
Imran                                                       Iraqi Journal of Science, 2016, Vol. 57, No.2C, pp:1521-1527 

__________________________ 

*Email: qays.imran@mu.edu.iq 

1521 

On Nano Generalized Semi Generalized Closed Sets 
 

Qays Hatem Imran* 
Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq 

 

Abstract: 
In this paper we introduced a new class of  -   called     -   and study their 

basic properties in nano topological spaces. We also introduce     -closure and 

    -interior and study some of their fundamental properties. 
 

Keywords:     -  ,     -  ,     -closure and     -interior. 
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 :الخلاصة
 شبه المعممة النانو بمجموعاتالمغلقة تسمى  النانو فئة جديدة من مجموعات قدمناهذا البحث في 
 النانوانغلاق قدمنا أيضا  .لتبولوجيةا النانودراسة خصائصها الأساسية في الفضاءات  و المغلقة المعممة

خصائصها دراسة بعض  والمعممة  شبهالمعممة  النانومجموعة النقاط الداخلية و المعممة  شبهالمعممة 
 .الأساسية

 

1. Introduction 

M. Lellis Thivagar and Carmel Richard [1] introduced nano topological space (or simply    ) 

with respect to a subset   of a universe which is defined in terms of lower and upper approximations 

of  . He has also defined nano closed sets (briefly  -  ), nano interior and nano closure of a set. In 

2014,   -   was introduced by K. Bhuvaneswari and K. Mythili Gnanapriya [2]. K. Bhuvaneswari 

and A. Ezhilarasi [3] introduced the concept of    -   and    -   in    . The concept    -   

have been introduced and studied by M. Lellis et al [4] in classical topology. The purpose of this paper 

is to introduce the concept of     -   and study their basic properties in    . We also introduce 

    -closure and     -interior and obtain some of its properties. 

2. Preliminaries 

Throughout this paper, (    ( )) and (    ( )) (or simply   and  ) always mean     on 

which no separation axioms are assumed unless otherwise mentioned. For a set   in a     

(    ( )),    ( ),     ( ) and        denote the nano closure of  , the nano interior of 

  and the nano complement of   respectively.  

Definition 2.1:[5] Let   be a non-empty finite set of objects called the universe and   be an 

equivalence relation on   named as the indiscernibility relation. Elements belonging to the same 

equivalence class are said to be indiscernible with in another. The pair (   ) is called the 
approximation space. 

Remark 2.2:[5] Let (   ) be an approximation space and    . Then: 

i. The lower approximation of   with respect to   is the set of all objects, which can be for certain 

classified as   with respect to   and it is denoted by   ( ). That is,   ( )     ( )  ( )  
      , where  ( ) denotes the equivalence class determined by  . 
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ii. The upper approximation of   with respect to   is the set of all objects, which can be possibly 

classified as   with respect to   and it is denoted by   ( ). That is, 

  ( )     ( )  ( )         . 
iii. The boundary region of   with respect to   is the set of all objects, which can be classified 

neither as   nor as not   with respect to   and it is denoted by   ( ). That is,   ( )  
  ( )    ( ). 

Proposition 2.3:[6] If (   ) is an approximation space and      . Then: 

i.   ( )      ( ). 

ii.    ( )    ( )    and   ( )    ( )   . 

iii.   (   )    ( )   ( ). 
iv.    (   )    ( )   ( ). 
v.   (   )    ( )   ( ). 

vi.   (   )    ( )   ( ). 

vii.   ( )    ( ) and   ( )    ( ) whenever    . 

viii.   (  )  (  ( ))  and   (  )  (  ( )) . 

ix.     ( )      ( )    ( ). 

x.     ( )      ( )    ( ). 

Definition 2.4:[1] Let   be the universe,   be an equivalence relation on   and   ( )  
       ( )   ( )   ( )  where    . Then by proposition (2.3),   ( ) satisfies the following 
axioms: 

i.       ( ). 

ii. The union of the elements of any subcollection of   ( ) is in   ( ). 

iii. The intersection of the elements of any finite subcollection of   ( ) is in   ( ). 
That is,   ( ) is a topology on   called the nano topology on   with respect to   and the pair 

(    ( )) is called a nano topological space (or simply    ). The elements of   ( ) are called as 

nano open sets (briefly  -  ). 

