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Abstract:

In this paper we introduced a new class of N-CS called Ngsg-CS and study their
basic properties in nano topological spaces. We also introduce Ngsg-closure and
Ngsg-interior and study some of their fundamental properties.
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1. Introduction
M. Lellis Thivagar and Carmel Richard [1] introduced nano topological space (or simply NTS)
with respect to a subset X of a universe which is defined in terms of lower and upper approximations
of X. He has also defined nano closed sets (briefly N-CS), nano interior and nano closure of a set. In
2014, Ng-CS was introduced by K. Bhuvaneswari and K. Mythili Gnanapriya [2]. K. Bhuvaneswari
and A. Ezhilarasi [3] introduced the concept of Nsg-CS and Ngs-CS in NTS. The concept gsg-CS
have been introduced and studied by M. Lellis et al [4] in classical topology. The purpose of this paper
is to introduce the concept of Ngsg-CS and study their basic properties in NTS. We also introduce
Ngsg-closure and Ngsg-interior and obtain some of its properties.
2. Preliminaries
Throughout this paper, (U, (X)) and (V,o%(Y)) (or simply U and V) always mean NTS on
which no separation axioms are assumed unless otherwise mentioned. For a set A in a NTS
(U, T2 (X)), Ncl(A), Nint(A) and A€ = U — A denote the nano closure of A, the nano interior of
A and the nano complement of A respectively.
Definition 2.1:[5] Let U be a non-empty finite set of objects called the universe and R be an
equivalence relation on U named as the indiscernibility relation. Elements belonging to the same
equivalence class are said to be indiscernible with in another. The pair (U,R) is called the
approximation space.
Remark 2.2:[5] Let (U, R) be an approximation space and X < U. Then:
i.  The lower approximation of X with respect to R is the set of all objects, which can be for certain
classified as X with respect to R and it is denoted by L (X). That is, Lz (X) = U{R(x): R(x) <
X, x € U}, where R(x) denotes the equivalence class determined by x.
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ii.  The upper approximation of X with respect to R is the set of all objects, which can be possibly
classified as X with respect to R and it is denoted by Ux(X). That is,
Ur(X) = U{R(x): R(x)NX # ¢, x € U}.

iii. ~ The boundary region of X with respect to R is the set of all objects, which can be classified
neither as X nor as not X with respect to R and it is denoted by Bz (X). That is, Bx(X) =
Ur(X) — Lg (X).

Proposition 2.3:[6] If (U, R) is an approximation space and X,Y < U. Then:

i.  Lp(X) € X € Ux(X).
i.  Le(¢) = Ur($) = ¢ and Le(U) = Ur(U) = U
V. Le(XUY) 2 Le(X)ULx(Y).
vii  La(XNY) = La(X)NLx(Y).
vii.  Lz(X) € Lg(Y) and Ux(X) < Ux(Y) whenever X € Y.
V||| U:R(XC) = (LR(X))C and LR(XC) = (U:R(X))C
ix. UrUgr(X) = LeUxr(X) = Ux(X).
X.  LgLg(X) = UpLg(X) = Lg(X).

Definition 2.4:[1] Let U be the universe, R be an equivalence relation on U and t¢(X) =

{p, U, Lx(X), Uxr(X), Bx(X)} where X € U. Then by proposition (2.3), t¢(X) satisfies the following

axioms:

i ¢,'U € TR(X).
ii.  The union of the elements of any subcollection of 74 (X) is in 74 (X).
iii.  The intersection of the elements of any finite subcollection of ¢ (X) is in Tz (X).

That is, t¢(X) is a topology on U called the nano topology on U with respect to X and the pair

(U, 12(X)) is called a nano topological space (or simply NTS). The elements of 7 (X) are called as

nano open sets (briefly N-0S).

Remark 2.5:[1] Let (U, tz(X)) be a NTS with respect to X where X < U and R be an equivalence

relation on ‘U. Then U/R denotes the family of equivalence classes of U by R.

