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Abstract

This paper is concerned with the existence of a unique state vector solution of a
couple nonlinear hyperbolic equations using the Galerkin method when the
continuous classical control vector is given, the existence theorem of a continuous
classical optimal control vector with equality and inequality vector state constraints
is proved, the existence of a unique solution of the adjoint equations associated with
the state equations is studied. The Frcéhet derivative of the Hamiltonian is obtained.
Finally the theorems of the necessary conditions and the sufficient conditions of
optimality of the constrained problem are proved.
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1. Introduction:

Optimal control problems play an important role in many fields in the real life problems, for
examples, in an electric power [1], medicine [2], economic [3], biology [4] and in many others
fields. This importance encouraged many researchers to interest the study of the optimal control
problems in general and the continuous classical optimal control problems in particular. The
continuous classical optimal control problems is first studied for systems governing by nonlinear
ordinary differential equations by [5] and for systems are governed by linear partial differential
equations by [6]. During the last decade great attentions have been made to study this subject for
systems are governed by nonlinear ordinary differential equations as in [7] or systems governed either
by nonlinear partial differential equations either of : an elliptic type as in [8] , a hyperbolic type as in
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[9] , a parabolic type as in [10], or optimal control problems are governed by a couple of nonlinear
partial differential equations of : an elliptic type [11] , a parabolic type [12].

This work at first is concerned with the existence and uniqueness theorem of the state vector
solution of a couple nonlinear hyperbolic differential equations using the Galerkin method for a given
continuous classical control vector. The proof of the existence theorem of a continuous classical
optimal control vector governed by a couple of nonlinear hyperbolic partial differential equation with
equality and inequality state vector constraints is achieved. The existence and uniqueness solution of
the couple of adjoint vector equations associated with the considered couple equations of the state
equations is studied. The Fréchet derivative of the Hamiltonian of this problem is derived. Finally, the
necessary theorems of optimality of the considered problem so as the sufficient theorem of optimality
are proved.

2. Description of the problem: Let I =[0,T], T < o , Q c R? be an open bounded region with
Lipschitz boundary '=0Q , Q = Q x I, £ =T x 1. Consider the following continuous classical
optimal control problem: The state equation is given by the nonlinear hyperbolic equations:

Yiee = Ay1 +y1—y2 = f1(x, £y, uy) 1)
Yaee — Ayz +y2 + y1 = f2(x,t,y5,u3) 2
y1(x,t) =0 onx (3)
y1(x,0) = y?(x) and y;,(x,0) = y1(x) on Q (4)
y2(x,t) =0 on X (5)
y2(x,0) = y2(x) and y4,(x,0) = y3(x) on Q (6)

where y = (y4,¥2) € (C?(Q))? is the state vector, corresponding to the classical control vector
1= (uy,uy) € (L*(Q)? and (fy, f2) € (L*(Q))? is a vector of a given function defined on (Q x
RxU;) X (Qx RxU,) withU; c R, for i =1,2.

The controls constraints (The controls set) are U € W, Wc (L2 (Q))2
where W = {w € (12(Q))’|w € U, ae. in @}, with U c R?

The cost function is Go(u) = fQ go1(x, t,yq, u)dxdt + fQ goz2(x,t,y,,uy)dxdt (7)
The equality and inequality constraints on the state vector and the control vector are

G,(W) = fQ g11(x, t, y1,ug)dxdt + fQ 912(x, t, y2,uz)dxdt = 0 )
G,(u) = fQ g21(x,t, y1,uy)dxdt + fQ g22(x,t,y,,uy)dxdt < 0 9)

The set of admissible control is W, = {# € W|G,(@) = 0,G,(@) <0}

The continuous optimal control problem is to find % € W, such that G,(@) = WTZ%}AGO(W) :

LetV =V, XV, = {17: VE (Hl(Q))Z,with vy =v, =0on 69}, v = (v,v,). We denote by (v,v)
and ||v||, the inner product and the norm in L?(Q), by (v, v), and ||v||; the inner product and the norm
in H1(Q), by (#,%) and ||#|l, the inner product and the norm in L?(Q) X L?>(Q) by (#,9), =
(v1,v1)1 + (Wa, )1 and ||B]|2 = ||v4 112 + |lv,]1? the inner product and the norm in V and V* is the

dual of V.
The weak forms of the problem (1-6) when y € (H2 (€))? are given almost everywhere on I by

(Y1t V1) + (Vy1, Vo) + (31, v1) — (2, v1) = (f,v1), Vo1 EVy, y1(,8) €V, (10)
(,v1) = (31(0),v1) and (y},v1) = (¥1:(0),v) (11)
(¥2:0,v2) + (Vy2,Vo2) + (¥2,72) + (71, 02) = (f2,V2), YUz €V, y,(, 1) EV, (12)
(%,v2) = (32(0),v2) and (y},v2) = (32:(0),v5) (13)

The following assumptions are necessary to study the classical optimal control problem:

Assumptions (A): f; is of the Carathéodory type on Q x (R X U; ), satisfies the following sub
linearity condition with respect to y; & u; and is satisfied Lipschitz condition with respect to y; i.e.
Vi=1,2

Ifi(x, t, yi,u)| < Fi(x,t) + Bily;| , where y;,u; € R, B; > 0and F; € L(Q), for (x,t) € Q, and
IfiCx, tynw) — fito t, ¥, u)l < Lily; — ¥l yoyiu; € Rand L; > 0 for (x,t) € Q.

