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Abstract 

This paper is concerned with the existence of a unique state vector solution of a 

couple nonlinear hyperbolic equations using the Galerkin method when the 

continuous classical control vector is given, the existence theorem of a continuous 
classical optimal control vector with equality and inequality vector state constraints 

is proved, the existence of a unique solution of the adjoint equations associated with 

the state equations is studied. The Frcéhet derivative of the Hamiltonian is obtained. 

Finally the theorems of the necessary conditions and the sufficient conditions of 

optimality of the constrained problem are proved. 
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 المستمر لزوج من المعادلات التفاضلية من النمط السيطرة الامثلية التقليدية لةمسأ
 التباينالزائدي بوجود قيدي التساوي و  مطالجزئية الغير خطية من الن 

 

 *جميل أمير علي الهواسي
 , بغداد , العراق كلية العلوم الجامعة المستنصرية ت ,قسم الرياضيا

 :الخلاصة
لزوج من المعادلات    " State Vector"يهتم هذا البحث بمسألة وجود ووحدانية الحل المتجه للحالة  

عندما يكون متجه السيطرة التقليدية    "Galerkin"ام طريقة كاليركن, الزائدي باستخد النمطالتفاضلية من 
"Classical control vector" "سيطرة امثلية مستمرة تقليدية بوجود قيدي لوجود  مبرهنة التم برهان  .  ثابتا

 Adjoint"لزوج من المعادلات المرافقة  وحيد مبرهنة وجود حل برهان . كذلكلمتجه الحالة  التباينو التساوي 
equation"  مشتقة فريشيه ايجادالمصاحبة لمعادلات الحالة . تم " Frcéhet"   لدالة هاملتون الخاصة بهذه

المسالة. ايضا تم برهان  مبرهنتا الشروط الضرورية والكافية لوجود متجه سيطرة امثلية مستمرة تقليدية  بوجود 
 .باينالتو  قيدي التساوي و

 

1. Introduction:  
Optimal control problems play an important role in many fields in the real life problems, for 

examples, in an electric power [1],  medicine [2], economic [3],  biology [4]  and in many others 

fields. This importance encouraged many researchers to interest the study of the optimal control 
problems in general and the continuous classical optimal control problems in particular. The 

continuous classical optimal control problems is first studied for systems governing by nonlinear 

ordinary differential equations by [5] and for systems are governed by linear partial differential 
equations by [6].  During the last decade great attentions have been made to study this subject for 

systems are governed by nonlinear ordinary differential equations as in [7] or systems governed either 

by nonlinear partial differential equations either of : an elliptic type as in [8] ,  a hyperbolic type  as in 
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[9] , a parabolic type as in [10], or optimal control problems are governed by a couple of nonlinear 

partial differential equations of : an elliptic type [11] , a parabolic type [12]. 

This work at first is concerned with the  existence and uniqueness theorem of the state vector 

solution of a couple nonlinear hyperbolic differential equations using the Galerkin method for a given 
continuous classical control vector. The proof of the existence theorem of a continuous classical 

optimal control vector governed by a couple of nonlinear hyperbolic partial differential equation with 

equality and inequality state vector constraints is achieved. The existence and uniqueness solution of 
the couple of adjoint vector equations associated with the considered couple equations of the state 

equations is studied. The Fréchet derivative of the Hamiltonian of this problem is derived. Finally, the 

necessary theorems of optimality of the considered problem so as the sufficient theorem of optimality 
are proved.  

2. Description of the problem: Let        ,     ,      be an open bounded region with 

Lipschitz boundary      ,      ,      . Consider the following continuous classical 

optimal control problem: The state equation is given by the nonlinear hyperbolic equations: 

                 (         )                                                                                              (1) 

                 (         )                                                                                              (2) 

  (   )              on                                                                                                                           (3) 

  (   )    
 ( ) and    (   )    

 ( ) on                                                                                     (4) 

  (   )              on                                                                                                                           (5) 

  (   )    
 ( ) and    (   )    

 ( )  on                                                                                    (6) 

where  ⃗  (     )  (  ( ))  is the state vector, corresponding to the classical control vector  

 ⃗⃗  (     )  (  ( ))  and (     )  (  ( ))   is a vector of a given function defined on  (  
     )  (       )  with      , for       . 

The controls constraints (The controls set) are  ⃗⃗   ⃗⃗⃗⃗   ⃗⃗⃗⃗  (  ( ))
 
         

where  ⃗⃗⃗⃗  { ⃗⃗⃗  (  ( ))
 
  ⃗⃗⃗   ⃗⃗⃗ , a.e. in  }, with  ⃗⃗⃗                

The cost function is   ( ⃗⃗⃗)  ∫    (         )     ∫    (         )    
 

 

 

 
                          (7) 

The equality and inequality constraints on the state vector and the control vector are  

  ( ⃗⃗⃗)  ∫    (         )     ∫    (         )      
 

 

 

 
                                                   (8)  

  ( ⃗⃗⃗)  ∫    (         )     ∫    (         )    
 

 

 

 
                                                     (9)  

The set of admissible control is   ⃗⃗⃗⃗  { ⃗⃗   ⃗⃗⃗⃗   ( ⃗⃗)       ( ⃗⃗)    } 

The continuous optimal control problem is to find  ⃗⃗   ⃗⃗⃗⃗  such that     ( ⃗⃗)    ( ⃗⃗⃗)
 ⃗⃗⃗  ⃗⃗⃗⃗ 

       . 

Let ⃗⃗        { ⃗  ⃗  (  ( ))
 
                   },  ⃗  (     ). We denote by (   ) 

and ‖ ‖  the inner product and the norm in   ( ), by (   )  and ‖ ‖  the inner product and the norm 

in   ( ), by ( ⃗  ⃗) and ‖ ⃗‖  the inner product and the norm in   ( )    ( ) by ( ⃗  ⃗)  

(     )  (     )  and ‖ ⃗‖ 
  ‖  ‖ 

  ‖  ‖ 
   the inner product and the norm in  ⃗⃗ and   ⃗⃗  is the 

dual of  ⃗⃗. 