Definition 2.6:[1] A subset A of a NTS (U, ¢ (X)) is said to be:

i. a nano semi-open set (briefly Ns-0S) if A € Ncl(Nint(A))and a nano semi-closed set
(briefly Ns-CS) if Nint(Ncl(A)) € A. The nano semi-closure of a set A of a NTS
(U, T2 (X)) is the intersection of all Ns-CS that contain A and is denoted by Nscl(A).

ii. a nano a-open set (briefly Na-0S) if A < Nint(Ncl(Nint(A))) and a nano a-closed set
(briefly Na-CS) if Ncl(Nint(Ncl(A))) € A. The nano a-closure of a set A of a NTS
(U, T2 (X)) is the intersection of all Na-CS that contain A and is denoted by Nacl(A).

Definition 2.7: A subset A of a NTS (U, tx (X)) is said to be:

i.  anano generalized closed set (briefly Ng-CS) [2] if Ncl(A) S M whenever A € M and M

is a N-0S in (U, t(X)). The complement of a Ng-CS is a Ng-0S in (U, 73 (X)).

ii. anano ag-closed set (briefly Nag-CS) [7] if Nacl(A) S M whenever A € M and M is a
N-OS in (U, 72 (X)). The complement of a Nag-CS is a Nag-0S in (U, T (X)).

iii. anano ga-closed set (briefly Nga-CS) [7] if Nacl(A) S M whenever A € M and M is a
Na-0S in (U, T (X)). The complement of a Nga-CS is a Nga-0S in (U, tx(X)).

iv.  anano sg-closed set (briefly Nsg-CS) [3] if Nscl(A) S M whenever A € M and M is a
Ns-0S in (U, Tz (X)). The complement of a Nsg-CS is a Nsg-0S in (U, T (X)).

v. anano gs-closed set (briefly Ngs-CS) [3] if Nscl(A) S M whenever A € M and M is a N-
0S in (U, tx(X)). The complement of a Ngs-CS is a Ngs-0S in (U, 7z (X)).

Proposition 2.8:[1,2] In a NTS (U, 1% (X)), then the following statements hold and the converse of

each statements are not true:

i.  Every N-OS (resp. N-CS) is a Na-0S (resp. Na-CS).
ii.  Every N-OS (resp. N-CS) is a Ng-0S (resp. Ng-CS).
iii.  Every Na-0S (resp. Na-CS) is a Ns-0S (resp. Ns-CS).

Proposition 2.9:[7] In a NTS (U, tx(X)), then the following statements hold and the converse of each

statements are not true:

i.  Every Ng-0S (resp. Ng-CS) is a Nag-0S (resp. Nag-CS).