Remark 2.5:[1] Let (    ( )) be a     with respect to   where     and   be an equivalence 

relation on  . Then     denotes the family of equivalence classes of   by  . 

Definition 2.6:[1] A subset   of a     (    ( )) is said to be: 

i. a nano semi-open set (briefly   -  ) if      (    ( )) and a nano semi-closed set 

(briefly   -  ) if     (   ( ))   . The nano semi-closure of a set   of a     

(    ( )) is the intersection of all   -   that contain   and is denoted by     ( ). 

ii. a nano  -open set (briefly   -  ) if       (   (    ( ))) and a nano  -closed set 

(briefly   -  ) if    (    (   ( )))   . The nano  -closure of a set   of a     

(    ( )) is the intersection of all   -   that contain   and is denoted by     ( ). 
Definition 2.7: A subset   of a     (    ( )) is said to be: 

i. a nano generalized closed set (briefly   -  ) [2] if    ( )    whenever     and   

is a  -   in (    ( )). The complement of a   -   is a   -   in (    ( )). 

ii. a nano   -closed set (briefly    -  ) [7] if     ( )    whenever     and   is a 

 -   in (    ( )). The complement of a    -   is a    -   in (    ( )). 

iii. a nano   -closed set (briefly    -  ) [7] if     ( )    whenever     and   is a 

  -   in (    ( )). The complement of a    -   is a    -   in (    ( )). 

iv. a nano   -closed set (briefly    -  ) [3] if     ( )    whenever     and   is a 

  -   in (    ( )). The complement of a    -   is a    -   in (    ( )). 

v. a nano   -closed set (briefly    -  ) [3] if     ( )    whenever     and   is a  -

   in (    ( )). The complement of a    -   is a    -   in (    ( )). 

Proposition 2.8:[1,2] In a     (    ( )), then the following statements hold and the converse of 

each statements are not true: 

i. Every  -   (resp.  -  ) is a   -   (resp.   -  ). 

ii. Every  -   (resp.  -  ) is a   -   (resp.   -  ). 

iii. Every   -   (resp.   -  ) is a   -   (resp.   -  ). 

Proposition 2.9:[7] In a     (    ( )), then the following statements hold and the converse of each 

statements are not true: 

i. Every   -   (resp.   -  ) is a    -   (resp.    -  ). 
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ii. Every   -   (resp.   -  ) is a    -   (resp.    -  ). 

iii. Every    -   (resp.    -  ) is a    -   (resp.    -  ). 

Proposition 2.10:[3] In a     (    ( )), then the following statements hold and the converse of 

each statements are not true: 

i. Every   -   (resp.   -  ) is a    -   (resp.    -  ). 

ii. Every   -   (resp.   -  ) is a    -   (resp.    -  ). 

iii. Every    -   (resp.    -  ) is a    -   (resp.    -  ). 

iv. Every    -   (resp.    -  ) is a    -   (resp.    -  ). 

3. Nano Generalized   -Closed Sets 

In this section we introduce and study the nano generalized   -closed sets and some of its properties.  

Definition 3.1: A subset   of a     (    ( )) is said to be a nano generalized   -closed set (briefly 

    -  ) if    ( )    whenever     and   is a    -   in (    ( )). The family of all 

    -   of a     (    ( )) is denoted by     - (   ). 

Proposition 3.2: In a     (    ( )), the following statements are true: 

i. Every  -   is a     -  . 

ii. Every     -   is a   -  . 

Proof: (i) Let   be a  -   in a     (    ( )) and let   be a    -   in   such that    . Then 

   ( )     . Therefore   is a     -  . 

(ii) Let   be a     -   in a     (    ( )) and let   be a  -   in   such that    . Since 

every  -   is a    -  , we have    ( )   . Therefore   is a   -  . 

The converse of the above proposition need not be true which can be seen from the following 

examples. 

Example 3.3: Let             with                     and        .  
Let   ( )                          be a    . Then the set       is a     -   but not  -  . 

Example 3.4: Let               with                       and        .  
Let   ( )                          be a    . Then the set         is a   -   but not     -  . 