The weak forms of the problem (1-6) when  ⃗  (  
 ( ))  are given almost everywhere on   by   

〈       〉  (       )  (     )  (     )  (     ),         ,   (   )                         (10)  

(  
    )  (  ( )   )     and   (  

    )  (   ( )   )                                                                  (11) 

〈       〉  (       )  (     )  (     )  (     )        ,   (   )                         (12) 

(  
    )  (  ( )   )    and (  

    )  (   ( )   )                                                                     (13) 

The following assumptions are necessary to study the classical optimal control problem: 

Assumptions (A):     is of the Carathéodory type on   (     ), satisfies  the following sub 

linearity  condition with respect to    &    and is satisfied Lipschitz condition with respect to    i.e. 

        
   (         )    (   )         , where        ,      and      ( ), for (   )   , and 
   (         )    (     ̅    )         ̅  ,        ̅       and       for (   )   .  

3. The Solution of the State Equations: In this section the existence theorem of a unique solution of 
a coupled nonlinear hyperbolic partial differential equations under a suitable assumption is proved 

when the control vector is given, the following proposition will be needed. 
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Proposition 3.1 [13]: Suppose   be a measurable subset of     (     ),           is of 

Carathéodory type satisfies‖ (   )‖   ( )   ( )‖ ‖ , for each (   )      , where   

  (    ),     (   ),    
 

   (   ),        , if    ,     if    . Then the functional 

 ( )  ∫  (   ( ))  
 

   
 is continuous. 

Theorem 3.1: (Existence and Uniqueness Solution of the State Equations): With assumptions (A), 

for each given  ⃗⃗  (  ( ))
 
, the weak forms (10&12) have a unique solution  ⃗  (     ) s.t.  ⃗  

(  (   ))
 
,  ⃗  (       )  (  ( ))

 
, ⃗   (       )  (  (    ))

 
 .  

Proof: Let  ⃗⃗         ⃗⃗ (for each  ) be the set of continuous and piecewise affine function in  . 

{ ⃗⃗ }
   

 
 be a sequence of subspaces of  ⃗⃗, such that    ⃗  (     )    ⃗⃗, there exists a sequence { ⃗ } 

with  ⃗  (       )   ⃗⃗      , and   ⃗    ⃗ strongly in  ⃗⃗     ⃗    ⃗  strongly in (  ( ))
 
. 

{ ⃗  (       )          ( )} be a finite basis of   ⃗⃗  (where  ⃗  is continuous and piecewise 

affine function in  , with  ⃗ ( )    on the boundary  ) and let  ⃗  (       ) be the Galerkin 

approximate solution to the exact solution  ⃗  (     ) such that  

    ∑    
 
   ( )   ( ), where    ( ) are unknown  functions of  , for each           .   (14) 

&     ∑    ( )   ( ) 
   ,where    ( ) are unknown  functions of  , for each           . (15)  

The weak forms (10&12) are approximated w.r.t.   using the Galerkin method, substituting          

(     ) in the obtained equations, they become  
〈       〉  (        )  (      )  (      )  (  (      )   ),                                (16) 

(   
    )  (  

    )     and (   
    )  (  

    )                                                                             (17) 

〈       〉  (        )  (      )  (      )  (  (      )   )  ,                              (18) 

(   
    )  (  

    ),    and (   
    )  (  

    )                                                                            (19) 

where    
      

 ( )     (   )     (respectively     
     

     
 ( )      (   )    ( ) ) be the 

projection of   
  onto  ( be the projection of   

      onto   ( ) ),        , i.e. 

   
    

  strongly in    , with ‖ ⃗⃗⃗ 
 ‖

 
     and ‖ ⃗⃗⃗ 

 ‖
 

                                                           (20) 

   
    

  strongly in   ( )  and  ‖ ⃗⃗⃗ 
 ‖

 
                                                                                   (21) 

Substituting (14) in (16-17) and (15) in (18-19), setting       ,       , the obtained equations are 

equivalent to the following 1
st
 order nonlinear system of ordinary differential equations with their 

initial conditions and has a unique solution  ⃗  (       )   (   ⃗⃗) [14]:  i.e. for each        and 

      

   ́ ( )      ( )     ( )      ( ̅ 
 ( )  ( )),         ( )    

  ,        ( )    
     

   ́ ( )      ( )     ( )      ( ̅ 
 ( )  ( )),        ( )    

 , and        ( )    
                          

where    ( )  (   ( ))
   

,  ́ ( )   ( ́  ( ))   
  ,  ́ ( )   (   

 ( ))
   

 ,   ( )  (   ( ))
   

 

   (   )   ,     (  (  
   ( )   )    ),   

  (   
 ),    

  (  
     ),    (    )   

 ,     

(       ),   (   )   
,     (       ),   (   )   

 ,     (       ),    (    )   
,      

 (         )  (       ) ,   (   )   
,      (         )  (       ) , and   (   )   

, 

    (       ).   

Then corresponding to the sequence{  ⃗⃗ }, there exists a sequence of the following approximation 

problems, i.e. for each  ⃗  (       )    ⃗⃗ , and         
〈         〉  (         )  (       )  (       )  (  (      )    )                                (22) 

(   
     )  (  

     )  ,   and (   
    )  (  

     )                                                                      (23) 

〈         〉  (         )  (       )  (       )  (  (      )    )                                (24) 

(   
     )  (  

     ),   and (   
    )  (  

     )                                                                        (25) 

which has a sequence of unique solution  { ⃗ }.  Substituting           in (22) and               

(24),  
adding the two obtained equations, using Lemma 1.2 in [15] for the 1

st
 term of the L.H.S., once get 

 

  
[‖ ⃗⃗⃗  ( )‖ 

  ‖ ⃗⃗⃗ ‖ 
 ]   ((         )  (        )  (  (      )     )  (  (      )     ))             (26) 

 

  
 ‖ ⃗⃗⃗  ( )‖ 

  ‖ ⃗⃗⃗ ‖ 
     (         )    (        )    (  (      )     )   
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     (  (      )     )                                                                                                                     (27) 

Using assumptions (A) for the R.H.S. of (27), integrating both sides on      , using ‖   ‖  ‖ ⃗ ‖  , 
‖    ‖  ‖    ‖ , and ‖ ⃗  ‖  ‖ ⃗  ‖ , to get  

∫  

  
 ‖ ⃗⃗⃗  ( )‖ 

  

 
 ‖ ⃗⃗⃗ ‖ 

      

 ∫ (‖ ⃗⃗⃗ ‖ 
  ‖ ⃗⃗⃗  ‖ 

 )
 

 
   ∫ (‖  ‖ 

  ‖  ‖ 
 )

 

 
     ∫ (‖ ⃗⃗⃗ ‖ 

  ‖ ⃗⃗⃗  ‖ 
 )

 

 
   ∫ ‖ ⃗⃗⃗  ‖ 

  

 
    

 ‖  ‖ 
  ‖  ‖ 

    ∫ (‖ ⃗⃗⃗ ‖ 
  ‖ ⃗⃗⃗  ‖ 

 )
 

 
        ∫ (‖ ⃗⃗⃗ ‖ 

  ‖ ⃗⃗⃗  ‖ 
 )

 

 
  ,     ́  

 ́                                                                                                                                                                               (28)   

where         ,         ,         ,        (     ), with ‖  ‖ 
   ́ ,      .      