1522



Imran Iragi Journal of Science, 2016, Vol. 57, No.2C, pp:1521-1527

ii.  Every Na-OS (resp. Na-CS) is a Nga-0S (resp. Nga-CS).
iii.  Every Nga-0S (resp. Nga-CS) is a Nag-0S (resp. Nag-CS).
Proposition 2.10:[3] In a NTS (U, tx(X)), then the following statements hold and the converse of
each statements are not true:
i. Every Ng-0S (resp. Ng-CS) is a Ngs-0S (resp. Ngs-CS).
ii.  Every Ns-OS (resp. Ns-CS) is a Nsg-0S (resp. Nsg-CS).
iii.  Every Nsg-0S (resp. Nsg-CS) is a Ngs-0S (resp. Ngs-CS).
iv.  Every Nga-0S (resp. Nga-CS) is a Ngs-0S (resp. Ngs-CS).
3. Nano Generalized sg-Closed Sets
In this section we introduce and study the nano generalized sg-closed sets and some of its properties.
Definition 3.1: A subset A of a NTS (U, 7x(X)) is said to be a nano generalized sg-closed set (briefly
Ngsg-CS) if Ncl(A) € M whenever A € M and M is a Nsg-0S in (U, Tz (X)). The family of all
Ngsg-CS of a NTS (U, tx(X)) is denoted by Ngsg-C(U, X).
Proposition 3.2: Ina NTS (U, ¢ (X)), the following statements are true:
i. Every N-CSisaNgsg-CS.
ii. Every Ngsg-CSisaNg-CS.
Proof: (i) Let A be a N-CS ina NTS (U, ¢ (X)) and let M be a Nsg-0S in U such that A € M. Then
Ncl(A) = A S M. Therefore A isaNgsg-CS.
(ii) Let A be a Ngsg-CS in a NTS (U, t(X)) and let M be a N-OS in U such that A < M. Since
every N-0S is a Nsg-0S, we have Ncl(A) € M. Therefore A is a Ng-CS.
The converse of the above proposition need not be true which can be seen from the following
examples.
Example 3.3: Let U = {a, b, ¢, d} with U/R = {{a},{d},{b,c}} and X = {a, c}.
Let tx(X) = {¢,{a},{b,c},{a, b, c}, U} be a NTS. Then the set {b, c} is a Ngsg-CS but not N-CS.
Example 3.4: Let U = {a, b, c,d, e} with U/R = {{d},{a, b},{c,e}}and X = {a,d}.
Let 7 (X) = {¢,{d}, {a, b},{a, b,d}, U} be a NTS. Then the set {a, ¢, d} is a Ng-CS but not Ngsg-CS.
Proposition 3.5: Ina NTS (U, ¢ (X)), the following statements are true:
i. Every Ngsg-CSisaNag-CS.
ii. Every Ngsg-CSisaNga-CS.
iii. Every Ngsg-CSisaNsg-CS.
iv.  Every Ngsg-CSisaNgs-CS.

i. LetA beaNgsg-CSinaNTS (U, tx(X)) and let M be a N-OS in U such that A < M. Since
every N-OS is a Nsg-0S, we have Nacl(A) € Ncl(A) € M implies Nacl(A) € M.
Therefore A is a Nag-CS.

ii. Let A beaNgsg-CSinaNTS (U,7x(X))and let M be a Na-0S in U such that A S M.
Since every Na-0S is a Ns-OS which is a Nsg-0S, we have Nacl(A) S Ncl(A) & M
implies Nacl(A) € M. Therefore A is a Nga-CS.

iii. Let A beaNgsg-CSinaNTS (U, tx(X))and let M be a Ns-OS in U such that A & M.
Since every Ns-OS is a Nsg-0S, we have Nscl(A) S Ncl(A) € M implies Nscl(A) € M.
Therefore A is a Nsg-CS.

iv.  LetA beaNgsg-CSinaNTS (U, tx(X)) and let M be a N-OS in U such that A < M. Since
every N-OS is a Nsg-0S, we have Nscl(A) S Ncl(A) € M implies Nscl(A) € M.
Therefore A is a Ngs-CS.

The converse of the above proposition need not be true as shown in the following examples.

Example 3.6: Let U = {a, b, ¢, d} with U/R = {{a},{c},{b,d}} and X = {a, b}.

Let o (X) = {¢,{a}, {b,d},{a, b,d}, U} be a NTS. Then the set {a, c} is a Nga-CS and hence Nag-CS
but not Ngsg-CS.

Example 3.7: Let U = {p,q, 7, s} with U/R = {{p},{r}.{q,s}} and X = {p, q}.

Let 7o (X) = {¢,{p},{q,5}, {p, q, s}, U} be a NTS. Then the set {p} is a Nsg-CS and hence Ngs-CS but
not Ngsg-CS.