3. The Solution of the State Equations: In this section the existence theorem of a unique solution of
a coupled nonlinear hyperbolic partial differential equations under a suitable assumption is proved
when the control vector is given, the following proposition will be needed.
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Proposition 3.1 [13]: Suppose D be a measurable subset of R® (d = 2,3), f:D x R* — R™ is of
Carathéodory type satisfies||f (v, x)|l < E(w) + n(w)|x||*, for each (v,x) € D x R", where x €

LP(D,R™), £ € LY(D,R), n € LPI:a(D,R), a € [0,p], if p # 00, n =0 if p = oco. Then the functional
F(x) = [, f(v,x(¥))dv is continuous.

Theorem 3.1: (Existence and Uniqueness Solution of the State Equations): With assumptions (A),
for each given @ € (L2 (Q))Z, the weak forms (10&12) have a unique solution y = (y;,y,) st.y €
(LZ(I, V))Z,_)}_;t = (ylt'th)E (LZ(Q))ZJ’)tt = (Y10, Y20) € (LZ(I, V*))z .

Proof: Let V,, =V, x I}, € V (for each n) be the set of continuous and piecewise affine function in Q.
{17;}:: | be a sequence of subspaces of V, such that ¥ # = (v, v,) € V, there exists a sequence {,}

With #, = (V4p, Van) €V, ,¥n, and B, — B strongly in V = %, — ¥ strongly in (LZ(Q))Z.
{#; = (v1j,v2;):j = 1,2, ..., M(n)} be a finite basis of ¥, (where ¥; is continuous and piecewise
affine function in Q, with ¥;(x) = 0 on the boundary T') and let ¥, = (¥15, ¥25,) be the Galerkin
approximate solution to the exact solution y = (y,,y,) such that

Y1n = Xj=1 €15 ()v4j(x), where cq;(¢) are unknown functions of ¢, for each j =1,2,..,n. (14)
& Yan = Lj=1 €2j(0)v2j(x),where ¢,(t) are unknown functions of ¢, for each j = 1,2,...,n. (15)
The weak forms (10&12) are approximated w.r.t. x using the Galerkin method, substituting y;,: = zin
(i = 1,2) in the obtained equations, they become

(Z1ne, V1) + (VY100 V1) + D1 V1) — W20 V1) = (F1 V1 1), V1), VUL EV, (16)
(wv1) = (¥1v1) and (¥inv1) = (v1 1) 17)
(Zane V2) + (VY20 V2) + (V20 V2) + V10 V2) = (f2 (V2 U2),V2) VUV, EV, (18)
(Vo v2) = (¥3,v2), and (¥3n,v2) = (¥3,v2) (19

where y{)n = y{)n(x) = Yin(x,0) € V;, (respectively len = Yiln = Yiln(X) = Yine(x,0) € L*(Q) ) be the
projection of y? onto V( be the projection of y;* = y;, onto L2(Q) ), Vi = 1,2, i.e.

Y — yi strongly in v, with [|y3]|, < bo and [|y3]|, < bo (20)
Yin — yi strongly in L2(Q) and [|¥3]|, < by (21)
Substituting (14) in (16-17) and (15) in (18-19), setting v, = v4;, v, = vy;, the obtained equations are
equivalent to the following 1% order nonlinear system of ordinary differential equations with their

initial conditions and has a unigue solution %, = (1, ¥2n) € C(I,V) [14]: i.e. for each | = 1,2 and
k=01

Alb,l(t) + Blcl(t) - ECZ (t) = bl (]ZlT(x)Cl(t)), A1C1 (0) = b:(l) y A]_Dl (t) = b%

Ay Co(t) + ByCy(8) + HCL(8) = by (V] (), (1)), A,C,(0) = b9, and  A,D,(0) = b3

where C,(0) = () GO = (&), DO = (dy®) 00 =(d;®)
b, = (bi)nx1, bii = (fl(Vchl(t): up), Vu‘)a b;( = (bzkj) b?j = (Ylk'vlj)v A= (alij)nxn Wi =
(i vi) E = (€3)) s €55 = (02, v10), B = (bij),o., bij = (2, v20), B = (buj) o buij =
[(Vvlj,Vvli) + (v,j, vli)], F = (fl-j) fij = [(szj,VVZi) + (vzj, Vz[)], and H = (hij)
hij = (v1;,v21).

Then corresponding to the sequence{ I_/;l} there exists a sequence of the following approximation
problems, i.e. for each B, = (V1 Vop) C Vy,and n = 1,2, ...

nxn' nxn'

(V1ne V1n) + (VY10 V013) + V10 V10) — D2n V1) = (F1 (V10 U1), V1a) (22)
(y(l)n' vln) = (y(l)'vln) ' and (y%n'vl) = (y%'vln) (23)
(¥2nee: Van) + (VY20 V025) + V2n V20) + (V10 V2n) = (F2(V2n U2), V20) (24)
(y(Z)n' vZn) = (y(z)'VZn)’ and (y%n' vz) = (y%'VZn) (25)
which has a sequence of unique solution {y,,}. Substituting v;,, = Y1,: in (22) and and v,, = yon:
24),

z(add)ing the two obtained equations, using Lemma 1.2 in [15] for the 1% term of the L.H.S., once get
%[llynt(t)”g + ”5;11”%] = 2((}’211' Yint ) - (yln' yZnt) + (fl(yln' ul)' ylnt) + (fZ(yZn' uZ)' yZnt)) (26)

Y e ONF + 1711 < 2120 Y1ne )l + 211 Y2 | + 21(F1 P10, 1), Y1ne)|
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+2|(f2(V2n U2), Yane)| (27)
Using assumptions (A) for the R.H.S. of (27), integrating both sides on [0, t], using [lyinllo < 1¥nllo