Since  ‖ ⃗ 
 ‖     , and ‖ ⃗ 

 ‖     , with                , inequality (28) becomes 

‖ ⃗  ( )‖ 
  ‖ ⃗ ( )‖ 

        ∫ (‖ ⃗ ‖ 
  ‖ ⃗  ‖ 

 )
 

 
    

Using the Belman-Gronwall (B-G) inequality, to get            
‖ ⃗  ( )‖ 

  ‖ ⃗ ( )‖ 
     

     ( )   ‖ ⃗  ( )‖ 
    ( ) and ‖ ⃗ ( )‖ 

    ( ),           
Easily once can obtained that ‖ ⃗  ( )‖    ( )     and    ‖ ⃗ ( )‖  (   )   ( ) .  

Then by applying the Alaoglu’s theorem, there exists a subsequence of { ⃗ }   , say again { ⃗ }    

such that   ⃗     ⃗ weakly in (  ( ))
 
 and  ⃗    ⃗  weakly in  (  (   ))

 
, and since  

(  (    ))
 

 (  (   ))
 

 ((  (   ))
 

)  (  (    ))
 

                                                     (29)     

Then the Aubin compactness theorem [15] can be applied here to get that   ⃗    ⃗ strongly in 

(  ( ))
 
.  Now, multiplying both sides of (22) & (24) by   ( )         , such that   ( )  

 ́ ( )    ,   ( )   ,  ́ ( )     ,       , integrating on      , finally integrating by parts twice 
the 1

st
 term of each one of the obtained two equations, yield to    

 ∫
 

  
(       )  ́ ( )   ∫  

 

 
(         )  ( )

 

 
 (       )  ( )  (       )  ( )     

               ∫ (  (      )    )  ( )   (   
     )  ( )

 

 
,                                                                (30)      

∫ (       )  ́́ ( )   ∫  
 

 
(         )  ( )  (       )  ( )  (       )  ( )   

 

 
  

             ∫ (  (      )    )  ( )   (   
     )  ( )  (   

     )  ́ ( )
 

 
,                             (31) 

 ∫
 

  
(       )  ́ ( )   ∫  

 

 
(         )  ( )

 

 
 (       )  ( )  (       )  ( )     

           ∫ (  (      )    )  ( )  
 

 
 (   

     )  ( ) ,                                                                  (32) 

∫ (       )   ́́ ( )   ∫  
 

 
(         )  ( )  (       )  ( )  (       )  ( )   

 

 
  

           ∫ (  (      )    )  ( )  
 

 
 (   

     )  ( )  (   
     )  ́ ( ),                            (33)   

Since for each        the following convergences are satisfied, first since                       , 
then the following converges in the indicate spaces are hold  

     ( )      ( ) ,     ́ ( )     ́ ( ) strongly in   (   )&      ( )      ( ) strongly in 

  ( ),  

On the other hand, since                       ( ), then 

     ́ ( )   ́ ( ),     ́́ ( )     ́́ ( ) strongly in   ( ) and      ́ ( )   ́ ( ) strongly in   ( ) 

Second,          weakly in   ( ) and         weakly in   (   ) and  strongly in   ( ) . 

Third and on the other hand, let            and          then        strongly in   ( ) and 

then     is measurable w.r.t.(   ), so using assumptions (A-i), applying Proposition 1.3, the integral 

∫   (          )       
 

 
 is continuous w.r.t. (          ), then 

 ∫ (  (      )    )  ( )  
 

 
 ∫ (  (     )   )  ( )  

 

 
 ,         .                               

From these convergences, (20) and (21), we can passaged the limits in (30-31) and in (32-33) to get  

 ∫ (      )  ́ ( )   ∫  
 

 
(       )  ( )  (     )  ( )  (     )  ( )   

 

 
  

        ∫ (  (     )   )  ( )   
 

 
(   

     )  ( )                                                                           (34)      

∫ (     )  ́́ ( )   ∫  
 

 
(       )  ( )

 

 
 (     )  ( )  (     )  ( )     

         ∫ (  (     )   )  ( )   (  
    )  ( )  (  

    )  ́ ( )
 

 
                                                (35) 
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 ∫ (      )  ́ ( )   ∫  
 

 
(       )  ( )  (     )  ( )  (     )  ( )   

 

 
  

      ∫ (  (     )   )  ( )   
 

 
 (  

    )  ( )                                                                                 (36) 

∫ (     )   ́́ ( )   ∫  
 

 
(       )  ( )  (     )  ( )  (     )  ( )   

 

 
  

       ∫ (  (     )   )  ( )  
 

 
 (  

    )  ( )  (  
    )  ́ ( )                                                 (37) 

Case1: Choose           , s.t.   ( )    ́ ( )    ( )    ́ ( )   ,       . Substituting in 

(35), (37), integration by parts twice the     terms in the L.H.S. of each one of the obtained equation, 
yield to 

∫            ( )   ∫  
 

 
(       )  ( )

 

 
  

                      (     )  ( )  (     )  ( )    ∫ (  (     )   )  ( )   
 

 
                             (38) 

∫            ( )   ∫  
 

 
(       )  ( )

 

 
  

                 (     )  ( )  (     )  ( )    ∫ (  (     )   )  ( )   
 

 
                                 (39) 

Which give that    &   are solutions of (10) and (12) respectively (a.e. on  ) 

Case2: Choose             , such that    ( )     &   ( )           . Multiplying both sides 

of (10) and (12) by   ( ) and   ( ) respectively, integrating on      , then integrating by parts the 

    term in the L.H.S. of each one of the obtained equation, then subtracting each one of these 

obtained equations from those correspond in (34) & (36) respectively, once get  (  
    )  ( )  

(   ( )   )  ( ).    
Case3: Choose           , such that    ( )    ( )    ́ ( )     ,   ́ ( )             . 

