. [29] suggested 

a novel method based on PSO to discover complex community structures by applying the 

modularity model as an optimization function. Initially, an enhanced spectral method was 

employed to represent community detection as a cluster problem, and the weighted distance 

that combines eigenvectors and eigenvalues was developed to measure the difference between 

two nodes. Xiaodong et al. [30] proposed a new detection model based on PSO to discover 

complex web communities within the network without previous knowledge about domain 

information.  

 

     In order to effectively detect community structure in complex networks and guide the 

particles' movement towards optimal regions when employing the modularity density metric as 

an objective function, we have continued this line by improving the Particle Swarm 

Optimization (PSO) algorithm performance introduced by Abdollahpouri et al. [25] using a 

local improvement operator introduced in 2019 by Moradi and Parsa [8]. 

 

3.Material and Methods 

     In this section, the proposed IPSO-Net method is described in detail. The framework of the 

IPSO-Net method consists of three main steps: initialization strategy (i.e., particle structure 

representation scheme and fitness computation), movement strategy (i.e., search strategy), and 

an improvement operator that is developed based on identifying and resetting complex network 

nodes that seem to belong to other communities. The flowchart of the suggested PSO algorithm 

for determining the community structure in modular complex networks is shown in Figure 1. 

A detailed explanation of each of the above steps is provided in the next sub-section.   
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Figure 1: The flowchart of the suggested IPSO-Net algorithm. The algorithm is based on the 

PSO version of [25]  

 

3.1Particle Structure Representation Scheme and Initialization Process 

     The proposed IPSO-Net algorithm utilizes the string encoding strategy as its representation 

scheme [31]. By using the string encoding strategy, network partitions are encoded as an integer 

string 𝒩𝑒𝑡 = {𝑐1, 𝑐2, … , 𝑐𝑛}, where 𝑛 indicates the number of network vertices, while 𝑐𝑖 

denotes the integer cluster identifier for the vertex (𝑣𝑖), and its values range from 1 to 𝑛. In 

order to accelerate the convergence of the proposed optimization algorithm, it was applied with 

a biased initialization and not with a fully random initialization. Practically, we have randomly 

chosen a vertex  (𝑣𝑖) and assigned its cluster identifier (𝑐𝑖) to all of its neighbors [32]. This 

process was performed for each particle 𝛼𝑛 times when initializing the population with α set to 

0.3 in this paper. 

 

3.2Fitness Computation 

     In this study, the general modularity density (𝐷𝜆) has been employed as an objective function 

in IPSO-Net to obtain the community structure at a different resolution of the complex 

networks. Given an undirected complex network, 𝒩𝑒𝑡 =  (𝑉, 𝐸), where 𝑉 represents the 

vertices set and 𝐸 represents the edges (or connections) set. One way to represent a complex 

network (𝒩𝑒𝑡) is to define an adjacent binary matrix 𝐴𝑛×𝑛, where 𝑛 denotes the number of the 

network vertices, such that 𝐴𝑖𝑗  element is equal to 1 when there is an existing connection (or an 

edge) between vertices 𝑣𝑖 and 𝑣𝑗 , otherwise 𝐴𝑖𝑗element is equal 0. Let’s assume that 𝑉𝑖  and 𝑉𝑗  

are the vertices sets of sub-networks 𝐶𝑖 and 𝐶𝑗, respectively, then 𝐸(𝑉𝑖 , 𝑉𝑗 ) =
∑ 𝐴𝑥𝑦𝑣𝑥∈𝑉𝑖 ,𝑣𝑦∈𝑉𝑗 

 points to the number of edges between 𝐶𝑖  and 𝐶𝑗, 𝐸(𝑉𝑖 , 𝑉𝑖 ) =

∑ 𝐴𝑥𝑦𝑣𝑥,𝑣𝑦∈𝑉𝑖 
 points to the internal degree of 𝐶𝑖, and 𝐸(𝑉𝑖 , 𝑉̅𝑖 ) = ∑ 𝐴𝑥𝑦𝑣𝑥∈𝑉𝑖 ,𝑣𝑦∈𝑉𝑖̅

 points to the 

external degree of 𝐶𝑖 wherein 𝑉̅𝑖 = 𝑉 − 𝑉𝑖 . Given 𝑘 sub-networks 𝐶1 (𝑉1, 𝐸1), ……, 