Iyinello < 1Yinells, and 1Ynello < NYnelly, to get
o LY (D113 + 17,1131t
< f;(ll?nllﬁ + [ Ynell?) dt + fJ(IIFlllﬁ + [IF2I3) dt + B3 fJ(Il%II% + [Ynell?) dt + f;lli”mlli dt
< IF4l13 + IF21% + Bo [y (1¥alld + 17D dt < B7 + Bo [y (I1¥ullf + 1¥nell) dt, B7 = by +
b, (28)
where B3 = By + Bz, Ba =1+ B3, Bs =2+ B3, Bs = max(By, Bs), With ||F;lly < by, i = 1,2.
Since |10l1 < by, and ||yt ]lo < bg, With Bg = by + by + B, inequality (28) becomes
[Fne N + 15 (OIF < Ba + Bo o (IFnllf + I17ncl12) dt
Using the Belman-Gronwall (B-G) inequality, to get vV t € [0, T]

1Y O3 + 117,112 < BgePe = b2(c) = 1§ (ONIF < b2(c) and 1y, (OIIF < b2(c), YVt € [0,T]
Easily once can obtained that ||y, (t)llg < b1(c) and IIin(t)Ile(,’V) < b(c) .

Then by applying the Alaoglu’s theorem, there exists a subsequence of {¥,,}nen, SaY again {¥,nen
such that y,, — y weakly in (LZ(Q))2 and 3, — y weakly in (L2(I, V))z, and since
2 2 * 2

(L2®V)) c(LP®RY) = (1P®R®))?c(L2®RV) (29)
Then the Aubin compactness theorem [15] can be applied here to get that 3, — ¥ strongly in
(LZ(Q))Z. Now, multiplying both sides of (22) & (24) by ¢;(t) € C?[0,T], such that ¢;(T) =
@;(T) =0, ¢;(0) # 0, ¢;(0) # 0,Vi=1,2, integrating on [0, T], finally integrating by parts twice
the 1% term of each one of the obtained two equations, yield to

Td ] T
- fo i Vi V1) @1 (Ddt + fo [(VY1, VV1) @1 (8) + V1 V1) @1(8) — (Von, V1) @1 ()] dE

= foT(f1(J’1n:u1)rv1n)¢1(t)dt + (¥1n v1n)91(0), (30)
fOT(Y1n. V1) @1 (D)dt + foT[ (VY10 V1) @1(8) + (V10 V1) 91(8) — (Y2, V1) @1 (D)]dE
= foT(f1(J’1n: 1), V1) @1()dt + (Y10, V1) 01(0) + (Y30 V1) 61 (0), (31)
- foT% (V20 V2n) P2 (B)dE + fOT[ (VY20 V02) 92 (1) + (Y20, V20) 92 (8) + (Y10, V2n) @2 (D)]dE
= foT(fz Vo U2), V2n) P2 (O dt + (Y9, V20) 92(0) (32)
fOT(}’Zn. Van) @2 (D)dt + foT[ (VY20 V020) 92 (D) + (Y2, V2n) 92 (8) + (V10 V2n) @2 (D)]dE
= foT(fz (V2n U2), V22) @2 (DAt + (12, V20) 92(0) + (¥, V20) 62(0), 33)

Since for each i = 1,2 the following convergences are satisfied, first since v;;,, — v; stronglyinV,
then the following converges in the indicate spaces are hold

Zzi?%(t) — v;0;(), vin@i(t) — v;@;(t) strongly in L*(I,V)& vi59;(0) — v;¢0;(0) strongly in
On the other hand, since v;,, — v; strongly in L2(Q), then

Vin®i (1) = @i(1), Vin®; (£) — v;¢;(£) strongly in L*(Q) and vy, ¢;(0) — ¢;(0) strongly in L? ()
Second, Vi — Vi Weakly in L2(Q) and y;,, — y; weakly in L2(1,V) and strongly in L2(Q) .

Third and on the other hand, let w;, = v;,9; and w; = v;¢; then w;,, — w; strongly in L?(Q) and
then wy, is measurable w.r.t.(x, t), so using assumptions (A-i), applying Proposition 1.3, the integral
fQﬁ-(x, t, Vin, Ui)Windxdt is continuous W.r.t. (yin, u;, Wi, then

foT(fi(}’in. U, Vin) @i ()dt - fOT(fi(Yi:ui)' v)e(t)dt, vi=12 .
From these convergences, (20) and (21), we can passaged the limits in (30-31) and in (32-33) to get
— s @16v0$1©dt + [{[ (Ty1, Vw91 (D) + 31,90)01(8) — (72, v 91 (D]dt

= foT(f1(J’1'u1)'v1)(P1(t)dt + (¥1n v1n) 91(0) (34)
f(,T(y1'v1)<ﬁ1(t)dt + foT[ (Vy1, Vo) @1(8) + (y1, v @1(8) — (¥2,v1) @1 (D)]dt
= fOT(f1(}’1: uy),v1)@1(O)dt + (y1,v1)91(0) + (3, v1)$1(0) (35)
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- foT(th: V)@ (t)dt + for[ (Vy2, Vo) @2 (8) + (¥2, v2) 92 (8) + (¥1,v2) @2 (D)]dt

= fOT(fz V2, u2), v2) @2 (Ddt + (¥9,v2)92(0) (36)
fOT()’z»’Uz) @ (t)dt + for[ (Vy2, V)92 () + (¥2,v2)92(8) + (¥1, v2) @2 (D)]dt
= fOT(fz V2, u2), v2) @2 ()dt + (¥3,12)92(0) + (¥3,v2)42(0) 37)

Casel: Choose @; € C2[0,T], s.t. ¢;(0) = ¢,(0) = ¢;(T) = ¢,(T) = 0, Vi = 1,2. Substituting in
(35), (37), integration by parts twice the 15¢ terms in the L.H.S. of each one of the obtained equation,
yield to

foT <Y1, V1 > @1(Ddt + fOT[(VJ’LVVl)(Pl(t)

+(¥1,v1)91(8) — (72, v1) @1 (D)]dt = fOT(fl (Y1, u1), v1) @1 (D)dt (38)
foT < Y21, V2 > @2 (Ddt + fOT[(Vyz,sz)(pz )
+(¥2,v2)02(0) + (y1, v2) @2 (D)]dt = fOT(fz (Y2, u2), v2) @2 (D)dt (39)

Which give that y; & y,are solutions of (10) and (12) respectively (a.e. on I)

Case2: Choose ¢; € C2[0,T] , such that ¢;(T) # 0 & ¢;(0) # 0,Vi = 1,2. Multiplying both sides
of (10) and (12) by ¢, (t) and @, (t) respectively, integrating on [0, T], then integrating by parts the
15t term in the L.H.S. of each one of the obtained equation, then subtracting each one of these
obtained equations from those correspond in (34) & (36) respectively, once get (y},vi)qoi(o) =
(i¢(0), v) ; (0).