Proposition 3.5: In a     (    ( )), the following statements are true: 

i. Every     -   is a    -  . 

ii. Every     -   is a    -  . 

iii. Every     -   is a    -  . 

iv. Every     -   is a    -  . 

Proof: 

i. Let   be a     -   in a     (    ( )) and let   be a  -   in   such that    . Since 

every  -   is a    -  , we have     ( )     ( )    implies     ( )   . 

Therefore   is a    -  . 

ii. Let   be a     -   in a     (    ( )) and let   be a   -   in   such that    . 

Since every   -   is a   -   which is a    -  , we have     ( )     ( )    

implies     ( )   . Therefore   is a    -  . 

iii. Let   be a     -   in a     (    ( )) and let   be a   -   in   such that    . 

Since every   -   is a    -  , we have     ( )     ( )    implies     ( )   . 

Therefore   is a    -  . 

iv. Let   be a     -   in a     (    ( )) and let   be a  -   in   such that    . Since 

every  -   is a    -  , we have     ( )     ( )    implies     ( )   . 

Therefore   is a    -  . 

The converse of the above proposition need not be true as shown in the following examples. 

Example 3.6: Let             with                     and        .  
Let   ( )                          be a    . Then the set       is a    -   and hence    -   

but not     -  . 

Example 3.7: Let             with                     and        .  
Let   ( )                          be a    . Then the set     is a    -   and hence    -   but 

not     -  . 

Remark 3.8: The     -   are independent of   -   and   -  . 
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Definition 3.9: A subset   of a     (    ( )) is said to be a nano generalized   -open set (briefly 

    -  ) iff     is a     -  . The family of all     -   of a     (    ( )) is denoted by 

    - (   ). 

Proposition 3.10: Let (    ( )) be a    . If   is a  -  , then it is a     -   in (    ( )). 

Proof: Let   be a  -   in a     (    ( )), then     is a  -   in (    ( )). By proposition 

(3.2) part (i),     is a     -  . Hence   is a     -   in (    ( )). 

Proposition 3.11: Let (    ( )) be a    . If   is a     -  , then it is a   -   in (    ( )). 

Proof: Let   be a     -   in a     (    ( )), then     is a     -   in (    ( )). By 

proposition (3.2) part (ii),     is a   -  . Hence   is a   -   in (    ( )). 

Proposition 3.12: In a     (    ( )), the following statements are true: 

i. Every     -   is a    -   and    -  . 

ii. Every     -   is a    -   and    -  . 

Proof: Similar to above proposition. 

Theorem 3.13: If   and   are     -   in a     (    ( )), then     is a     -  . 

Proof: Let   and   be two     -   in a     (    ( )) and let   be any    -   in   such that 

    and    . Then we have      . Since   and   are     -   in  ,    ( )    

and    ( )   . Now,    (   )     ( )    ( )    and so    (   )   . Hence 

    is a     -   in  . 

Theorem 3.14: If a set   is     -   in a     (    ( )), then    ( )    contains no non-empty 

 -   in (    ( )). 

Proof: Let   be a     -   in a     (    ( )) and let   be any  -   in (    ( )) such that   
   ( )   . Since   is a     -  , we have    ( )     . This implies        ( ). 

Then      ( ) (     ( ))   . Thus,    . Hence    ( )    contains no non-empty 

 -   in (    ( )). 

Theorem 3.15: A set   is     -   in a     (    ( )) iff    ( )    contains no non-empty 

   -   in (    ( )). 

Proof: Let   be a     -   in a     (    ( )) and let   be any    -   in (    ( )) such 

that      ( )   . Since   is a     -  , we have    ( )     . This implies     
   ( ). Then      ( ) (     ( ))   . Thus,   is empty. 

Conversely, suppose that    ( )    contains no non-empty    -   in (    ( )). Let     

and   is    -  . If    ( )    then    ( ) (   ) is non-empty. Since    ( ) is  -   and 

    is    -  , we have    ( ) (   ) is non-empty    -   of    ( )    which is a 

contradiction. Therefore    ( )   . Hence   is a     -  . 

Theorem 3.16: If   is a     -   in a     (    ( )) and        ( ), then   is a     -   

in (    ( )). 