𝐶𝑘 (𝑉𝑘, 𝐸𝑘)  of a complex network (𝒩𝑒𝑡) provided by a particle (𝑝) , the objective function 

(general modularity density 𝐷𝜆) can be defined as: 
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𝐷𝜆 =  ∑ 𝑑(𝐶𝑖) = ∑
2𝜆𝐸(𝑉𝑖 ,𝑉𝑖 )−2(1−𝜆)𝐸(𝑉𝑖 ,𝑉̅𝑖 )

|𝑉𝑖 |
𝑘
𝑖=1

𝑘
𝑖=1                  (1) 

Where 𝑑(𝐶𝑖) points to the variance between the average internal degree 
𝐸(𝑉𝑖 ,𝑉𝑖 )

|𝑉𝑖 |
 and average 

external degree 
𝐸(𝑉𝑖 ,𝑉̅𝑖 )

|𝑉𝑖 |
 of 𝐶𝑖 [18]. 

 

     To identify the best global particle in the swarm, the particles are sorted in descending order 

based on their fitness value, and the particle with the highest fitness value is chosen to be the 

best global solution. Obtaining a high fitness value means detecting a high-quality community 

structure with dense connections in the complex network. To explore the complex network 

topology at different resolutions, the parameter λ is employed. If the parameter λ is equal to 0 

then 𝐷𝜆 will tend to aggregate the network into large communities. While if λ is equal to 1, 

𝐷𝜆 will tend to aggregate the network into small communities, and when λ is equal to 0.5, 

𝐷𝜆 will perform equivalently to the modularity density function [17, 18, 33].  

 

3.3Movement Strategy (Search Strategy) 

     PSO's search strategy depends on the mechanism of moving the particles towards their best 

local position while also moving them towards the best global position in the swarm. To guide 

the movement of each particle to the optimal possible positions, perturbation genetic operators 

(like crossover and mutation) are used. Below, the movement strategy steps of IPSO-Net are 

demonstrated in detail [3, 25]. 

 

3.3.1 Moving towards the best personal (local) position 

     At first, a 2-point crossover operator is performed for each particle along with its best 

personal (local) position. Accordingly, two new solutions are obtained as a result of applying 

the crossover operator. Then, the obtained results are compared, and the particle (or solution) 

with the highest fitness value is chosen to be a temporary position of the present particle. Figure 

2 illustrates two examples of a 2-point crossover operator. Figures 2 (a) and (b) show, 

respectively, two random solutions representing the parents 𝑝1 and 𝑝2 with their respective 

topological community structures. 

 

     In Figure 2(c), two arbitrary points, 𝑥 = 5 and 𝑦 = 7 are selected. After that, the 1st child is 

produced by copying the cluster identifier from the beginning of parent 𝑝1 to point 𝑥, the portion 

from 𝑥 to 𝑦  is cloned from parent 𝑝2 and the cluster identifier of the remaining set of nodes is 

cloned from parent 𝑝1. while the second child is produced by doing the previous action in 

reverse order. Figure 2(d) shows the string encoded representation of the first child with its 

related graphical division. 
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Figure 2: An illustration of a 2-point crossover. (a) 𝑝1 and its respective topological community 

structure. (b) 𝑝2 and its respective topological community structure. (c) A random 2-point 

crossover between 𝑝1 and 𝑝2  yields the children 𝑐ℎ𝑖𝑙𝑑1 and 𝑐ℎ𝑖𝑙𝑑2. (d) 𝑐ℎ𝑖𝑙𝑑1 and its 

respective topological community structure 

 

3.3.2 Moving towards the best global position in the swarm 

     After each particle is moved towards its personal (local) best position, it will also move 

towards the best global position in the swarm. To achieve this, a 2-point crossover operator is 

performed between the particle's temporary position (that obtained from the previous sub-

section) and the best global position defined. In this respect, two new solutions are also obtained 

and compared together, such as the former crossover operator, in order to apply the mutation 

operator to the best selected particle. 

 

3.3.3 Mutation 

     Lastly, the particles are mutated over the entire search landscape using the 1-point mutation 

operator. Under the predetermined probability of the mutation operator, a random node from 

the given particle (𝑝𝑖) is picked, and its cluster identifier is altered by a new possible cluster 

identifier of its adjoining nodes in order to ensure that only possible solutions are generated [3]. 