Case3: Choose ¢; € C?[0,T], such that ¢;(0) = ¢;(T)=¢,(T) =0, ¢,0) #0 ,Vi=12.
Multiplying both sides of (10) and (12) by ¢, (t) and ¢, (t) respectivly, integrating on [0, T], then
integrating by parts twice the 15¢ term in the L.H.S. of each one of the obtained equation, then
subtracting each one of these obtained equations from those correspond in (35) & (37) respectively,
one get (y?,v:)4,(0) = (;(0), 1), (0).

From the last two cases easily once get the initial conditions (11) & (13).

To prove that y,, — ¥ strongly in(L2(I, V))Z, it starts by integrating (26) on [0,T], to get
Fne (DI~ 170013 + 2 [ 170 13dt

=220 Y1nt ) — 21 Yane) + 2(F1 (V1 1), Y1ne) + 2(f2(Y2n U2), Yone) (40)
The same way which is used to get (26& 40), can be also used here when we have y and y,, i.e.

15 (DI~ 150113 + 2 [, 153t

;_ 272, ¥1e) — 2y, ¥20) + 2(f1(¥1, u1), Y1) + 2(f2(¥2, u2), Y2r) (41)
ince
1¥ne(T) = ¥ (DG — 117:(0) — ¥,(0)1I5 + 2 f0T||7n(t) - y(@®I3dt =(a)-(b)-(c) (42)

@)= 1Fne DIE = 170 O + 2 [ 15 (0 17dt

(0)=(Fne (1), 7e(T)) = (e (00, 9:(0)) + 2 [ G (), F (0Dt

©)= (Fe(T), Y (T) = 5:(T)) = (7:(0), e (0) — 5 (0)) + 2 fOT(Jj'(t); Yn(t) — y()),dt

Since y, — ¥ strongly in (LZ(Q))Z, and y,, — y weakly in (L2 (Q))Z, then from (40) and the
assumptions on f; and f,, we obtain

@)= 22 Y1nt ) — 21 Yone) + 20 1n ur), Yane) + 205 (V2ns U2), Yone) =

2(y2,¥16) = 21, y2e) + 2(fi (v, we), y1e) + 2(f2(V2, U2), Yar),
by the same way that we used to get (21), we can get also that

Ynt(T) = ¥,(T) strongly in (L(2)%)? (43)
On the other hand, since ¥, — 3 weakly in (L2(I, V))Z, then using (21& 43), we get

(b) » R.H.S.of (41) = 2(¥2,¥1¢ ) — 2(y1, ¥2e) + 2(fi(y1,u1), ¥16) + 2(F2(2, U2), Y2r)-
All the terms in (c) imply to zero, so as the 1% two terms in the L.H.S. of (42), hence (42) gives

foTllfzn(t) —y(t)|I2dt - 0 asn - oo, s0 we get that 3, — ¥ strongly in (L2(I, V))z.
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Uniqueness of the solution: Let = (y;,y,) and ¥ = (7;, ¥,) be two solutions of the weak form (10-
13), i.e. y, and y, are satisfied the weak form (10-11), subtracting each equation from the other and
then setting v; = y; — ¥, yields to

(1 =YDt y1 — V1) + Iy — 71”% = (fiyuu) — i w), y1 — ¥1)

((}’1 —y1)(0),y; — 71(0)) =0 &forvy =y —y1)e, ((Jﬁ —y1):(0), (y; — 3_’1)t(0)) =0

The same thing will be happened, for (12-13) and the solutions y, & ¥, to get that

(2 =¥ y2 = V2) + vz = 72115 = (.2 u2) — 252 u2),y2 — 72)

((}’2 - ,)(0), (2 — 72)(0)) =0 and ((3’2 —52)¢(0), (y, — yz)t(o)) =0

Adding the above two equations, using Lemma 1.2 in ref. [15] for the 15¢in L.H.S. of the obtained
equation which will be positive, integrating both sides from 0 to ¢, using the initial conditions, the
Lipshctiz property on the R.H.S, and finally applying the B -G inequality, to get

t - =3 2 - =112 t N >112 N - 2
Lo =»e®ll, + 2l -l 1de < 2L (|G -l at = |G -»OI, =0 . veer
= || - ﬁ)(t)”Lz(lV) =0 = the solution is unique.
Lemma 3.1: In addition to assumptions (A), if the functions f; (for each i = 1,2) is Lipschitz w.r.t. y;
and u;, and if the controls vector is bounded, then the operator @ — vy from (L?(Q))? into
(L= (1, L?(2))) orinto (L?(1,V))? or in to (L?(Q))? is continuous.
Proof: Let @ = (u,uy), %= (U, u,) € (12(Q)?, du=1u—1u, for e>0 , U =U+eduE
(L*(Q))?, then by Theorem 3.1, j = ¥ = (y1,¥2) and Y, = ¥z, = (V1.,¥2¢) are their corresponding
states solutions which are satisfied the weak forms (10-13), setting 8y, = (6V1z, 8Y2:) = Ve — ¥, then
(8Y1ete, V1) + (V8Y1,, VV1) + (816, V1) — (8Y26 V1) =