Remark 3.8: The Ngsg-CS are independent of Na-CS and Ns-CS.
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Definition 3.9: A subset A of a NTS (U, tx(X)) is said to be a nano generalized sg-open set (briefly
Ngsg-0S) iff U — A is a Ngsg-CS. The family of all Ngsg-0S of a NTS (U, 7x(X)) is denoted by
Ngsg-0(U, X).
Proposition 3.10: Let (U, (X)) be a NTS. If A is a N-0S, then it is a Ngsg-0S in (U, 7z (X)).
Proof: Let A be a N-OS in a NTS (U, tx(X)), then U — A is a N-CS in (U, 7x(X)). By proposition
(3.2) part (i), U — A is aNgsg-CS. Hence A isaNgsg-0S in (U, Tz (X)).
Proposition 3.11: Let (U, t2(X)) be a NTS. If A is a Ngsg-0S, then it is a Ng-0S in (U, T (X)).
Proof: Let A be a Ngsg-0S in a NTS (U, tx(X)), then U — A is a Ngsg-CS in (U,1x(X)). By
proposition (3.2) part (ii), U — A is a Ng-CS. Hence A is a Ng-0S in (U, T2 (X)).
Proposition 3.12: Ina NTS (U, t¢ (X)), the following statements are true:

i.  Every Ngsg-OS is aNag-0S and Nga-0S.

