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Abstract
The purpose of this paper is to show that for a holomorphic and univalent function
in class S, an omitted —value transformation g(z) = ww—_ff yields a class of starlike

functions as a rotation transformation of the Koebe function, allowing both the image
and rotation of the function
f(z) = —==22 __to be connected. Furthermore, these functions have several

1-Zgze 10 —|z4|2
properties that are not far from a convexity properties. We also show that Pre-

Schwarzian derivative is not invariant since the convexity property of the function

g(2) = If— is so weak.
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w

Keywords: Omitted- value transformation, Univalent function, Convex univalent
function, Starlike univalent function, Rotation property.
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1. Introduction

Let f be a holomorphic function defined in the unit disk D(0;1) = {z € C: |z| < 1}
represented in the form
f(z) = Xyo1 82" ,where é; = 1.
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Consider the class § which contains univalent holomorphic and injective functions that satisfy
the normalizing conditions f(0) =0, f(0) = 1. [1]

Let ¢ and K be subclasses of S that are convex and starlike with respect to the origin in
D, respectively.
Furthermore, when { € C is a convex function, then f(DD) is a convex set likewise for f € K.
[2]
We start with f € § and w ¢ f(ID), then the function

o=+ . 1)

L
w

in class §. In the theory of univalent function, the transformation f — g is well- known that
iswhy if f eF c S, let F={g:fe€F,w € C\f(ID) }, where C* = C LI {oo} such that wr =
w0 €eC ,thusFcFcsS,

The author argued in [3] that
D=t e ®)

where f(z) =z; —m < 9 < m either is a half plane transform or is formed via form (1)
by parallel strip maps f € C.

As a result, it is only essential to verify the complex function over Mabius transformation
and over function g(z) obtained from (1) by strip mapping f € € for such a situation the
function f(z) = Yo—o€,2" , (&, = 1) is unchanged with Mdobius transformation in form (1)

[4]

The description of our situation in this paper. Consider the following function

fz) =e® 22 3)

1-Zg z

where |z, < 1; —m < 9 <m inclass S that meets the normalizing conditions f(0) =
0, £(0) = 1, we must have some restriction requirements on both z, and e as follows:
In the eventuality £(0) = 0 , then zy,e®™ = 0 in which either z, = 0 or e® =
As a consequence, if e = 0,then 9 = —oo ; thatis why z, = 0 is required.
Derive f(z) in form (3) such that
f'(Z) — oY (1-Z92)+Zo(z—20)

(1-Zpz)? !

_ o 1-lzol? h — _ 2 _ i 2
f(z2)=e Oz ,Where z,7z, = |z,|%. Hence, f(0) = e" [1 — |z,]°].
Sequentially,

i _ 1
er =T E e 4)

In order to analyze our fundamental idea, one can substitute the condition z, = 0 in form
(4) to get f(z) = z, and the form (4) could be called vector based in this case as it previously
appeared in form (2).
As a result, if the vector based in (4) is substituted in the form (3) which would be expressed in
a more analysis.

Z—2Zp

f(z) =

1-Zgze "0 —|zy[2 '
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1

The function f(z) satisfies normalizing conditions £(0) = - T;’ poand £(0) =+
ol“— —140
2,—iY9
—[|1ZO||Ze|2]2 which is in class § when z, = 0 as required.
—140

Theorem (1.1) [Bieberbach's Theorem]. [1] If f(z) = Y-, €,2z™ belongs in class S, then
|é,| < n. The inequality is sharp with equality occurring if and only if fis a rotation of the
Koebe function.

Theorem (1.2) [Noshiro-Warschawski Theorem] [5] [6] A function f holomorphic in a
convex domain K is univalent in K if R{f (z)} > 0 for zin K.

Property (1.1) [7]. f(z) isaunivalent function in convex domain K just when R{f(z)} >0
over K.

Remark (1.1) [7].
Non-convex domains exist with the property in Proposition (1.1). Any domain that can be
created by removing a finite point-set from a convex domain will be done. On the contrary, the

domain —9 < arg(z) < 9 which is defined by the inequality §< 9 < m Is convex, but it

does not have the property (1.1). In order to be more precise, we have to say "if a domain has
the property (1.1), it is not far from being convex.