The output of the mutation operator for the 𝑝𝑖 particle is 𝑝𝑖
′ which is compared with its personal 

best (𝑝𝑖,𝑏𝑒𝑠𝑡). If the fitness value of (𝑝𝑖
′)  outperforms the fitness value of (𝑝𝑖,𝑏𝑒𝑠𝑡) then 𝑝𝑖,𝑏𝑒𝑠𝑡 

is substituted by 𝑝𝑖
′, otherwise, the 𝑝𝑖,𝑏𝑒𝑠𝑡 remains unchanged. When all the particles have 

moved and their personal best positions have been updated, fitness values are then computed 

again using the general modularity density measure, and the particle with the highest fitness 

value is chosen to be the best global position of the entire swarm. The above process is repeated 

until the predetermined number of iterations has been reached. 

     In order to enhance the proposed algorithm’s performance and exploit the available 

knowledge about the problem, a local solution improvement operator is proposed whose main 

idea is to identify and reset the complex network nodes that seem to belong to other 

communities in case the majority of their topological links do not belong to their current 

communities. The details of the solution improvement operator are shown in the next section. 

 

3.3.4 Solution Improvement Operator 

     When looking closely at the detected partitions for a  given complex network, we can note 

that there are some nodes located in the wrong communities when the majority of their 

connections do not belong to their current communities and seem to belong to another 

community. Generally, a community within a network represents a set of closely linked nodes 
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whose number of internal connections is greater than the number of their connections with the 

rest of the network’s nodes in other communities. To this end, each node is assigned a computed 

corresponding value. This value is calculated for a given node (𝑖) by counting the number of its 

links whose targets do not belong to its current community. Accordingly, the nodes with 

relatively higher correspondence values are mutated into the new community. Moradi and Parsa 

[8] in 2019 proposed the above solution improvement method as a local search operator inside 

the genetic algorithm framework with locus encoding strategy representation. This local search 

operator decreases the inter-connections to discover high-quality clusters in the complex 

network. It is a very helpful operator that speeds up the population convergence and enhances 

the accuracy of the detected communities. Here, we have adopted Moradi and Parsa’s local 

search operator as a solution improvement method inside the PSO algorithm framework with 

the string encoding strategy representation. The complete pseudo-code of the IPSO-Net 

algorithm for community detection is depicted in Algorithm 1, including the subprogram of the 

solution improvement operator. 

 

Algorithm 1.  IPSO-Net 

Input    : 𝒩𝑒𝑡: network, 𝑝𝑜𝑝𝑠𝑖𝑧𝑒: Population size, 𝑝𝑚: Mutation rate, 𝑚𝑎𝑥𝑖: Maximum 

number of iteration. 

Output : 𝑝∗:Best solution (best particle). 

Step 1: Initialization and Representation 

 𝑡 ← 1; 

Generate 𝑃(𝑡)  ← {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑝𝑜𝑝𝑠𝑖𝑧𝑒} using string encoding strategy; 

Initialize the personal best position of each particle 𝑃𝑏𝑒𝑠𝑡 = 𝑃(𝑡); 

Evaluate all particles using 𝐷𝜆 according to Equation (1); 

𝑝𝑔𝑏𝑒𝑠𝑡 = Select the particle with highest fitness value as the global best; 

Step 2: Movement strategy for each particle (i.e., Search  Strategy) 

 for 𝑖 ← 1 𝒕𝒐 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 𝒅𝒐 

  [𝑐ℎ𝑖𝑙𝑑1, 𝑐ℎ𝑖𝑙𝑑2] =Perform a 2-point crossover operator between 𝑝𝑖 and 𝑝𝑖,𝑏𝑒𝑠𝑡; 

  Evaluate 𝑐ℎ𝑖𝑙𝑑1 and 𝑐ℎ𝑖𝑙𝑑2  using  𝐷𝜆 according to Equation (1); 

  𝑡𝑒𝑚𝑝𝑝𝑎𝑟 =the child with the highest fitness; 

  [𝑐ℎ𝑖𝑙𝑑1, 𝑐ℎ𝑖𝑙𝑑2] =Perform a 2-point crossover operator between 𝑡𝑒𝑚𝑝𝑝𝑎𝑟 and 𝑝𝑔𝑏𝑒𝑠𝑡; 

  Evaluate 𝑐ℎ𝑖𝑙𝑑1 and 𝑐ℎ𝑖𝑙𝑑2  using  𝐷𝜆 according to Equation (1); 

  𝑝𝑖 =the child with the highest fitness value; 