Multiplying both sides of (10) and (12) by   ( ) and   ( ) respectivly, integrating on      , then 

integrating by parts twice the     term in the L.H.S. of each one of the obtained equation, then 
subtracting each one of these obtained equations from those correspond in (35) & (37) respectively, 

one get  (  
    )  ́ ( )  (  ( )   )  ́ ( ). 

From the last two cases easily once get the initial conditions (11) & (13). 

To prove that  ⃗    ⃗ strongly in(  (   ))
 
, it starts by integrating (26) on ],0[ T , to get 

‖ ⃗⃗⃗  ( )‖ 
  ‖ ⃗⃗⃗  ( )‖ 

   ∫ ‖ ⃗⃗⃗ ( )‖ 
   

 

 
  

  (         )   (        )   (  (      )     )   (  (      )     )                            (40) 

The same way which is used to get (26& 40), can be also used here when we have  ⃗ and   ⃗ , i.e.  

‖ ⃗⃗⃗ ( )‖ 
  ‖ ⃗⃗⃗ ( )‖ 

   ∫ ‖ ⃗⃗⃗( )‖ 
   

 

 
  

  (       )   (      )   (  (     )    )   (  (     )    )                                            (41) 

Since  

‖ ⃗⃗⃗  ( )   ⃗⃗⃗ ( )‖ 
  ‖ ⃗⃗⃗  ( )   ⃗⃗⃗ ( )‖ 

   ∫ ‖ ⃗⃗⃗ ( )   ⃗⃗⃗( )‖ 
   

 

 
 (a)-(b)-(c)                         (42) 

(a)= ‖ ⃗  ( )‖ 
  ‖ ⃗  ( )‖ 

   ∫ ‖ ⃗ ( )‖ 
   

 

 
 

(b)=( ⃗  ( )  ⃗ ( ))  ( ⃗  ( )  ⃗ ( ))   ∫ ( ⃗ ( )  ⃗( ))   
 

 
   

(c)= ( ⃗ ( )  ⃗  ( )   ⃗ ( ))  ( ⃗ ( )  ⃗  ( )   ⃗ ( ))   ∫ ( ⃗( )  ⃗ ( )   ⃗( ))   
 

 
  

Since  ⃗    ⃗ strongly in (  ( ))
 
, and  ⃗     ⃗ weakly in (  ( ))

 
, then from (40) and the 

assumptions on    and   ,  we obtain 

(a)=  (         )   (        )   (  (      )     )   (  (      )     )   

             (       )   (      )   (  (     )    )   (  (     )    ), 

by the same way that we used to get (21), we can get also that  

 ⃗⃗⃗  ( )   ⃗⃗⃗ ( ) strongly in ( ( ) )                                                                                                (43) 

On the other hand, since  ⃗    ⃗ weakly in (  (   ))
 
, then using (21& 43), we get 

 ( )           (  )   (       )   (      )   (  (     )    )   (  (     )    ). 
All the terms in (c) imply to zero, so as the 1

st
 two terms in the L.H.S. of (42), hence (42) gives  

∫ ‖ ⃗ ( )   ⃗( )‖ 
   

 

 
   as    , so we get that   ⃗    ⃗ strongly in (  (   ))

 
. 
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Uniqueness of the solution: Let  ⃗  (     ) and  ⃗̅  ( ̅   ̅ ) be two solutions of the weak form (10-

13), i.e.    and  ̅  are satisfied the weak form (10-11), subtracting each equation from the other and 

then setting        ̅ , yields to 

〈(    ̅ )       ̅ 〉  ‖    ̅ ‖ 
  (  (     )    ( ̅    )     ̅ )   

((    ̅ )( )     ̅ ( ))      & for    (    ̅ )  , ((    ̅ ) ( ) (    ̅ ) ( ))       

The same thing will be happened, for (12-13) and the solutions    &  ̅ , to get that 

 〈(    ̅ )       ̅ 〉  ‖    ̅ ‖ 
  (  (     )    ( ̅    )     ̅ ) 

((    ̅ )( ) (    ̅ )( ))      and ((    ̅ ) ( ) (    ̅ ) ( ))       

Adding the above two equations, using Lemma 1.2 in ref. [15] for the    in L.H.S. of the obtained 

equation which will be positive, integrating both sides from   to  , using the initial conditions, the 

Lipshctiz property on the R.H.S, and finally applying the B -G inequality, to get 

∫   

  
‖( ⃗   ⃗̅) ( )‖ 

  

 
  ‖( ⃗   ⃗̅)‖

 

 
      ∫ ‖( ⃗   ⃗̅)‖

 

  

 
       ‖( ⃗   ⃗̅)( )‖

 

 
    ,     . 

  ‖( ⃗   ⃗̅)( )‖
  (   )

         the solution is unique.  

Lemma 3.1: In addition to assumptions (A), if the functions    (for each      ) is Lipschitz w.r.t.    

and   , and if the controls vector is bounded,  then the operator  ⃗⃗   ⃗ ⃗⃗⃗ from (  ( ))  into 
(  (    ( )))  or in to (  (   ))  or in to (  ( ))  is continuous. 