Z—Zy

2. Main Results.
Theorem (2.1). Let f(2) = e P np be holomorphic function in the unit disk D(0; 1) =

{z € C:|z| < 1}, and set any omitted a finite point set from a given domain then f(z) is not
far from convexity property when -t <9 <.
Proof . Begin with an investigation that SR(Jf’(z)) > 0 satisfies the univalence of

_ Z—2Zy
Jf(z) - 1-Zgze~ W0 —|zy|2 ~
, 1-19%(1-2 1 2(1-2 : .
Todoso, let f'(z) = % = Z_—z—% cz=re and z, = rye?.
0 0 0

1
7o

As a result, we noticed that SR(Jf’(z)) = ( - 1) cos 29 + rcosd9 > 0, when —g <9<

T

I2—|ence, f(z) =

(1.1)
Next, our aim is to check if the given function f(z) =

“—0___ js univalent in convex domain when —= < 9 < = by Property
2 2

1-Zgze ™0 —|zy|

Z—2Zy -
rere- 7 has the convexity property
or not.

Z—2Zg

In other words, Is the function {(z) = aconvex in the unitdisk D(0; 1) =

{z€C, |z|<1}when-Tt <9 <m.?
As above, f(z) is a univalent function in the convex domain when —g <9< gwhich is not in

the whole domain when - < 9 < m. Also, f(z) is omitted from finite points set (at least one
point) (see form (1)). This omitted point set is lying in the complement of the convex domain

when —g <9< g which relatives with the domain -7 < 9 < =, and it is the minimal set

1-Zgze ™0 —|z|2

whose union with the convex domain —g <9< g

3497



Mazloum and Alhily Iragi Journal of Science, 2023, Vol. 64, No. 7, pp: 3495-3506

Hence, omitted point set must be not far from convexity which means the function f(z) =
— B approaches to be convex as follows :

1-zpze ié—lZO
2 2 2 r 2

2 _ 2r9°—_ 2rp9°—_ 2_To
2 A S

- ———ZoZ——3 ZoZ 2o [ 0 r

ZoZ
Let f(z) =
Then,

[1-rZg—-702]3 T [1-1Ze-12]3

2_ 2 2 _To® = 3 2 _To’Z
Zf,,_onr [1—r0 —TZ]< 7> > ~ 2rZy° |11 =1 -
(

o =1z —1?P 1-1°(1-2) 1—-7175 —19%)*(1 — 19 + 1%2)
As a result, we obtain
2
1 ) = 1
m( i f A +(1—rz_o—roz)3(1—roz+rozf)

If the radius r approaches to 1 at the domain boundary dD(0; 1), then the real part of the
function (1 + %) is bounded, which means it has a positive real part such that

NITE S IR L

f (1 -7y —102)*(1 —rp® + 19%2)
Set, 1—1y2—1y%Z2=(1—1y%—1y%x) + iry%y , to obtain
(1 +i)
f
- iR(l v

[2(xo> 4 3x0Y0%) + 2i(¥o® — 3x0%y)I[(1 — 1% — 1%x) + irg2y] )
{[(1 —x0 —7152)% = 3(1 — xo = 12)¥o?] + i[3(1 — x5 — 1522y Yo 3 IH(A — 15% — 19%x) + irp2y}

After a few simple computations, we are able to come up with the following:
2N
R(1+L) =1+

2x03—2x0310% —270%xX 3 +6X0Y02 —6T02X0YV0> —6T02 XX V0> =210V V0> +670%VV0X0>

(1-192+702x) (1-x0=102)3 -3y 2 (1~x0~702) (1 =102 +792x) +792y Yo (1-xg—192) 2 ~1o 2y Y3
— 14 x03[2-219% —2192 x| +6x0Y02[1-T0%—To 2 x+70% Y] 210%YYo3

(1=x0-102)(1-102+192x) [(1—x0—79%)2 =3y 2] +7102Y Yo [(1-x0~1(2) %~y ?]