  𝒑𝒊
′= Mutate 𝑝𝑖 under 𝑝𝑚 probability / Apply Solution Improvement operator (𝒑𝒊); 

  Evaluate 𝒑𝒊
′; 

  if  fitness value(𝒑𝒊
′) > fitness value(𝑝𝑖,𝑏𝑒𝑠𝑡) then 𝑝𝑖,𝑏𝑒𝑠𝑡 =  𝒑𝒊

′; 

 End for 

 𝑝𝑔𝑏𝑒𝑠𝑡 = the particle with the highest fitness value; 

 if      𝑡 ≤ 𝑚𝑎𝑥𝑖 then 𝑡 = 𝑡 + 1 and go to Step 2; 

 else  𝑝∗ = 𝑝𝑔𝑏𝑒𝑠𝑡  and Stop the algorithm. 

Return 𝑝∗. 

 

// Subprogram: Solution improvement operator 

Input    : 𝑝: Solution (Particle). 

Output : 𝑝′: Improvement Solution (Particle). 

𝑛 = number of nodes in  𝑝; 
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𝑝′ =  𝑝; 

for 𝑖 = 1 𝒕𝒐 𝑛 𝒅𝒐 

 𝑆𝑜𝑢𝑟𝑐𝑒_𝐶𝑜𝑚𝑚𝑢𝑖𝑛𝑡𝑦 ← 𝑝(𝑖); 

 𝑴(𝑖) = The number of links of Node (𝑖) which their targets are not  

𝑆𝑜𝑢𝑟𝑐𝑒_𝐶𝑜𝑚𝑚𝑢𝑖𝑛𝑡𝑦 (𝑁𝑜𝑑𝑒 (𝑖)); 

end for 

𝒕𝒊= find a node with maximum out community links using 𝑴; 

𝑪𝒚 ← 𝑆𝑜𝑢𝑟𝑐𝑒_𝐶𝑜𝑚𝑚𝑢𝑖𝑛𝑡𝑦 (𝑡𝑖); 

// update the particle  

𝑝′(𝑡𝑖) = 𝑪𝒚; 

𝑹𝒆𝒕𝒖𝒓𝒏  𝑝′. 

 

4. Experimental Results 

     In this section, we have described in detail the settings of the experiments in terms of 

presenting the dataset used, standard evaluation metrics, setting PSO parameters, and 

discussing the results obtained from the test experiments. 

 

4.1Dataset 

     This study has made use of the recently publicly available modular networks for validating 

community detection algorithms. These networks have been generated using a flexible and 

simple benchmark generator, called FARZ, introduced by Fagnan et al. in 2018 [34]. The FARZ 

model is similar to LFR, generating complex networks with built-in community structure that 

can be used as ground truth, which is ideal for validating the performance of community 

detection algorithms. FARZ generates dependable networks in the sense that it creates 

communities and networks that are characteristically similar to those of real-world networks. It 

is also composed of intuitive parameters with meaningful interpretation and is easy to tune for 

direct control of the generated networks’ properties. There are 3 input parameters in FARZ 

(𝑛;  𝑚;  𝑘) which are respectively responsible for the determination of the number of nodes, the 

average degree, and the number of communities. There are also 4 intuitive control parameters 

in FARZ, 𝛽, 𝛼, 𝛾, 𝑎𝑛𝑑 ∅ which are responsible for controlling the community structure strength, 

the clustering coefficient, the degree correlation, and the distribution of the community size. In 

the next sections, these networks will be referred to by their corresponding control parameter, 

𝛽 as 𝐹𝐴𝑅𝑍_𝑁𝑒𝑡𝛽  [34], since 𝛽 is the responsible parameter for controlling the strength of 

community structure. Accordingly, the values of 𝛽 in this study have been set over a range of 

0.0 to 0.8 with a step of 0.05, in which diverse arbitrary complex networks of different sizes 

(from 50 to 250 nodes) were generated and modeled, and each network is composed of four 

communities. The parameters used when generating FARZ networks are listed in Table 1. 