(f1(y1 + 0y1e,uq + €6uy),v1) — (f1(y1,u1), V1) (44)
6y1:(x,0) = 0and 8y,,.(x,0) =0 (45)
(6Y26et,V2) + (V8Y26, V2) + (Y26, V2) + (8Y1,,v2) =

(f2(y2 + 8y2e, Uy + €6U3), V) — (f2(¥2,uz),v2) (46)
6y,2:(x,0) = 0 and 8y, (x,0) =0 47

Substituting v, = 8y1¢¢ in (44) and v, = 8y, in (46), adding the two obtained equations, using the
same way that we used to get (27), a similar equation can be obtained but with 6_)yg in position of y,,
then integration both sides on [0, t], using the Lipschitz property on f; & f, with respect to (y;,u;)
and (y,, u,) respectively, yield to
— 2 —s 2 — =
5y 21118y O, + 189 l,T < 2 fy118y1e118Yzecl + Ly 18y1e18y1ee + Ly 160 |18z ] e
+2 fy 116y 26l 18Y1ce] + La18Y26 118y et + L2180 118y e 11t
Using the definitions of the norms and the relations between them, to get
— 2 — 2 t — 12 — 2 -t = 12 — 2
16y @l + I8y, < [y Al6vell, + I6veell,) de + Ly [ ll8vel, + 6veell,) dt
= (T 2 =t 2
+1% [, ||6u||0dt+L f0||5ygt||1dt
I 2 t 1— 12 — 2
< IS, + Ly SIS + 185l ae
where [, = max(Ly,L,), [? = emax(Ly,L,),L; = max(1+ Ly, 1+ L, + I?)
Applying the Belman-Gronwall inequality, with L? = L?el1, to get
— 2 — 2 — 2 — — 2 — 2 —
I3 @l; + 1550l < 2[5} . veeT =[50l < 2[suol, veeT=
1850 2y = LBl - 8520, < LI, 2 5], < L,

Form the above three inequalities the Lipschitz continuity of the operator 1 +— ¥ easily obtained.

4. The Existence of a Classical Optimal Control: In this section the existence theorem of a
continuous classical optimal control vector satisfying the equality and inequality state constraints is
studied. Therefor the following assumption and lemma will be needed.

Assumptions (B): Consider g;; (for [ =0,1,2 &i = 1,2 ) is of Carathéodory type on Q x (R X U;),
and satisfies the following sub quadratic condition w.r.t. y; € R and u; € U; ,

|9, t, v u)| < Gu(x, t) + cyy? , where G; € L1(Q) ,Vi=12,vl=0,1,2.
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Lemma 4.1: With assumptions (B), the functional u +— G,(¥) , VI =0,1,2 ; is continuous on
(L2 (@))%

Proof: Using assumptions (B) and Proposition 3.1, the integral fQ gui(x,t,y;,u;) dxdt is continuous
onL?(Q),vi=12,vl=0,1,2 hence G,(u) is continuous on (L2(Q))?,vl =0,1,2.

Lemma 4.2 [13]: Let g: Q x R> — R is of Carathéodory type on Q x (R x R) and satisfies
|gCe,y,w) | <G, t) + cy?, where (x,t) € 1(Q) ,u€U, ¢>0, UcR is compact. Then
fQ g(x,y,u)dx is continuous on L2(Q), w.r.t. y.

Theorem 4.1: In addition to the assumptions (A&B), if the set U is convex and compact, WA * 0, the
functions f; &f, have the form

Gt ynw) = fi1 00t y) + fio (0 Dug & fL(x,8,y2,u2) = fo1(x,6,y2) + foo (x, D,

where |fi; (x,t, y)l < mi(e, ) + cilyil & Ifo(e Ol <k, n; €L2(Q) , ¢; =20, Vi=12. gy; is
independent of u; , go; and g,; are convex with respect to u; for fixed (x,t,y;), Vi = 1,2 . Then there
exists a classical optimal control.

Proof: From the assumptions on U; ¢ R Vi = 1,2 and the Egorovs theorem, once get that W; x

W, = W is weakly compact. Since W, # @, then there exists & € W, such that G, (&) = 0, 62 (@) <o
and there exists a minimum sequence {i;} with 1, € WA ,Vk, such that '™ G, (%) = uEW G (u)

Since %, € W, , vk andt W is weakly compact, there exists a subsequence of {i,} say again {z,}
which converges weakly to some point 4 in W, ie U, — u weakly in (LZ(Q))2 and [ llg < ¢, Vk
. From theorem 3.1, for each control i, the state equation has a unique solution y, = Y, » and the
norms ||yl 2y and, 1Vl 12¢g) are bounded, then by Alaoglu’s theorem there exist a subsequence
of {y,} and {y,.} say again
{9} and {y,:} which converges weakly to some point y w.r.t the above norm, i.e.

¥ — ¥ weakly in (L2(I, V))Z, and Vet — ¥ weakly in (L? (Q))z.
Then by applying the Aubin Compactness theorem [15], to get that there exists a subsequence of {y;}
say again {J } such that y, —¥ strongly in (L2 (Q))Z.