Let 0<ry<r<1,then 1—-1,2>0 ... (6)

Now, we must estimate all of the terms in the preceding form in the prescribed order.

Beginwiththeterm (1 —1%) —xo > —x9  .eevveo. (7)
Hence ; if (1 — Xg — TOZ)Z < yoz y then (1 — X9 — roz) < Yo o ceeeiiein (8)
From (7) and (8), we obtain  —xo <1—xy—752<V9  ..o.... 9)
Asaresult, we have [ (1 —xy —152)2 =y ...l (10)
with

(1 - xO - TOZ)Z - 3y02 ......... (11)

are non-positive terms .
From (6) ,we have 1 —1,2 >0 then 1—12 —15%x >1ry%x  ......... (12)
Also, as known 7, > 0,then ry2x >0 ... (13)
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with n?y>0 L (14)

The term 1 —1r2+152x>0 ... (15)
IS a positive term.
At this stage, we must assume that either y, < 0 or y, > 0
- If y,<0 , then
from (8),(9),(10) and (14), we obtain
o 15%yyo[(1 — xo — 19%)? — y,?%] is a positive term.
o (1—x9—1")(1—19% +1°0)[(1 — xo — 16%)? — 3y,°]

Consequently, the fraction's denominator must be greater than zero (positive term) , so that
the term (1 — 752 —ry%2x) > 0, then 1 — ry% — 1%x + 1,2y should be positive as well by(13)

Since —xy < —xy <y, thenx, > 0. The numerator of the function must be greater than zero.
. 3[2-2192—21¢2x|+6x0y02[1-To% —T0?x 4702y ]| - 2102 Y V0>
Finally, 1+ al 20 2
y (1-x0-102)(1-192+192x) [(1~x0~-702)2=3Y02]+7102Y Yo [(1-x0~T102)% ~¥0?]
- Ify, > 0 then

o 15%yyo[(1 — xo — 19%)? — y,%] is non-positive term.

o (1—x5—12)(1 =192 +15%x)[(1 — xo — 19%)? — 3y,?] is non-positive term.
Consequently,the denominator must be less than zero (non-positive term).

As above by hypothesis —x, < y, and y, > 0

Then x, < —y, s non-positive (x, < 0) ......... (16)

As a result, there are some terms approach to the cases of positive and non-positive value
o x,3[2 — 21y% — 21y2x] is a non-positive term.

o 6x0V%[1 — 192 + 1%x + 152y] is a positive term.

e 2715%yy,3 is a non-positive term.

The fraction's numerator must be less than zero. All of these estimates are based on the
criterion of R (1 + %) to determine whether or not it reaches the behavior of a convexity

function in general.
Finally ,

w(1+L)=1+

2x03—2x0310%2 —270%xX 3 +6X0Y02 —6T02X0YV0> —6T02 XX V0> =210V V0> +670%VVoX0>

(1-192+7192x) (1-x0—792)3=-3y02(1—x0—792) (1102 +702x) +792y Yo (1-xo—1(2) 2 ~15 2y Yo >
— 14 x03[2-219% =219 2 x| +6x0Y02[1-T0%—To 2 x+10% Y] 210%YYo3

(1=x0-102) (1102 +7192x) [(1—x0—792)2 =3y 2] +7102Y Yo [(1-x0~1(2) %~y ?]

when —r < 9 < m, approaches ( not exact) to be convex, this implies that it is close to the
convexity property.

After achieving the result from Theorem (2.1), the function f is not far from the convexity
property but is not exactly convex at the same time. This requires a study of this function's
starlike characteristics in order to be in the proper state of analysis while examining its
properties.
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Z—2Zy

Theorem (2.2). Let f(z) = Trre be holomorphic function in the unit disk D(0; 1) =

{z € C:|z| < 1}, and set any interior z approachs to origin point with rotation property for f
when —m <9 < m . Then {(z) is a starlike function .
Proof. To begin, we must first derive the holomorphic univalent function.

zZ — ZO
f(2) = ——
1—Zyze ™™ —|z,|?
as in the following
;F,(Z) _ [1—z'oze_i‘9—|zO|2]*'1—(z—zo)[—z'0e_i19] _ [1—z'oze_h9—|zo|'2]+z'0(z—zo)e_"’L9
[1-Zoze 10 —|z,|2]? [1-Zoze ™0 —|zo|2]?