Proof: Let  ⃗⃗  (     )  ⃗⃗̅  ( ̅   ̅ )  (  ( )) ,   ⃗⃗ ⃗⃗⃗   ⃗⃗̅   ⃗⃗, for     ,  ⃗⃗   ⃗⃗     ⃗⃗ ⃗⃗⃗  
(  ( )) , then by Theorem 3.1,  ⃗   ⃗ ⃗⃗⃗  (     ) and  ⃗   ⃗ ⃗⃗⃗ 

 (       ) are  their corresponding 

states solutions which are satisfied the weak forms (10-13), setting   ⃗⃗⃗⃗
 ⃗  (         )    ⃗   ⃗, then  

〈         〉  (         )  (       )  (       )         
(  (               )   )  (  (     )   )                                                            (44) 

    (   )    and      (   )                                                                                                     (45) 
〈         〉  (         )  (       )  (       )    

(  (               )   )  (  (     )   )                                                            (46) 

    (   )    and      (   )                                                                                                     (47) 

Substituting          in (44) and          in (46), adding the two obtained equations, using the 

same way that we used to get (27), a similar equation  can be obtained but with   ⃗⃗⃗⃗
 ⃗ in position of  ⃗ , 

then integration both sides on      , using the Lipschitz property on    &    with respect to (     ) 

and (     ) respectively, yield to  

∫  

  
 ‖  ⃗⃗⃗⃗⃗

  ( )‖ 

 
 ‖  ⃗⃗⃗⃗

 ⃗‖ 

 
 

 

 
  ∫                 ̅                 ̿                 

 

 
     

                                                   ∫                 ̅                 ̿              
 

 
           

Using the definitions of the norms and the relations between them, to get 

‖  ⃗⃗⃗⃗⃗
  ( )‖ 

 
 ‖  ⃗⃗⃗⃗

 ⃗( )‖ 

 
 ∫ (‖  ⃗⃗⃗⃗

 ⃗‖ 

 
 ‖  ⃗⃗⃗⃗⃗

  ‖ 

 
)

 

 
    ̃ ∫ (‖  ⃗⃗⃗⃗

 ⃗‖ 

 
 ‖  ⃗⃗⃗⃗⃗

  ‖ 

 
)

 

 
    

                                              ̅ ∫ ‖  ⃗⃗ ⃗⃗⃗‖
 

  

 
    ̅ ∫ ‖  ⃗⃗⃗⃗⃗

  ‖ 

  

 
   

                                            ̅ ‖  ⃗⃗ ⃗⃗⃗( )‖
 

 
   ∫ (‖  ⃗⃗⃗⃗

 ⃗‖ 

 
 ‖  ⃗⃗⃗⃗⃗

  ‖ 

 
)

 

 
     

where  ̃      ( ̅   ̅ ),    ̅       ( ̿   ̿ ) ,        (   ̃     ̃    ̅ )  

Applying the Belman-Gronwall inequality, with     ̅    ,  to get 

‖  ⃗⃗⃗⃗⃗
  ( )‖ 

 
 ‖  ⃗⃗⃗⃗

 ⃗( )‖ 

 
   ‖  ⃗⃗ ⃗⃗⃗( )‖

 

 
  ,       ̅   ‖  ⃗⃗⃗⃗

 ⃗( )‖ 

 
   ‖  ⃗⃗ ⃗⃗⃗( )‖

 

 
 ,      ̅  

‖  ⃗⃗⃗⃗
 ⃗‖  (    ( ))

  ‖  ⃗⃗ ⃗⃗⃗‖
 

 ,  ‖  ⃗⃗⃗⃗
 ⃗‖  (   )

  ‖  ⃗⃗ ⃗⃗⃗‖
 

 and  ‖  ⃗⃗⃗⃗
 ⃗‖ 

  ‖  ⃗⃗ ⃗⃗⃗‖
 

 

Form the above three inequalities the Lipschitz continuity of the operator  ⃗⃗   ⃗ easily obtained.  

4. The Existence of a Classical Optimal Control: In this section the existence theorem of a 

continuous classical optimal control vector satisfying the equality and inequality state constraints is 
studied. Therefor the following assumption and lemma will be needed. 

Assumptions (B): Consider     (for         &      ) is of Carathéodory type on   (    ), 
and satisfies the following sub quadratic condition w.r.t.      and       , 

    (         )     (   )       
  , where       ( ) ,         ,          . 
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Lemma 4.1: With assumptions (B), the functional  ⃗⃗    ( ⃗⃗) ,           ; is continuous on  

(  ( )) . 

Proof:  Using assumptions (B) and Proposition 3.1, the integral ∫    (         )
 

 
     is continuous 

on   ( ) ,         ,          hence   ( ⃗⃗) is continuous on (  ( ))  ,          . 

Lemma 4.2 [13]: Let           is of Carathéodory type on   (   ) and satisfies 

  (     )   (   )     , where (   )    ( ) ,    ,    ,     is compact.  Then 

∫  (     )  
 

 
 is continuous on   ( ), w.r.t.  .  

Theorem 4.1: In addition to the assumptions (A&B), if the set  ⃗⃗⃗ is convex and compact,  ⃗⃗⃗⃗    , the 

functions         have the form 

   (         )     (      )     (   )   &     (         )     (      )     (   )     

where     (      )    (   )         &     (   )     ,      ( ) ,      ,       .     is 

independent of    ,     and     are convex with respect to    for fixed (      ) ,        . Then there 
exists a classical optimal control. 

Proof:  From the assumptions on              and the Egorov's theorem, once get that    

    ⃗⃗⃗⃗ is weakly compact. Since  ⃗⃗⃗⃗   , then there exists  ⃗⃗̅   ⃗⃗⃗⃗  such that   ( ⃗⃗̅)      ( ⃗⃗̅)    

and there exists a minimum sequence { ⃗⃗ } with  ⃗⃗   ⃗⃗⃗⃗     , such that   ( ⃗⃗ )    ( ⃗⃗̅)
 ⃗⃗⃗̅  ⃗⃗⃗⃗ 

       
   
     . 

Since  ⃗⃗   ⃗⃗⃗⃗      andt  ⃗⃗⃗⃗ is weakly compact, there exists a subsequence of { ⃗⃗ } say again { ⃗⃗ } 

which converges weakly to some point  ⃗⃗ in  ⃗⃗⃗⃗ , i.e.   ⃗⃗   ⃗⃗ weakly in (  ( ))
 
 and ‖ ⃗⃗ ‖        

.  From theorem 3.1, for each control  ⃗⃗  the state equation has a unique solution  ⃗   ⃗ ⃗⃗⃗ 
 , and the 

norms ‖ ⃗ ‖  (   ) and , ‖ ⃗  ‖  ( )  are bounded, then by Alaoglu’s theorem there exist a subsequence 

of { ⃗ } and { ⃗  } say again  
{ ⃗ } and { ⃗  }  which converges weakly to some point  ⃗ w.r.t the above norm, i.e.  

            ⃗   ⃗ weakly in (  (   ))
 
, and             ⃗    ⃗  weakly in (  ( ))

 
.  