ii. Every Ngsg-0SisaNsg-0S and Ngs-0S.
Proof: Similar to above proposition.
Theorem 3.13: If A and B are Ngsg-CS ina NTS (U, 7z(X)), then AUB is a Ngsg-CS.
Proof: Let A and B be two Ngsg-CS in a NTS (U, (X)) and let M be any Nsg-0S in U such that
A S M and B € M. Then we have AUB € M. Since A and B are Ngsg-CS in U, Ncl(A) S M
and Ncl(B) € M. Now, Ncl(AUB) = Ncl(A)UNcl(B) € M and so Ncl(AUB) € M. Hence
AUB isaNgsg-CS inU.
Theorem 3.14: If a set A is Ngsg-CS ina NTS (U, 7z (X)), then Ncl(A) — A contains no non-empty
N-CS in (U, 75 (X)).
Proof: Let A be a Ngsg-CS ina NTS (U, t(X)) and let F be any N-CS in (U, 7x(X)) such that F <
Ncl(A) — A. Since A is a Ngsg-CS, we have Ncl(A) € U — F. This implies F < U — Ncl(A).
Then F € Ncl(A)N(U — Ncl(A)) = ¢. Thus, F = ¢. Hence Ncl(A) — A contains no non-empty
N-CS in (U, 75 (X)).
Theorem 3.15: A set A is Ngsg-CS in a NTS (U, tx(X)) iff Ncl(A) — A contains no non-empty
Nsg-CS in (U, T (X)).
Proof: Let A be a Ngsg-CS in a NTS (U, (X)) and let D be any Nsg-CS in (U, (X)) such
that D < Ncl(A) — A. Since A is a Ngsg-CS, we have Ncl(A) € U — D. This implies D €U —
Ncl(A). Then D < Ncl(A)N(U — Ncl(A)) = ¢. Thus, D is empty.
Conversely, suppose that Ncl(A) — A contains no non-empty Nsg-CS in (U, t¢(X)). Let A S M
and M is Nsg-0S. If Ncl(A) € M then Ncl(A)N(U — M) is non-empty. Since Ncl(A) is N-CS and
U — M is Nsg-CS, we have Ncl(A)N(U — M) is non-empty Nsg-CS of Ncl(A) — A which is a
contradiction. Therefore Ncl(A) € M. Hence A is a Ngsg-CS.
Theorem 3.16: If A is a Ngsg-CS ina NTS (U, tx(X)) and A € B < Ncl(A), then B is a Ngsg-CS
in (‘U, TR(X))
Proof: Suppose that A is a Ngsg-CS in a NTS (U, t¢(X)). Let M be a Nsg-0S in (U, ¢ (X)) such
that B € M. Then A < M. Since A is a Ngsg-CS, it follows that Ncl(A) € M. Now, B < Ncl(A)
implies Ncl(B) € Ncl(Ncl(A)) = Ncl(A). Thus, Ncl(B) € M. Hence B is a Ngsg-CS.
Theorem 3.17: Let A €V < U and if A isa Ngsg-CS in U then A is a Ngsg-CS relative to V.
Proof: A € VNM where M is a Nsg-0S in U. Then A € M and hence Ncl(A) € M. This implies
that VNNcl(A) € VNM. Thus A is a Ngsg-CS relative to V.
Proposition 3.18: If A is a Nsg-0S and a Ngsg-CS in a NTS (U, t%(X)), then A is a N-CS in
(u, TR(X))'
Proof: Suppose that A is a Nsg-0S and a Ngsg-CS in a NTS (U, tx(X)), then Ncl(A) € A and
since A S Ncl(A). Thus, Ncl(A) = A. Hence A is a N-CS.
Theorem 3.19: For each x € U either {x} isa Nsg-CS or U — {x} isa Ngsg-CS in U.
Proof: If {x} is not a Nsg-CS in U then U — {x} is not a Nsg-0S and the only Nsg-0S containing
U — {x} is the space U itself. Therefore Ncl(U — {x}) < U and so U — {x} isaNgsg-CS in U.
Theorem 3.20: If A and B are Ngsg-0S ina NTS (U, (X)), then ANB is a Ngsg-0S.
Proof: Let A and B be Ngsg-0S in a NTS (U, t¢(X)). Then U — A and U — B are Ngsg-CS. By
theorem (3.13), (U — A)U(U — B) is a Ngsg-CS. Since (U — A)U(U — B) = U — (ANB). Hence
ANB isaNgsg-0S.
Theorem 3.21: A set A is Ngsg-0S iff C € Nint(A) where CisaNgsg-CSand C € A.
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Proof: Suppose that C < Nint(A) where C is a Ngsg-CS and C € A. Then U —A €U —C and
U—C is a Nsg-0S by proposition (3.12) part (ii). Now, Ncl(U — A) = U — Nint(A) €U - C.
Then U — A isaNgsg-CS. Hence A is a Ngsg-0S.
Conversely, let A be a Ngsg-0S and C be a Ngsg-CS and C € A. Then U — A €U — C. Since
U—AisaNgsg-CSand U — C is a Nsg-0S, we have Ncl(U — A) € U — C. Then C € Nint(A).
Theorem 3.22: If A € B < U where A is a Ngsg-0S relative to B and B is a Ngsg-0S in U, then A
isaNgsg-0S in U.
Proof: Let F be a Nsg-CS in U and suppose that F < A. Then F = FNB is a Nsg-CS in B. But A is
a Ngsg-0S relative to B. Therefore F < Nintg(A). Since Nintg(A) is a N-OS relative to B. We
have F € MNB < A, for some N-OS M inU. Since B isa Ngsg-0S in U, we have F € Nint(B) <
B. Therefore F € Nint(B)NM < BNM < A. It follows that F € Nint(A). Thus A is a Ngsg-0S
inU.
Theorem 3.23: If A is a Ngsg-0S in aNTS (U, t¢(X)) and Nint(A) € B < A, then B is a Ngsg-
0S in (U, T (X)).
Proof: Suppose that A is a Ngsg-0S ina NTS (U, 74 (X)) and Nint(A) S B S A. ThenU — A isa
Ngsg-CSand U — A S U —B S Ncl(U — A). Then U — B is a Ngsg-CS by theorem (3.16). Hence,
BisaNgsg-0S.
Theorem 3.24: For a subset A of a NTS (U, T (X)), the following statements are equivalent:
i. AlisaNgsg-CS.

ii. Ncl(A) — A contains no non-empty Nsg-CS.

iii. Ncl(A)—AisaNgsg-O0S.
Proof: Follows from theorem (3.15) and theorem (3.17).
Remark 3.25: The following diagram shows the relation between the different types of N-CS:

v
> NeCS [+ NgaCcs [ Neg-CS
\4 ‘L v
N-CS [+ Ngsg-CS [T  Ng-CS |
T Nsg-0S (
> Ns-CS I‘ Nsg-CS < 5‘ Ngs-CS -