1—120|%[1 + e~ ]
[1- Zoze W — |zo12]2
And then, let e~ = cosf — isind , so that e~i¢ = %z‘. Hence, 1+e7 ¥ =1 +%z‘ with

2

T =

2_10 >
T

T T2
|zo|? = 1%, which means that §(z) = FE——
TOZ

In the unit disk D(0; 1) thereis 0 <1, <r <1 that makes f(z) = % whenr = 1.

Zo—1]?

Since involving on some geometric properties on the convergence of a given function at the
real part, the approach outlined below can be done by using the radius r,, r and also (x,y) —
cartesian coordinates instead of coefficients of power series of holomorphic univalent function
as it is used in most research papers.

) 1-12(1—-2) 1 1r?(1-2)
f @)=y~

Zy Z_oz Z_oz

zf'(z) _ (1—r02(1—Z)) 1—2_02%2_—7"02 _ (z—roz(z—zz‘)) (1—rz‘0—r02) _ (z—roz(z—rz)) (1—r02—rz‘0)
fa) z Zo? z—z B Zo? z-2Zp B Zo° z—=Zzg

(1 =212 —1oMz + (ro%r —1r)zzZy + 11?2 — 15*r? — ry?r3z,

— 2
Zo"(z — 2y)

Suppose that, A=1=-21r2-1Y),B=1(y2—1) ,C = (ry*r? —ry*r?),D =
(10°1°)
It is critical to slow down at the Koebe function range, which includes the entire complex plane
minus the slit along the negative real axis (—oo, - i] hence the real part of the Koebe function
is unbounded, resulting in a starlike shape., this appears to be verifiable in terms of examining

the state of starlike condition to say that the real part of % could be only unbounded when f
goes to 0. Equivalently, we can say f (x, y) is unbounded when x , y go to x,, y,, respectively.

zf(z) Az+ Bzzy+ C + Dz,
f(2) Zo*(z — 2p)
. Ax+B(xx9+yYyo)+iB(yxg—Yox)+C+Dxo—iDyq
(%02 +¥02) (x—2x0) +2%0Y0 (Y=¥0) +i[(¥ —¥0) (x0? +¥0%) =220 Y0 (X —X0)
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_ [Ax+B(xx9=yyo)+Dxo+C]+i[B(yxo—yox)—Dyo]
[(x02+y02) (x—x0)+2x0Y0 (¥=Y0)]+i[(Y=Y0) (X02+¥02)—2x0Y0o (X —X0)]

_ [Ax+B(xx0—yy0)+Dxo+C][(x0%+¥02) (x—x0)+2x0Y0 (¥ —¥0)]
[(x02+Y02) (x=x0)+2x0Y0 (V—Y0) 12 +[(Y—¥0) (X02+¥02) —2X Yo (X —X0)]?

i[B(yxo—Yy0x)—DYo] [(x02+y02)(x—x0)+2x0y0 -y0)]
[(xo%+y02) (x—x0)+2x0Y0 Y =Y0)]2 +[(¥=¥0) (x02 +¥0%) =220 Y0 (x—X0)]?

i[(y—y0) (x0%+y0?)—2x0Y0 (x—x0)][Ax+B(xx0—y¥0)+Dx+C]
[(x02+Y02) (x—x0)+2x0Y0 (Y —Y0)12+[(Y—¥0) (X02 +Y¥02) —2X Y0 (x—X0)]?

[B(yxo—Y0x)—=Dyol[(y=¥0)(x0%=¥0>)—2X0Yo (X —x0)]
[(x02+Y02) (x—x0)+2x0Y0 (Y —Y0)12+[(Y—¥0) (X02 +¥02) —2X Y0 (x—X0)]?