Proof: Suppose that   is a     -   in a     (    ( )). Let   be a    -   in (    ( )) such 

that    . Then    . Since   is a     -  , it follows that    ( )   . Now,      ( ) 

implies    ( )     (   ( ))     ( ). Thus,    ( )   . Hence   is a     -  . 

Theorem 3.17: Let       and if   is a     -   in   then   is a     -   relative to  . 

Proof:       where   is a    -   in  . Then     and hence    ( )   . This implies 

that      ( )     . Thus   is a     -   relative to  . 

Proposition 3.18: If   is a    -   and a     -   in a     (    ( )), then   is a  -   in 

(    ( )). 

Proof: Suppose that   is a    -   and a     -   in a     (    ( )), then    ( )    and 

since      ( ). Thus,    ( )   . Hence   is a  -  . 

Theorem 3.19: For each     either     is a    -   or       is a     -   in  . 

Proof: If     is not a    -   in   then       is not a    -   and the only    -   containing 

      is the space   itself. Therefore    (     )    and so       is a     -   in  . 

Theorem 3.20: If   and   are     -   in a     (    ( )), then     is a     -  . 

Proof: Let   and   be     -   in a     (    ( )). Then     and     are     -  . By 

theorem (3.13), (   ) (   ) is a     -  . Since (   ) (   )    (   ). Hence 

    is a     -  . 

Theorem 3.21: A set   is     -   iff       ( ) where   is a     -   and    . 
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Proof: Suppose that       ( ) where   is a     -   and    . Then         and 

    is a    -   by proposition (3.12) part (ii). Now,    (   )        ( )     . 

Then     is a     -  . Hence   is a     -  . 

Conversely, let   be a     -   and   be a     -   and    . Then        . Since 

    is a     -   and     is a    -  , we have    (   )     . Then       ( ). 

Theorem 3.22: If       where   is a     -   relative to   and   is a     -   in  , then   

is a     -   in  . 

Proof: Let   be a    -   in   and suppose that    . Then       is a    -   in  . But   is 

a     -   relative to  . Therefore        ( ). Since      ( ) is a  -   relative to  . We 

have        , for some  -     in  . Since   is a     -   in  , we have       ( )  
 . Therefore       ( )        . It follows that       ( ). Thus   is a     -   

in  . 

Theorem 3.23: If   is a     -   in a     (    ( )) and     ( )     , then   is a     -

   in (    ( )). 

Proof: Suppose that   is a     -   in a     (    ( )) and     ( )     . Then     is a 

    -   and            (   ). Then     is a     -   by theorem (3.16). Hence, 

  is a     -  . 

Theorem 3.24: For a subset   of a     (    ( )), the following statements are equivalent:  

i.   is a     -  . 

ii.    ( )    contains no non-empty    -  . 

iii.    ( )    is a     -  . 

Proof: Follows from theorem (3.15) and theorem (3.17). 

Remark 3.25: The following diagram shows the relation between the different types of  -  : 

 
Diagram (3.1)  

 

4. Nano    -Closure and Nano    -Interior 

We introduce nano    -closure and nano    -interior and obtain some of its properties in this 
section. 

Definition 4.1: The intersection of all     -   in a     (    ( )) containing   is called nano 

   -closure of   and is denoted by     -  ( ),     -  ( )            is a     -   . 
Definition 4.2: The union of all     -   in a     (    ( )) contained in   is called nano    -

interior of   and is denoted by     -   ( ),     -   ( )            is a     -   . 
Proposition 4.3: Let   be any set in a     (    ( )). Then the following properties hold: 

i.     -   ( )    iff   is a     -  . 

ii.     -  ( )    iff   is a     -  . 

iii.     -   ( ) is the largest     -   contained in  . 

iv.     -  ( ) is the smallest     -   containing  . 

Proof: (i), (ii), (iii) and (iv) are obvious. 
 

 -       -   

   -   

  -   

   -   

   -   
 

  -   

+ 

  -      -      -   
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Proposition 4.4: Let   be any set in a     (    ( )). Then the following properties hold:  

i.     -   (   )    (    -  ( )), 

ii.     -  (   )    (    -   ( )). 

Proof: (i) By definition,     -  ( )            is a     -    
   (    -  ( ))              is a     -    
                                               is a     -    
                                               is a     -    
                                       -   (   ). 