 

 

 

 

 

 

 

Table 1: Summary of parameters used to generate modular-benchmark networks 

( 𝐹𝐴𝑅𝑍_𝑁𝑒𝑡𝛽) 

General Parameter Definition Values 

𝑛 Number of nodes 50, 100, 150 and 250 



Abduljabbar                                              Iraqi Journal of Science, 2023, Vol. 64, No. 8, pp: 4228-4243 
 

4237 

Main 

parameter 

𝑚 Number of edges created per node. It determines the 

density of the generated networks 

5 

𝑘 The number of built-in communities in the 

generated networks 

4 

Control 

parameter 

𝑏𝑒𝑡𝑎 (𝛽) The strength of community structure From 0.0 to 0.8 with 

0.05 increments 

𝑎𝑙𝑝ℎ𝑎(𝛼) The strength of common neighbour’s effect on edge 

formation edges 

0.5 

𝑔𝑎𝑚𝑎 (𝛾) The strength of degree similarity effect on edge 

formation. It shows whether the degree correlation 

in the generated network is positive or negative. 

0.5 

Config. 

parameters 

phi (∅) The constant added to all community sizes. It is 

responsible for moving the community sizes 

distribution form heavy tail to uniform 

1 

𝑒𝑝𝑠𝑖𝑙𝑜𝑛(𝜖) The probability of noisy/random edges 1e-07 

Overlap 

parameter 
𝑟 The maximum number of communities each node 

can belong to 

1 

 

4.2Evaluation Measures 

     In this paper, we have used both the modularity (𝑄) and normalized mutual information 

(𝑁𝑀𝐼) measures to assess the quality of the obtained complex community structures. NMI [35, 

36] is a criterion for measuring the similarity between the community structure resulting from 

the proposed algorithm and the real complex community structure of a given network. Let, 

𝒞𝐴 = {𝐶𝐴
1, … , 𝐶𝐴

𝑇} represent the real clusters of a given complex network, and 𝒞𝐵 =
{𝐶𝐵

1, … , 𝐶𝐵
𝐷} represent the obtained clusters by the proposed algorithm, wherein T and D denote, 

respectively, the number of communities present in the partitions 𝒞𝐴 𝑎𝑛𝑑 𝒞𝐵. To calculate the 

NMI measure, first, we formed a confusion matrix 𝑊=[𝑊𝑖𝑗], 𝑖 = 1,2, … , 𝑇 and 𝑗 =

1,2, … , 𝐷, where 𝑊𝑖𝑗 represents the number of nodes that appear in the community 𝐶𝐴
𝑖 ∈ 𝒞𝐴 and 

also in the community 𝐶𝑩
𝑗

∈ 𝒞𝐵 . Accordingly, 𝑁𝑀𝐼 (𝒞𝐴, 𝒞𝐵) can be defined as : 

𝑁𝑀𝐼(𝒞𝐴, 𝒞𝐵) =

−2 ∑ ∑ 𝑊𝑖𝑗 log (𝑊𝑖𝑗 ∗
𝑛

𝑊𝑖𝑊𝑗
)D

𝑗=1
T
𝑖=1

∑ 𝑊𝑖 log (
𝑊𝑖

𝑛 )T
𝑖=1 + ∑ 𝑊𝑗 log (

𝑊𝑗

𝑛
)D

𝑗=1

                   (2)      

     where 𝑊𝑖, 𝑎𝑛𝑑 𝑊𝑗   denote the sum of the elements of 𝑊, over the row (𝑖) and the column( 𝑗), 

respectively. As mentioned earlier, 𝑛 represents the total number of nodes in the network. The 

𝑁𝑀𝐼 value ranges from 0 to 1, i.e., when 𝑁𝑀𝐼 = 1 this indicates that 𝒞𝐴 𝑎𝑛𝑑 𝒞𝐵 are exactly 

equivalent, and when 𝑁𝑀𝐼 = 0 this means 𝒞𝐴 𝑎𝑛𝑑 𝒞𝐵  are totally different. 

 

     Modularity (Q) represents the most common internal quality measure proposed by Newman 

and Girvan in 2004 [15] and has been used basically to evaluate the predicted solutions when 

the real partitions are unknown. Q measures a fraction of edges that fall within communities, 

minus what is expected if the edges are randomly placed. It was observed that the Q value 

would approach a minimum value, i.e., 0, if the number of internal connections was similar to 

the random distribution. On the other hand, Q approaches the maximum value, i.e., 1, and 

deviates from the null case when all detected communities have dense intraconnections. This 

means that a network with strong community structures presents a high 𝑄 value. The modularity 

is defined as: 

 