Then by applying the Aubin Compactness theorem [15], to get that there exists a subsequence of { ⃗ } 

say again { ⃗ } such that  ⃗   ⃗   strongly in (  ( ))
 
.  

 

Now, Since for each  ,      and      are solutions of the weak form (16) and (18) respectively, 
substituting these solutions in the above indicate equations, then multiplying both sides of each 

equation by    ( ) and   ( ) respectively (with           , such that   ( )   ́ ( )   , 

  ( )     ́ ( )    ,       ).  Rewriting the     terms in the L.H.S. of each one of their, 

integrating both sides from   to    , finally integrating by parts for these 1
st
 terms, one has  

∫
 

  
(       )  ( )   ∫  

 

 
(        )  ( )  (      )  ( )  

 

 
(      )  ( )     

 ∫ (   (       )   )  ( )   
 

 ∫ ( 
 

 
   (   )        ( ))                                                    (48) 

∫
 

  
(       )  ( )   ∫  

 

 
(        )  ( )  (      )  ( )  (      )  ( )   

 

 
  

 ∫ (   (       )   )  ( )   
 

 ∫ ( 
 

 
   (   )        ( ))                                                    (49) 

The limits in the L.H.S. of (48) and (49) can be passaged using the same steps that is used in the proof 

of theroem3.1, so it remain the passage to the limits in R.H.S. of (48) and (49) as follows: 

Let        ,       ̅ ,        ( ), then       ̅    (   )    ( ), set   ̅ (   )  
   (   )  , then   ̅        is of Carathéodory type, using Proposition 1.3, to get the integral 

∫    (   )  
 

 
     is continuous w.r.t.    , but        strongly in   ( )  &        ,weakly in 

  ( ) then  

∫    (   )  
 

 
     ∫    (  )  

 

 
     ,        ̅  , for                                                 (50) 

∫    (   )          ∫    (   )    
 

 

 

 
     ,        ̅  ,   for                                     (51) 

Since (50-51) are hold for each     ( ̅), but  ( ̅) is dense in  , then also are hold for every 

            ,  hence we get the following two weak forms  
〈      〉  (       )  (     )  (     )  (   (      )     (   )  )   ),      , a.e. on           (52) 
〈      〉  (       )  (     )  (     )  (   (      )     (   )     ),       , a.e. on           (53) 
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To passage the limits in the initial conditions, the same steps which used in the proof of theorem 3.1 

can be also used here. Hence    and     are the solutions of the state equations. 

On the other hand, since    ( ⃗⃗ )  ∫    (       )
 

 
     ∫    (       )

 

 
    , with     (for 

      ) are independent of    and it is continuous w.r.t.    , then by Lemma4.1   

∫    (       )
 

 
     is continuous w.r.t.   , but  ⃗   ⃗   strongly in (  ( ))

 
, then   

 ∫    (       )
 

 
     ∫    (      )

 

 
     . Hence   ( ⃗⃗ )     

   
  ( ⃗⃗ )   . 

Now, since each       &      ,    (         ) is continuous w.r.t. (     ) and since    is compact 

with   (   )     a.e. in  , then  using Lemma 4. 2, to get  

∫    (           ) 
 

 
     ∫    (          ) 

 

 
                                                                       (54) 

But    (         ) is convex and continuous w.r.t.    then ∫    (          ) 
 

 
     is also convex and 

continuous w.r.t.    then ∫    (         ) 
 

 
     is weakly lower semi continuous (W.L.S.C.) w.r.t.    

(for each        &       ) i.e. 

∫    (         ) 
 

 
        

   
   ∫ (   (          )     (           ))    

 

 
        

                                            
   

    ∫    (           ) 
 

 
      

                                         
   

    ∫    (           ) 
 

 
     , by (1.31)    

 ∑ ∫    (         ) 
 

 
     

       
   

   ∑ ∫    (           ) 
 

 
     

   
 
     ( ⃗⃗)     

   
     ( ⃗⃗ ) ,  

then   ( ⃗⃗ )    since  ⃗⃗   ⃗⃗⃗⃗    , and once get that 

  ( ⃗⃗)     
   

     ( ⃗⃗ )     
   

  ( ⃗⃗ )    ( ⃗⃗̅)
 ⃗⃗⃗̅  ⃗⃗⃗⃗ 

          ( ⃗⃗̅)
 ⃗⃗⃗̅  ⃗⃗⃗⃗ 

              ⃗⃗ is an optimal control . 

Assumptions (C): Assume that for each (     &     ), the functions    ,     
,     

 ,      
  and      

  

are defined and are of Carathéodory type on   (   ́) (where  ́is an open set containing the 

compact set  ) and satisfy:  |    
(         )|     ,  |    

(         )|   ́  

|     
(         )|      

(   )      
     , |     

(         )|      
(   )      

        

where (   )    ,         ,              ( ) .     ́             . 

Remark: In the following theorem and for simplicity, we drop the index   from the functions     &   . 

Also we assume the assumptions (A), (B) and (C) are considered. 

Theorem 4.2: Consider the adjoint equations  ⃗  (     ) of the state equations (1-6) are given by   

                      
(         )      

(         ) , on                                        (55) 

         on   ,      (   )     (   )       on                                                                            (56)    

                      
(         )      

(         ) , on                                        (57) 

         on  ,       (   )     (   )       on                                                                            (58) 

And the Hamiltonian is defined:  (     ⃗  ⃗⃗  ⃗)  ∑
 

   
(    (         )    (         ))    

where  ( ⃗⃗)  ∫   (         )    
 

 
 ∫   (         )    

 

 
 

Then for   ⃗⃗́   ⃗⃗⃗⃗, the directional derivative of   is given by   

   ( ⃗⃗   ⃗⃗̅   ⃗⃗)        

 ( ⃗⃗⃗    ⃗⃗⃗⃗ ⃗⃗ )  ( ⃗⃗⃗)

 
    ∫   ⃗⃗⃗(     ⃗  ⃗⃗  ⃗)( ⃗⃗̅   ⃗⃗)

 

 
     

Proof: At first let, the weak forms of the adjoint equations are given         , by 

 〈       〉  (       )  (     )  (     )   (      
   )  (    

   ),         a.e. on      (59) 

 (  ( )   )   (   ( )   )   ,                                                                                                       (60) 

 〈      〉  (       )  (     )  (     )  (      
   )  (    

   ),        a.e. on    (61) 

(  ( )   )   (   ( )   )    ,                                                                                                       (62) 

From the assumptions and using the same way which is used in the proof of theorem2.1, once can 

prove that the weak forms (59-62) has a unique solution  ⃗   (     )  (  ( )) . 