(ii) The proof is similar to (i). 

Theorem 4.5: Let   and   be two sets in a     (    ( )). Then the following properties hold: 

i.     -  ( )   ,     -  ( )   . 

ii.       -  ( ). 

iii.           -  ( )      -  ( ). 

iv.     -  (   )      -  ( )     -  ( ). 

v.     -  (   )      -  ( )     -  ( ). 

vi.     -  (    -  ( ))      -  ( ). 
Proof: (i) and (ii) are obvious. 

(iii) By part (ii),       -  ( ). Since    , we have       -  ( ). But     -  ( ) is a 

    -  . Thus     -  ( ) is a     -   containing  . Since     -  ( ) is the smallest     -   

containing  , we have     -  ( )      -  ( ). Hence,          -  ( )      -  ( ). 

(iv) We know that       and      . Therefore, by part (iii),     -  (   )      -

  ( ) and     -  (   )      -  ( ). Hence     -  (   )      -  ( )     -  ( ). 

(v) Since       and      , it follows from part (iii) that     -  ( )      -  (   ) 

and     -  ( )      -  (   ). Hence     -  ( )     -  ( )      -  (   )          (1)  

Since     -  ( ) and     -  ( ) are     -  ,     -  ( )     -  ( ) is also     -   by 

theorem (3.13). Also       -  ( ) and       -  ( ) implies that         -

  ( )     -  ( ). Thus     -  ( )     -  ( ) is a     -   containing    . Since     -

  (   ) is the smallest     -   containing    , we have     -  (   )      -

  ( )     -  ( )                                                                                                                              (2) 

From (1) and (2), we have     -  (   )      -  ( )     -  ( ). 

(vi) Since     -  ( ) is a     -  , we have by proposition (4.3) part (ii),     -  (    -  ( )) 

     -  ( ). 

Theorem 4.6: Let   and   be two sets in a     (    ( )). Then the following properties hold: 

i.     -   ( )   ,     -   ( )   . 

ii.     -   ( )   . 

iii.          -   ( )      -   ( ). 

iv.     -   (   )      -   ( )     -   ( ). 

v.     -   (   )      -   ( )     -   ( ). 

vi.     -   (    -   ( ))      -   ( ). 

Proof: (i), (ii), (iii), (iv), (v) and (vi) are obvious. 

Definition 4.7: A     (    ( )) is said to be a nano   
 
-space (briefly    

 
-space) if every   -   in 

it is a  -  . 

Definition 4.8: A     (    ( )) is said to be a nano     -space (briefly      -space) if every 

    -   in it is a  -  . 

Proposition 4.9: Every    
 
-space is a      -space. 

Proof: Let (    ( )) be a    
 
-space and let   be a     -   in  . Then   is a   -  , by 

proposition (3.2) part (ii). Since (    ( )) is a    
 
-space, then   is a  -   in  . Hence 

(    ( )) is a      -space. 

The following example shows that the converse of the above proposition not be true. 

Example 4.10: Let           with                 and        .  
Let   ( )                  be a    . Then (    ( )) is a      -space but not    

 
-space. 
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Theorem 4.11: For a     (    ( )), the following statements are equivalent: 

i. (    ( )) is a      -space. 

ii. Every singleton of a     (    ( )) is either    -   or  -  . 

Proof: (i)  (ii) Assume that for some     the set     is not a    -   in a     (    ( )). Then 

the only    -   containing       is the space   itself and       is a     -   in (    ( )). 

By assumption       is a  -   in (    ( )) or equivalently     is a  -  . 

(ii)  (i) Let   be a     -   in (    ( )) and let      ( ). By assumption     is either    -   

or  -  . 

Case (1). Suppose     is a    -  . If     then    ( )    contains a non-empty    -       
which is a contradiction to theorem (3.17). Therefore    . 

Case (2). Suppose     is a  -  . Since      ( ),         and therefore    ( )    or 

equivalently   is a  -   in a     (    ( )). 

5. Conclusion  

The class of     -   defined using    -   forms a nano topology and lies between the class of 

 -   and the class of   -  . The     -   can be used to derive a new decomposition of nano 

continuity and new nano separation axioms. 
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