𝑄(𝒞) = ∑ [
2|𝐸(𝐶𝑖)|

|𝐸(𝒞)|
− (

∑ 𝑑𝑒𝑔(𝑣)𝑣∈𝐶𝑖

2|𝐸(𝒞)|
)

2

]

𝐾

𝑖=1

       (3) 
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4.3 Parameter Setting 

     The IPSO-Net algorithm was implemented in Matlab R2016b. The experiments over 

modular networks have been performed on a computer having an Intel® Core™ i7 CPU @ 2.80 

GHz and 16.0 GB (15.9 GB usable) of memory. In this paper, the number of iterations is 

customized to 100, the population size was set to 100, and the probability of a 1-point mutation 

operator is set to 0.3. In addition, we have investigated the impact of the 𝜆 parameter which 

varies from 0.3 to 0.7 with intervals of 0.2. All the experiments’ results were reported by 

considering the average of 10 independent runs.  

 

4.4 Experimental Results on Modular Networks and Discussions 

     To show the effectiveness of the proposed method, several experiments have been done over 

modular complex networks of different sizes and complexities. The performance of the IPSO-

Net algorithm has been analyzed and compared for two different variants: IPSO-Net-1 and 

IPSO-Net-2, where IPSO-Net-1 represents the origin PSO version without the solution 

improvement operator, and IPSO-Net-2 represents the PSO version with the solution 

improvement operator. First, we discuss parameter 𝜆 on all 𝐹𝐴𝑅𝑍_𝑁𝑒𝑡𝛽 benchmarks when 𝛽 ∈

[0.0,0.8] with step size 0.05, 𝑛 = {50, 100, 150, 250} using IPSO-Net-1, and the effect of 𝜆 in 

terms of 𝑁𝑀𝐼 is presented in Figures 3 and 4.  

 

     As community structure tends to be stronger with the increase of 𝛽, 𝑁𝑀𝐼 increases, but it is 

still difficult to capture the correct partitions for community detection methods. However, 

IPSO-Net-1 could not find the correct partitions of the networks in all test cases. It should be 

noted that IPSO-Net-1 has obtained the best partitions when 𝛽 =  0.8 and λ = 0.7, where 𝑁𝑀𝐼 

begins to increase with the further increase of 𝛽. Given a specified 𝛽, 𝑁𝑀𝐼 increases with the 

increase of λ. The reason is that IPSO-Net-1 with 𝜆 less than 0.7 tends to provide large 

communities, leading to a decrease in NMI. Since IPSO-Net-1 with λ equal to 0.7 can result in 

the best results, we set λ = 0.7 in this study. 

 

 
Figure 3: The effect of 𝜆 on 𝐹𝐴𝑅𝑍_𝑁𝑒𝑡𝛽∈[0.0,0.8]  benchmark when 𝑛 = {50, 100} for 

parameter analysis 



Abduljabbar                                              Iraqi Journal of Science, 2023, Vol. 64, No. 8, pp: 4228-4243 
 

4239 

 
Figure 4: The effect of 𝜆 on 𝐹𝐴𝑅𝑍_𝑁𝑒𝑡𝛽∈[0.0,0.8]  benchmark when 𝑛 = {150, 250} for 

parameter analysis 

 

     To illustrate the impact of the developed solution improvement operator on the IPSO-Net 

performance, the result of the systematic experiments have been shown in terms of the best 

average of both NMI (𝑁𝑀𝐼𝑎𝑣𝑔) and Q (𝑄𝑎𝑣𝑔) saved in the archive over 10 different individual 

runs for each complex modular network. To be fair, the same set of parameters is used for the 

two variants. Figures 5 and 6 present the obtained experimental results. It can be seen from 

Figures 5 and 6 (left side) that the NMI values obtained by IPSO-Net-2 are much higher than 

IPSO-Net-1 (except in a few limited cases). This indicates that the solution improvement 

operator is effective for enhancing the detection of community structure in the complex modular 

networks in terms of 𝑁𝑀𝐼𝑎𝑣𝑔 values. 
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Figure 5: Results of the IPSO-Net at two different variants (IPSO-Net-1, IPSO-Net-2) on 

𝐹𝐴𝑅𝑍_𝑁𝑒𝑡𝛽∈[0.0,0.8]  benchmark with 𝑛 = (50, 100) in terms of 𝑁𝑀𝐼𝑎𝑣𝑔 (left side) and 𝑄𝑎𝑣𝑔 

(right side) 