Hence,
zf
%(7)
[Ax + B(xxo — yyo) + Dxg + CJ[(x0® + ¥0°) (x — %) + 2x0Y0 (¥ — ¥o)]
[(x02 + ¥02) (x — x0) + 2x0Y0 (¥ — ¥o)I* + [(y — ¥0) (X0® + ¥0%) — 2x0Yo(x — x0)]?
+ [B(yxo — ¥oX) — Dyol[(y — yo) (xo* + ¥0?) — 2x0¥0 (x — %0)]
[(xo? + ¥0%) (x — x0) + 2200 (¥ — ¥0)1? + [(y — ¥0) (x0* + ¥02) — 2x0Yo(x — %0)]?

Since areal part R (%) in a complex plane (a starlike range), x can move to x, from any

direction except the real line, where it can only go in a particular direction [ 4]. As a result, we
will refer to the following two results.

Result 1: B = r(r,% — 1) is a negative value that cancels out all terms that are multiplied by it.
Result 2: The last three terms A = (1 — 2152 —13*), B = (152 — 1), C = (%1% — ry*r?),

D = (1ry%r®) areall positive since 0 <ry <r <1 .

Furthermore, ifwesetx =1—- 4, (A - 0) for R (%) inD(0;1) ={z €C,|z| < 1}, then
x = 1. Also, ifwe set (x —xy) <r <1,then (1 -4 —xy) <1,and A4 > x,.
4 is a small enough distance between any two points in D(0; 1), hence x, is small value so
that 0 < x — A < x — x,. Hence, all of the terms that are multiplied by them are also positive.

As a result ,ER(ZJC'(Z)

) > 0 .Finally f(z) is a starlike function.

(@)
The following theorem will discuss how weak the convexity property of the function
g(2) = 1% which causes the Pre- Schwarzian derivative to be not invariant.

Theorem (2.3). The Pre-Schwarzian is non-invariant under the omitted — value transformation.

Proof. Let g = 4 he an omitted —value transformation belonging to class S.

w—f
The Pre-Schwarzian derivative for omitted —value transformation is :
Pre (g) = Pre[T of] with T(2) = w_z

w-z '
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where T(z) is a fractional linear transformation. As a result, the Pre-Schwarzian derivative
for composition functions defined in the form

Pre(g) = Pre[T of] = (PreT o )f' + Pref
We need to mention for the Pre - Schwarizian derivative of {

Pre{= fcl,,

Hence;

- (e
So that, we have
T,_(w—z)w—(—wz)_w(w—z)+w2_w2—wz+wz_ %

a (w —2)? - (w-2? (w—2z)? ~ (w —2)?
Also,
. —w?[-2(w —2)] 2w (w-2z)  2w?
a (w — 2)*  (w—2)* _(W—Z)3

Therefore, Pre (g) = [(( jfzz)s (w~— z) ) Jf] Jf +

SRR

B 2 ) f’l 2}‘/ f’l

Pre@) = ()i + e Ty

Estimate the previous statement by taking the length of both side to get
2‘](‘1 J(‘II‘ J(‘II

Pre =|l——F+=| =<

|Pre(g)| hw_ﬂ "

(w —

It is well known that any univalent holomorphic transformation f in the unit disk satisfies
the mequallty

Pre f— T , and |Pref]| S— |z| < 1. (see [8])
This is true for all unlvalent analytlc functions fin D.
,since |f'| < ———

|2’

Asaresult, |Preg| <
Then ,

2f 6 .
|_(w—D| + 1212 = I e @ <1lwith R<|z| < 1.

C 1 N 6
*
1-1zD* Jw—fl 1-|z]?
2C 6

|Pre g| <

< +
A —=lzD*@ -1  1-|z?
Since, |w —fl > |w| — |fl > 1—|f] suchthat |w|>1; w & f(D).
It is time to create a compelling example to illustrate what Theorems (2.1) and (2.2) have
produced.