Substituting          (59) and         in (61), integrating both sides on      , to get  

∫ 〈         〉
 

 
   ∫  

 

 
(         )  (       )  (       )       

       ∫  
 

 
(      

     )  (    
     )                                                                                    (63) 

∫ 〈         〉
 

 
   ∫  

 

 
(         )  (       )  (       )       
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∫  
 

 
(      

     )  (    
     )                                                                                     (64) 

Now, let  ⃗⃗  ⃗⃗̅  (  ( )) ,   ⃗⃗ ⃗⃗⃗   ⃗⃗̅   ⃗⃗, for    ,   ⃗⃗   ⃗⃗     ⃗⃗ ⃗⃗⃗  (  ( )) , then by theorem 2.1, 

 ⃗   ⃗ ⃗⃗⃗ &  ⃗   ⃗ ⃗⃗⃗ 
 are their corresponding solutions. Setting   ⃗⃗⃗⃗

 ⃗  (         )    ⃗   ⃗ , 

substituting        in (44) and       in (46), integrating both sides on      , then Integrating by 

parts twice the 1
st
 term in the L.H.S. of each one of the obtained equation, Finding the Fréchet 

derivatives of    and    in the R.H.S. of each one them (which are exist from the assumptions C), then 

from the result of Lemma 3.1 and the Minkowiski inequality, once get 

∫ 〈         〉
 

 
   ∫  

 

 
(         )  (       )  (       )      

  ∫ (
 

 
    

         
(    )   )      ( )                                                                    (65) 

∫ 〈         〉
 

 
   ∫  

 

 
(         )  (       )  (       )      

 ∫ (
 

 
    

         
(    )   )      ( )                                                                     (66) 

where     ( )   ,  as    , with    ( )  ‖    ‖   ‖   ‖ , for each        

Subtracting (65) and (66) from (63) and (64) respectively, adding the obtain equations, once get   

 ∫  
 

 
(    

      )  (    
      )      ( )  ∫  

 

 
(    

    )  (    
    )                   (67) 

where    ( )   ,  as    , with   ( )  ‖  ⃗⃗⃗⃗
 ⃗‖ 

  ‖  ⃗⃗ ⃗⃗⃗‖
 

 

On the other hand, from the assumptions on    and   , the  definition of the Fréchet derivative, the 

result of Lemma 3.1, and then using Minkowiski inequality, we have 

  ( ⃗⃗⃗ )    ( ⃗⃗⃗)  ∫ (    
         

    )    
 

 
 ∫ (    

         
    )    

 

 
   ( )                (68) 

where   ( )  ‖  ⃗⃗⃗⃗
 ⃗‖ 

  ‖  ⃗⃗ ⃗⃗⃗‖
 

,   ( )   ,  as      

Now, by substituting (67) in (68), one have that  

  ( ⃗⃗ )    ( ⃗⃗)   ∫  (      
     

)    (      
     

)    
 

 
       ( )            

where    ( )    ( )    ( )   ,  as    , with   ( )   ‖  ⃗⃗⃗⃗
 ⃗‖ 

   ‖  ⃗⃗ ⃗⃗⃗‖
 

 

Finally, dividing both sides of the above equality by  , then taking the limit     , once get 

  ( ⃗⃗  ⃗⃗̅   ⃗⃗)  ∫   ⃗⃗⃗(     ⃗  ⃗⃗  ⃗) ( ⃗⃗̅   ⃗⃗)
 

 
     . 

5. Necessary and sufficient conditions for optimality: In this section the necessary and sufficient 

theorems for optimality under prescribed assumptions are proved as follows: 

Theorem 5.1: Necessary Conditions for Optimality (Multipliers Theorem):  

a) with assumptions (A), (B) , (C) if  ⃗⃗⃗⃗ is convex, the control  ⃗⃗   ⃗⃗⃗⃗  is optimal, then there exist 

multipliers      ,         with     ,     , ∑
 

   
       such that the following Kuhn-Tucker-

Lagrange (K.T.L.) conditions are satisfied:  

∑
 

   
     ( ⃗⃗⃗   ⃗⃗⃗̅   ⃗⃗⃗)    ,   ⃗⃗⃗̅   ⃗⃗⃗⃗⃗ ,                                                                                                 (69) 

    ( ⃗⃗⃗)      , (Transversality condition )                                                                                     (70) 

(b) The inequality (69) is equivalent to the (weak) point wise minimum principle       

  ⃗⃗⃗(     ⃗⃗⃗  ⃗⃗  ⃗⃗⃗)  ⃗⃗⃗( )    ⃗⃗⃗(     ⃗⃗⃗  ⃗⃗  ⃗⃗⃗)  ⃗⃗⃗̅
 ⃗⃗⃗̅  ⃗⃗⃗
   ( )  a.e. on                                                               (71) 

where   ⃗⃗⃗(     ⃗  ⃗  ⃗⃗)  ∑
 

   
(      

(         )      
(         )) 

with    ∑
 

   
      and    ∑

 

   
      , (for      ). 

Proof: a) From Lemma 4.1, the functional   ( ⃗⃗) (for         ) is continuous and from Theorem4.2 

the functional     (for         ) is continuous w.r.t.  ⃗⃗̅   ⃗⃗ and linear in  ⃗⃗̅   ⃗⃗, then     is 

  differential for every  , then using the K.T.L. theorem [5], there exist multipliers      , 

        with     ,      , ∑
 

   
      , such that (69-70) are satisfied, by using Th..2, then (69) 

becomes 
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∑
 

   
  ∫ ∑

 

   

 

 
(        

      
)          , which can be rewritten as  

 ∫ (      

 

 
     

       
     

) ( ⃗⃗⃗̅   ⃗⃗⃗)      , ,   ⃗⃗⃗̅   ⃗⃗⃗⃗⃗ ,                                                (72) 

where    ∑   
 
       ,    ∑   

 
       ,          

To prove the second part, let { ⃗⃗̅ } be a dense sequence in  ⃗⃗⃗⃗ ,   is Lebesgue measure on   and let 

    be a measurable set such that  ⃗⃗̅(   )  {
 ⃗⃗̅ (   )             (   )   