Now, Since for each k, y;, and 1y, are solutions of the weak form (16) and (18) respectively,
substituting these solutions in the above indicate equations, then multiplying both sides of each
equation by ¢, (t) and ¢@,(t) respectively (with ¢; € C2[0,T], such that ¢,(T) = ¢;(T) =0,
©;(0) #0,¢;(0) # 0 , Vi =1,2). Rewriting the 15* terms in the L.H.S. of each one of their,
integrating both sides from 0 to T , finally integrating by parts for these 1% terms, one has

fy % D10 v)@1 O + [J[ (VY1 V1)1 (D) + 110 v1)91(E) — (V20 v1) @1 (D]t

= foT(fu(x. t, Y1), V1)1 (Ddt + fOT( f12(x, gy, 194 (0) dt (48)
fy % D2k v2)@2 (Ot + [J (VY210 V02)02(D) + 20 v2)92(8) + (110 v2) @2 (B)]dit
= foT(f21(x' t,y21), v2) 1 (Ddt + fOT( f22(x, Oz, v202 (D)) dt (49)

The limits in the L.H.S. of (48) and (49) can be passaged using the same steps that is used in the proof
of theroem3.1, so it remain the passage to the limits in R.H.S. of (48) and (49) as follows:

Let Vi=12 , v;€C[Q], w; =v;p;(t), then w; € C[Q] € L°(,V) c L*(Q), set fiu(yix) =
fir(ir)w;, then fi1:Q X R - R is of Carathéodory type, using Proposition 1.3, to get the integral
fQ fir i )w; dxdt is continuous W.r.t. vy, but y; — y; strongly in L2(Q) & u;, — u; ,weakly in
L?(Q) then B

fQ fuudw;dxdt > fQ fu(ydwidxdt,vw; € C[Q], for i=1,2 (50)
fQ fiz(x, t)uikWid.th - foiz(x, t)ul-wl- dxdt , VWi € C[a] , for i = 1,2 (51)
Since (50-51) are hold for each v; € C(Q), but C(Q) is dense inV, then also are hold for every
v; € V,Vi = 1,2, hence we get the following two weak forms

V1o v1) + (Vy, Vo) + (71, v1) — (72, v1) = Fua (6, y1) + fr2(x, Ouy), v4), Vo, €V, ae.0n 1 (52)
(Y20, v2) + (Vy2,V02) + (¥2,v2) + (71, V2) = (F21(x, 6, 72) + f22(x, DUy, v5), Vv, €V, ae.onl (53)
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To passage the limits in the initial conditions, the same steps which used in the proof of theorem 3.1
can be also used here. Hence y; and y, are the solutions of the state equations.
On the other hand, since G,(uy) = fQ g11(x, t, y1x) dxdt + fQ G12(x, t, yar) dxdt, with gq; (for

i=12 ) are independent of wu; and it is continuous w.rt. y; , then by Lemma4.1
fQ 91:(x, t, i) dxdt is continuous w.r.t. y;, but ¥, —¥ strongly in (L (Q))z, then
fQ g1i(x, t, vy dxdt — fQ g1i(x,t,y;) dxdt . Hence G, (i) = ]11_1)130 G,(dy) = 0.
Now, sinceeach | = 0,2 & i = 1,2, g;;(x, t, y;,u;) is continuous w.r.t. (y;,u;) and since U; is compact
with u; (x, t) € U; a.e. in @, then using Lemma 4. 2, to get
Jo81(x,t.yi, un) dxdt — [, gu(x, £, y;, uy) dxdt (54)
But g;; (x, t, y;,u;) is convex and continuous w.r.t. u; then |, 0 g1 (x, t, y;, u) dxdt is also convex and
continuous w.r.t. u; then fQ 91 (x, t,y;,u;) dxdt is weakly lower semi continuous (W.L.S.C.) w.r.t. u;
(foreachl=0,2 &i=1,2)i.e.
Jo 91ty u;) dxdt < lim inf [, (gui (%, & Y5, uire) = 9o (%, £, Y uire))dxdt +
Jim inf Jo 91 Cx, t, ik, uire) dxdt

< ’11_1)130 inf fQ g1i (%, t, yik, i) dxdt , by (1.31) =
Y Jo9iiCx,t,yi,u) dxdt < Jim infziz=1fQ 91 (6 6 i wig) dxdt = G,(@) < Jim inf G, (i) ,
then G, (@) < 0 since U, € W,, Yk, and once get that
Go(@l) < lim infGo(iy) = lim Go(aix) = ¢ GO( ) =% Go(u) = 1 is an optimal control .
Assumptlons (C): Assume that for each (I = 0,2&1 = 1,2), the functions f; , fiy,, fiu; » Gu,y; aNd Gi,
are defined and are of Carathéodory type on Q x (R x U) (where Uis an open set containing the
compact set U) and satisfy: |fiy,, (x, &, v, w;)| < Ly, |fo, Co t, i, u)| < Ly
|91y, Co t i u)| < G Ge, ) + i |yil o | giu, Co t i u)| < G Ge 0 + ¢, Lyl
where (x,t) € Q , y;,u; ER, Gy, Gy, € L*(Q) . Ly, Ly, ¢y, ¢y = 0.
Remark: In the following theorem and for simplicity, we drop the index [ from the functions g;; & G;.

Also we assume the assumptions (A), (B) and (C) are considered.
Theorem 4.2: Consider the adjoint equations Z = (z;, z,) of the state equations (1-6) are given by

—Z1e — AZ1 + 21 + 25 = 21f 1y, (0, Y1, U + g1y, (X, 8 Y1, uy) , 0N Q (55)
z;=0 onX, z;(x,T)=2z,(x,T)=0 onQ (56)
—Zyy —Az; +2,—2z1 = sz1y2(X, t,y2uz) + 92y, (x,t,¥2,u2) ,0nQ (57)
z,=0 onX z,(x,T)=2,(x,T)=0 on Q (58)

And the Hamiltonian is defined: H(x,t,y,u4,Z) = Z Gifi(x, t,y,u) + i (e, t, v, u;)
where G (1) = f g1(x,t,y1,u; )dxdt +f g2 (x, t yz,uz)dxdt