Application (2.1).Consider the rotation function {(z) defined in the open disk (0; py) ; with
polS a positive real number |pg] < 1.
Define

fz)=——2B— W=

1-Zgze 0 —|zg|2 '

As stated in Bieberbach's theorem (1.1) , the image of the function g(z) =

where g(z) =

119](
{5 (2) is a rotation transformation of Koebe function .
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such that
Z
f(Z) = m ; ZE ]D)(O, pO) ......... (17)
Set B = e~'? | then the form (17) can be written as below
Z
fp@ =12 2 2 € D(0; po)-

be univalent function and normalized with conditions  fz(0) =0 ; Jf’ﬁ 0)=1.

Obviously, fgis one of the types of rotation transformation of Koebe function since we
have to determent some points on dID(0; p,) as follows:

_ DR — il _ <
fp(1) =3 i B=e < V<.
-1
:.F,B( 1) - 1+ﬁl
() = i 1w _ =B _ i _ i _ B
B 1-if 1+if  1+if—if+B%  1+B2  1+B2 1+B2
. —i 1-if —-i—-p —i (=B)
1+if 1—-if 1+p 1+p%) @A+p?

All the points (ﬁ ,O);(_1 O);( w A )and (_ﬁ _—1) consecutively, are the

148’ 1462 * 1+ 2 1452 ' 1+ 2
corresponding point center (z = 0)with these points that lie on the boundary co-domain of
fg(z) It is clear B =+ Othat is el #0,-m< 9 <m which make sense that fp maps
D(0; po) onto open disk (x,y) and p,as a raduis to obtain

(ﬁ - x) +y? =p,?..(a)

-1 2
(m - x) +y2 =p?..(b)
! 2 1 2

(=) +(mm—) =ete

(%[22 - x)z + (%/32 — y)z =p1? . ()

From (a) and (b), and then from (¢) and (4) , we obtained x = 1%2 ,

y = 0 respectively

Subsititute x andy in (a)toget p; = 1_—11;2.

As a result, the w-plane contains the image of the function fz(z) which is a domain centered
B . _ 1 .

at (— O), with p; = P as a radius.

1-p2’
vA B 1
6@ = 1w ;ZED<(1—ﬁ2 '0>’1—/32>

Let z=x + iy
x+1iy x+ iy (1—-xB) —iBy
6 = TG 0B =~ A= 2p) + By (= xB)— By
_x(1—xB) —ifxy + iy(1 — xB) + By?
- (1 —xB)* + p*y?

(1 = xB) + By*] + ily(1 — 26) — fxy] .
o) = g = W)+ ivs(y)
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x(1=xp) + py* i
uﬂ(x’y):(l—xﬁ)2+ﬁ2y2 s p=e™, —m<I<m
vp(x,y) = y(1 = xf) = Py i f=e, 1< I9<m

(1—-xB)* + B?y?
On the domain —m < 9 < m, assume that S = i . One will observe that the convexity

property will vanish as the given function is rotated until the real and imaginary parts of the
function are oriented toward the origin point (center), producing a starlike domain . See Figures
(2.1) —(2.2).

Real value Imaginary value

v {Imaginary)

radius (r) A0 theta (th)

radius (r) theta (th)

Figure 2.1: The real and imaginary parts of fz(z) = ﬁ when — < 9 < T,
1

=3

Uvas V

v (Imaginary)

0
Ieal o real

1

when -t <9 <m, f = "

z
1-ze~ 0

Figure 2.2: The image of fz(z) =

But if one omitted point set is lying in the complement of convex domain —g <I< g , SO

that the function be not far from convexity and approaches to be convex Omitted point set. See
Figures (2.3)-(2.4).
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Figure 2.3: The real and imaginary parts of fg(z) = ——5,when -~ <9 <=

p—

Z

1

Figure 2.4: The image of {z(z) = - Z

when—- <9 <= B =
2 2

e

Conclusion
This work investigates if the rotation function f(z) =

—20 ___ can be close to the
1-ZgzeW—|zy|2
convexity domain but not quite convex since there is an omitted point set that lies between the

convex domain—g <Y <§ and its complement domain —m <9 < m. As a result, in the

situation of rotation property, the starlikness characteristic seems to be greater than convexity.
In addition, this study states how the function's convexity property is so weak which made the
Pre- Schwarzian derivative not invariant.
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