 
Figure 6: Results of the IPSO-Net at two different variants (IPSO-Net-1, IPSO-Net-2) on 

𝐹𝐴𝑅𝑍_𝑁𝑒𝑡𝛽∈[0.0,0.8]  benchmark with 𝑛 = (150, 250) in terms of 𝑁𝑀𝐼𝑎𝑣𝑔 (left side) and 𝑄𝑎𝑣𝑔 

(right side) 

 

    On the other hand, the obtained results in terms of modularity (Q) (Figures 5 and 6 (right 

side)) have proved that the algorithm in the IPSO-Net-2 version clearly outperformed the IPSO-

Net-1 version by scoring high values in terms of 𝑄𝑎𝑣𝑔. Obtaining high results in terms of 𝑄𝑎𝑣𝑔 

means that the detected communities have strong structures with dense intraconnections that 

deviate from the null case. 

 

     Lastly, the results of the proposed algorithm at IPSO-Net-2 version when 𝛽 = 0.8 were 

compared with the PSO-Net algorithm of [25] that had employed the modularity function as a 

single-objective function. For the sake of fairness, the common parameters were set to the same 

value for both methods, i.e., the number of iterations was customized to 100 and the population 

size was set to 100. In addition, all the experiments’ results were reported by considering the 

average of 10 independent runs. Table 2 shows the comparison in terms of 𝑁𝑀𝐼𝑎𝑣𝑔 and 𝑄𝑎𝑣𝑔 

between the results obtained by both methods, IPSO-Net-2 and PSO-Net. 

 

Table 2: Results obtained by the proposed algorithm in the IPSO-Net-2 version and the PSO-

Net algorithm  

Networks /Algorithms PSO-Net IPSO-Net-2 

𝑭𝑨𝑹𝒁_𝑵𝒆𝒕_𝟓𝟎 𝑄𝑎𝑣𝑔 0.7168 0.7106 

𝑁𝑀𝐼𝑎𝑣𝑔 0.4904 0.7951 

𝑭𝑨𝑹𝒁_𝑵𝒆𝒕_𝟏𝟎𝟎 𝑄𝑎𝑣𝑔 0.6604 0.6515 

𝑁𝑀𝐼𝑎𝑣𝑔 0.5017 0.6861 

𝑭𝑨𝑹𝒁_𝑵𝒆𝒕_𝟏𝟓𝟎 𝑄𝑎𝑣𝑔 0.6508 0.6934 

𝑁𝑀𝐼𝑎𝑣𝑔 0.4513 0.6141 

𝑭𝑨𝑹𝒁_𝑵𝒆𝒕_𝟐𝟓𝟎 𝑄𝑎𝑣𝑔 0.6481 0.6402 
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𝑁𝑀𝐼𝑎𝑣𝑔 0.2257 0.4211 

 

     The results in Table 2 have indicated that the proposed algorithm in the IPSO-Net-2 version 

significantly outperformed the counterpart algorithm of [25] (i.e., PSO-Net) in terms of 

𝑁𝑀𝐼𝑎𝑣𝑔 and  recorded satisfactory results in terms of 𝑄𝑎𝑣𝑔.  According to the related literature, 

both measures, 𝑁𝑀𝐼 and 𝑄 are considered the right metrics for evaluating a given solution. In 

fact, there is no strict positive correlation between these two metrics [37, 38]. From the 

presented results, it can be concluded that the solution improvement operator, which is 

developed based on identifying and resetting the complex network nodes in cases where most 

of their topological links do not belong to their home communities, has enhanced the prediction 

power of the PSO algorithm. 

 

5. Conclusion 

     In this paper, a particle swarm optimization algorithm with a solution improvement operator 

is proposed to capture the hidden community structure in modular complex networks using the 

modularity density metric as a fitness function. The solution improvement operator enhanced 

PSO performance by guiding the particles toward a better solution space. The key idea behind 

the improvement operator is to determine and reassign those nodes that are located in the wrong 

communities if the majority of their connections do not belong to their current communities, 

making it appear that these nodes belong to another community. The experimental results 

showed the proposed method’s effectiveness over modular networks of different complexities 

and sizes. In the future, however, we will focus on enhancing the PSO’s performance using an 

improvement operator based on strong or weak community concepts and adopt other known 

community detection models as a fitness function. Moreover, we plan to generate different 

networks and discuss the effect of other control parameters on the performance of the proposed 

algorithm. 
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