Then for % € W, the directional derivative of G is given by

DG(4,,u—1d) = limgﬁom = f Hyz(x,t,9,1,2) (@ — 1) dxdt

Proof: At first let, the weak forms of the adjomt equations are given Vv,, v, € V, by

(2100, v1) + (V21, V1) + (21, v1) + (22,v1) = (Z1f1y1'171) + (glyl,vl), Vv,V ae.on I (59)

(21(T),v1) = (21,(T),v1) =0, (60)
_(ZZtl v2> + (VZZ, sz) + (Zz,vz) — (zl,vz) = (szzyZ,vz) + (gzh,vz), Vv, € V aeon I (61)
(22(T),v2) = (22(T),v2) =0, (62)

From the assumptions and using the same way which is used in the proof of theorem2.1, once can
prove that the weak forms (59-62) has a unique solution Z == (z;, z,) € (L*(Q))?.
Substituting v, = 8y, (59) and v, = &y, in (61), integrating both sides on [0, T], to get

foT(fs}’m Zyg) dt + foT[ (Vz1,V8y1e) + (21, 8y1¢) + (22, 8y1.)]dt =
T
Jo U(z1f1y,,691¢) + (91y,, 8¥16)1dt (63)
fOT(a}’Zs, ZZtt) dt + foT[ (VZz, VSyZS) + (ZZ' 5)’2;;) - (Zl' 5)’25)]‘” =
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Iy [(z2f 2y, 8Y2¢) + (G2, 872¢)]dt (64)
Now, let %, % € (L2(Q))?, Su=u—1u fore>0, U, =1u+educe (L2(Q))?, then by theorem 2.1,
y=yz & Y. =yy, are their corresponding solutions. Setting 5Y: = (6Y16,6Y2:) = Je =9
substituting v, = z; in (44) and v, = z, in (46), integrating both sides on [0, T], then Integrating by
parts twice the 1% term in the L.H.S. of each one of the obtained equation, Finding the Fréchet
derivatives of f; and f, in the R.H.S. of each one them (which are exist from the assumptions C), then
from the result of Lemma 3.1 and the Minkowiski inequality, once get

fOT(5J’1s, Zyg) dt + foT[ (V6y1:,V21) + (8Y1 21) — (826, 21)]dt =

Jo (F1y,8Y1c + f1u, (£8U1), 21)dt + 014 () (65)
f()T<8y2£J Zog) At + foT[ (V6y2:,VZ2) + (8Y2e,22) + (8Y1e,22)]dE =
Jo (F2y,8Y26 + fru, (€8U2), 25)dt + 015(€) (66)

where 0,;(e) — 0, as e — 0, with 04;(¢) = [|6y;llg + €lldu;ll, for each i = 1,2
Subtracting (65) and (66) from (63) and (64) respectively, adding the obtain equations, once get
T T
ef, [ (f1u,0u1,21) + (F2u,0Uz,22)]dt + 04(2) = Jo [(91y,, 6Y1) + (g2y,, 6y2)]dt (67)
where 0;(¢) — 0, ase — 0, with 0;(¢) = ||8_)y£||Q + ¢||6u|
Q

On the other hand, from the assumptions on g, and g,, the definition of the Fréchet derivative, the
result of Lemma 3.1, and then using Minkowiski inequality, we have

Go(u,) — Gy(u) = fQ(91y1 6y + glulgsul)dxdt + fQ(HZyz 8y2e + 92u255u2)dxdt + 0,(¢) (68)
where 0,(¢) = ||6_)y5||Q +¢||6ul| L 0,(e) — 0, ase — 0

Q
Now, by substituting (67) in (68), one have that
Go(Ue) — Go(U) = ¢ fQ[(Z1f1u1 + 1w, )0U1 + (22 fou, + 2u,)OUz] dxdt + 05(e)
where 03(e) = 01(¢) + 05(e) — 0, as & — 0, with 0(e) = 2|8y |, + 2¢[[6ul|

Q

Finally, dividing both sides of the above equality by ¢, then taking the limit e — 0, once get
DG (1, u~1) = [, Hy(x,t,,4,2). (& — U) dxdt .
5. Necessary and sufficient conditions for optimality: In this section the necessary and sufficient

theorems for optimality under prescribed assumptions are proved as follows:
Theorem 5.1: Necessary Conditions for Optimality (Multipliers Theorem):

a) with assumptions (A), (B) , (C) if W is convex, the control % € WA is optimal, then there exist
2

multipliers ; € R, [ = 0,1,2 with 1, = 0,1, = 0, ¥, [4;| = 1 such that the following Kuhn-Tucker-
=0

Lagrange (K.T.L.) conditions are satisfied:

2 — — Pl

Y 4DG,(u, u—u)=>0,Vuew, (69)
=0
A,G,(d) = 0 , (Transversality condition ) (70)
(b) The inequality (69) is equivalent to the (weak) point wise minimum principle
Hy(x,t,5,2,3).3(0) = 2nHy(x,£,5,7,%).5(t) ae onQ (72)

-

2
where Hﬁ(x' LYy, 2' _)) = _Zl(zifiui (x; t, yi'ui) + giui (x' t, Yi'ui))
1=

2 2
with g; = Y 4igi; and z; = Y Az, (for i = 1,2).
=0 =0

Proof: a) From Lemma 4.1, the functional G,(u) (for I = 0,1,2) is continuous and from Theorem4.2

the functional DG, (for [ = 0,1,2 ) is continuous w.rt. & —u and linear in & —u, then DG, is

M —differential for every M, then using the K.T.L. theorem [5], there exist multipliers 4; € R ,
2

=012 with 2 >0,1, >0, ¥ [A4] =1, such that (69-70) are satisfied, by using Th..2, then (69)
=0

becomes
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2 2
_ZOA, Jo _21 (z1if tiw; + Giiu;)Swidxdt > 0, which can be rewritten as
= 1=