 ⃗⃗(   )                 (   )   
    

Therefore (72) becomes∫ (      

 

 
     

       
     

) ( ⃗⃗̅   ⃗⃗)      , which implies to  

(      
     

       
     

) ( ⃗⃗̅   ⃗⃗)    , a.e. on   

This means the inequality is satisfied on the whole region   except in a subset    such that  (  )    

,   , where   is a Lebesgue measure, i.e. the inequality satisfies on   except in the union  ⋃     with 

 (⋃    )    , but { ⃗⃗̅ } is a dense sequence in the control set   ⃗⃗⃗⃗ , then there exists  ⃗⃗̅   ⃗⃗⃗⃗ such that 

(      
     

       
     

) ( ⃗⃗̅   ⃗⃗)    , a.e. on  ,   ⃗⃗̅   ⃗⃗⃗⃗ 

i.e. (69) gives (72). The converse is clear. 

Theorem 5.2: (Sufficient Conditions for Optimality): In Addition to the assumptions (A), (B) & 

(C). Suppose  ⃗⃗⃗⃗ is convex, with  ⃗⃗⃗ convex,    &     are affine w.r.t. (     ) for each(   ),         

are convex w.r.t. (     )  (   ),      . Then the necessary conditions of theorem5.1 with      

are sufficient. 

Proof: Assume  ⃗⃗   ⃗⃗⃗⃗  is satisfied the K.T.L. condition (69-70). Let  ( ⃗⃗)  ∑     ( ⃗⃗) 
   , then using 

theorem.4.2,  to get    ( ⃗⃗   ⃗⃗̅   ⃗⃗)  ∑
 

   
  ∫ ∑ (             )

 
      

 

 
        

Since   (         )     (   )      (   )      (   ) and 

           (         )     (   )      (   )      (   ) ,  

Let  ⃗⃗  (     ) &  ⃗⃗̅  ( ̅   ̅ ) are two given controls vectors, then  ⃗  (       )  (     ) & 

 ⃗̅  ( ̅ ̅   ̅ ̅ )  ( ̅   ̅ ) are their corresponding stats solutions. Substituting the pair ( ⃗⃗  ⃗) in 

equations (1-6) and multiplying all the obtained equations by         once and then substituting the 

pair ( ⃗⃗̅  ⃗̅) in (1-6)  and multiplying all the obtained equations by (    ) once  again, finally  adding 
each pair from the corresponding equations together one gets: 
(    (   ) ̅  )    (    (   ) ̅ )  (    (   ) ̅ )  (    (   ) ̅ )  
    (   )(    (   ) ̅ )     (   )(    (   ) ̅ )     (   )                                   (73) 

   (   )  (   ) ̅ (   )                                                                                                          (74) 

   (   )  (   ) ̅ (   )    
 ( ),        (   )  (   ) ̅  (   )    

 ( )                        (75) 

(    (   ) ̅  )   (    (   ) ̅ )  (    (   ) ̅ )   (    (   ) ̅ )  
    (   )(    (   ) ̅ )     (   )(    (   ) ̅ )     (   )                                   (76) 

   (   )  (   ) ̅ (   )                                                                                                          (77) 

   (   )  (   ) ̅ (   )    
 ( ) ,        (   )  (   ) ̅  (   )    

 ( )                       (78) 

Equations (73-75) and (76-78), show that if the control vector is  ⃗⃗̃  ( ̃   ̃ ) with  ⃗⃗̃   ⃗⃗  (   ) ⃗⃗̅  

then its corresponding state vector is  ⃗̃  ( ̃   ̃ ) with  ̃     ̃ 
   (    (    ) ̅ )      

(    ) ̅ ,        . This means the operator  ⃗⃗   ⃗ ⃗⃗⃗ is convex – linear w.r.t. ( ⃗  ⃗⃗) for each 

(   ))   . 

On the other hand, the function   ( ⃗⃗) is convex – linear w.r.t. ( ⃗  ⃗⃗) for each (   )   , this back to 

the fact that the sum of two affine functions    (         ) (for each       ) w.r.t. (     ) and 

 (   )    is affine and the operator  ⃗⃗   ⃗ ⃗⃗⃗ is convex-linear. 

The functions   ( ⃗⃗) ,   ( ⃗⃗) are convex w.r.t. ( ⃗  ⃗⃗) ,  (   )    (from the assumptions on the 

functions     and         0,2  and from the sum of two  integral of convex function is also convex).  

Hence  ( ⃗⃗) is convex w.r.t. ( ⃗  ⃗⃗),  (   )    in the convex set  ⃗⃗⃗⃗, and has a continuous Fréchet 

derivative satisfies  

  ( ⃗⃗   ⃗⃗̅   ⃗⃗)       ( ⃗⃗) has a minimum at  ⃗⃗     ( ⃗⃗)   ( ⃗⃗̅),   ⃗⃗̅   ⃗⃗⃗⃗    

     ( ⃗⃗)      ( ⃗⃗)      ( ⃗⃗)      ( ⃗⃗̅)      ( ⃗⃗̅)      ( ⃗⃗̅)   ,    ⃗⃗̅   ⃗⃗⃗⃗                           

Let  ⃗⃗̅   ⃗⃗⃗⃗  , with      and from Transversality condition , the above inequality becomes  
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    ( ⃗⃗)      ( ⃗⃗̅)  ,   ⃗⃗̅   ⃗⃗⃗⃗       ( ⃗⃗)    ( ⃗⃗̅),     ⃗⃗̅   ⃗⃗⃗⃗    ⃗⃗  is an optimal control. 

6. Conclusions: 
The Galerkin method with the Aubin compactness theorem are used successfully to prove the 

existence of a unique "continuous state vector" solution for a couple nonlinear hyperbolic partial 

differential equations for a given continuous classical control vector. The existence theorem of a 
continuous classical optimal control vector governing by the considered couple of nonlinear partial 

differential equation of hyperbolic type with equality and inequality constraints is proved. The 

existence of a unique solution of the couple of adjoint equations associated with the considered couple 
equations of the state vector is studied. The Frcéhet derivation of the Hamiltonian is derived. The 

theorems of the necessary conditions and the sufficient conditions of the optimality of the constrained 

problem are proved.  
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