Jo@1f 1uy + G1uy Z2R1u, + G2u,)- @ —Wdxdt 20, VR EW (72)
where g; = Y70 A1 Gii » 2 = Xico A 2, Vi = 1,2

To prove the second part, let {ﬁk} be a dense sequence in w, u is Lebesgue measure on Q and let
U (x,t) , if (x,t) €S

Uu(x, t) , if (e, t) €S

Therefore (72) becomes fs(21 fiu, + G1uyr Z2h1w, + Gou,)- (@ — W)dxdt > 0, which implies to

(Z1fiu, + 91uyr Z2R1w, + G2u,)- (U —%) =0,ae.o0nQ

This means the inequality is satisfied on the whole region Q@ except in a subset @, such that £ (Qy) = 0
, Vk, where u is a Lebesgue measure, i.e. the inequality satisfies on Q except in the union U Q, with
1(Uy Qi) = 0, but {ii, } is a dense sequence in the control set W , then there exists i € W such that
(Z1f1u, + Gruy Z2Pau, + Gou,)- (@ — ) 20,26 0nQ, Vi €W

i.e. (69) gives (72). The converse is clear.

Theorem 5.2: (Sufficient Conditions for Optimality): In Addition to the assumptions (A), (B) &

(C). Suppose W is convex, with U convex, f; & gy; are affine w.r.t. (y;,u;) for each(x, ©), go;&Ja:
are convex w.r.t. (y;,u;) V(x,t),vi = 1,2. Then the necessary conditions of theorem5.1 with 15 > 0
are sufficient.

Proof: Assume i € iW, is satisfied the K T.L. condition (69-70). Let G(@) = X7, 4,G, (1), then using
theorem.4.2, to get DG(%,, i — i) = Z M Jo 2o i foui + Guins) Sw; dxdt = 0

Since f1(x,t,y1,u) = fi1(x, )y; + f12(x thug + fi3(x, t) and

f200t,52,u2) = f106)y2 + fo2 (DU, + fo3(x,t)
Let % = (uy,up) & 1 = (liy,T,) are two given controls vectors, then J = (Vy1, Yuz) = V1, 2) &
¥ = g1, ¥az) = (¥1,7,) are their corresponding stats solutions. Substituting the pair (i, 3) in
equations (1-6) and multiplying all the obtained equations by « € [0,1] once and then substituting the
pair (Z,y) in (1-6) and multiplying all the obtained equations by (1 — a) once again, finally adding
each pair from the corresponding equations together one gets:
(ay1 + (1 — a)y1 )ee — Aay; + (1 — a)yy) + (ay, + (1 — @)y) — (ay, + (1 — a)y,)

S c Q be a measurable set such that %(x, t) = {

=fuxt(ay; + 1 —a)y) + fr2(x, ) (au; + (1 — @)uy) + f13(x, 1) (73)
ayl(x! t) + (1 - “)71(95: 0) =0 (74)
ayl(x! 0) + (1 - “)71(95: 0) = yg(x)’ aylt(x' 0) + (1 - a)ylt(x; 0) = y%(.X) (75)
(ay; + (1 - a)y; ) — Alay, + (1 — a@)y,) + (ay; + (1 — @)y,) + alay, + (1 — a)y,)

= f21(x, ) (ay; + (1 — a)yz) + fa2(x, ) (au; + (1 — @)uy) + fo3(x, 1) (76)
ay; (x! t) + (1 - “)72 (x, 0) =0 (77)
ayZ(x! 0) + (1 - “)72(95: 0) = yg(x) ’ “)’Zt(x' 0) + (1 - a)th(x; 0) = y%(.X) (78)

Equations (73-75) and (76-78), show that if the control vector is & = (i, %i,) With & = % + (1 — @)@
then its corresponding state vector is 3:1 = (1 ¥2) With ¥ = Vg, = Vieu+(1- 0w = Vi +
(1 - a)y;, Vi=1,2. This means the operator u + y; is convex — linear w.r.t. (y,u) for each
(x,t)) € Q.

On the other hand, the function G, (1) is convex — linear w.r.t. (y, %) for each (x,t) € Q, this back to
the fact that the sum of two affine functions gq;(x,t,y;,u;) (for each i =1,2) w.r.t. (y;,u;) and
V(x,t) € Q is affine and the operator i — Yy is convex-linear.

The functions G,(d) , G,(i) are convex w.r.t. (y,u) , V(x,t) € Q (from the assumptions on the
functions g;; and g;,, V1 =0,2 and from the sum of two integral of convex function is also convex).
Hence G (&) is convex w.r.t. (y,u4), V(x,t) € Q in the convex set W, and has a continuous Fréchet
derivative satisfies

DG(i,,% — i) = 0 = G(ii) has a minimumat i = G(@) < G(@), Vie W =

A0Go (@) + 4161 (@) + 1,6, (@) < 29Go (1) + 1,6, () + 2,6,(7) , vViie W

Let% € WA , with A, = 0 and from Transversality condition , the above inequality becomes
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XoGo(@) < A0Go(@) , Vi EW = Go(i) < Go(T@), VI € W =1 isan optimal control.

6. Conclusions:

The Galerkin method with the Aubin compactness theorem are used successfully to prove the
existence of a unique "“continuous state vector" solution for a couple nonlinear hyperbolic partial
differential equations for a given continuous classical control vector. The existence theorem of a
continuous classical optimal control vector governing by the considered couple of nonlinear partial
differential equation of hyperbolic type with equality and inequality constraints is proved. The
existence of a unique solution of the couple of adjoint equations associated with the considered couple
equations of the state vector is studied. The Frcéhet derivation of the Hamiltonian is derived. The
theorems of the necessary conditions and the sufficient conditions of the optimality of the constrained
problem are proved.
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