Diagram (3.1)

4. Nano gsg-Closure and Nano gsg-Interior
We introduce nano gsg-closure and nano gsg-interior and obtain some of its properties in this
section.
Definition 4.1: The intersection of all Ngsg-CS in a NTS (U, t¢(X)) containing A is called nano
gsg-closure of A and is denoted by Ngsg-cl(A), Ngsg-cl(A) = N{B: A < B, Bis a Ngsg-CS}.
Definition 4.2: The union of all Ngsg-0S in a NTS (U, tx(X)) contained in A is called nano gsg-
interior of A and is denoted by Ngsg-int(A), Ngsg-int(A) = U{B: A 2 B, B is a Ngsg-0S}.
Proposition 4.3: Let A be any set in a NTS (U, Tz (X)). Then the following properties hold:
i. Ngsg-int(A) = Aiff AisaNgsg-0S.

ii. Ngsg-cl(A) = Aiff AisaNgsg-CS.

iii. Ngsg-int(A) is the largest Ngsg-0S contained in A.

iv.  Ngsg-cl(A) is the smallest Ngsg-CS containing A.
Proof: (i), (ii), (iii) and (iv) are obvious.
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Proposition 4.4: Let A be any set ina NTS (U, Tz (X)). Then the following properties hold:
i. Ngsg-int(U—A) =U—- (Ngsg-cl(A)),
ii. Ngsg-cl(U—-A)=U- (Ngsg-int(A)).
Proof: (i) By definition, Ngsg-cl(A) = N{B: A < B, Bis a Ngsg-CS}
U — (Ngsg-cl(A)) =U—-N{B: A < B,BisaNgsg-CS}
= U{U —-B:A € B,BisaNgsg-CS}
=UM:U—-A2M,MisaNgsg-0S}
= Ngsg-int(U — A).
(i) The proof is similar to (i).
Theorem 4.5: Let A and B be two sets in a NTS (U, 7z (X)). Then the following properties hold:
i. Ngsg-cl(¢) = ¢, Ngsg-cl(U) = U.
ii. A CNgsg-cl(A).
iii. A € B = Ngsg-cl(A) < Ngsg-cl(B).
iv. Ngsg-cl(ANB) € Ngsg-cl(A)NNgsg-cl(B).
V. Ngsg-cl(AUB) = Ngsg-cl(A)UNgsg-cl(B).
vi.  Ngsg-cl(Ngsg-cl(A)) = Ngsg-cl(A).
Proof: (i) and (ii) are obvious.
(iii) By part (ii), B € Ngsg-cl(B). Since A S B, we have A < Ngsg-cl(B). But Ngsg-cl(B) is a
Ngsg-CS. Thus Ngsg-cl(B) is a Ngsg-CS containing A. Since Ngsg-cl(A) is the smallest Ngsg-CS
containing A, we have Ngsg-cl(A) € Ngsg-cl(B). Hence, A € B = Ngsg-cl(A) € Ngsg-cl(B).
(iv) We know that ANB < A and ANB < B. Therefore, by part (iii), Ngsg-cl(ANB) S Ngsg-
cl(A) and Ngsg-cl(ANB) € Ngsg-cl(B). Hence Ngsg-cl(:ANB) < Ngsg-cl(A)NNgsg-cl(B).
(v) Since A € AUB and B < AUB, it follows from part (iii) that Ngsg-cl(A) € Ngsg-cl(AUB)
and Ngsg-cl(B) € Ngsg-cl(AUB). Hence Ngsg-cl(A)UNgsg-cl(B) € Ngsg-cl(AUB) Q)
Since Ngsg-cl(A) and Ngsg-cl(B) are Ngsg-CS, Ngsg-cl(A)UNgsg-cl(B) is also Ngsg-CS by
theorem (3.13). Also A < Ngsg-cl(A) and B < Ngsg-cl(B) implies that AUB < Ngsg-
cl(A)UNgsg-cl(B). Thus Ngsg-cl(A)UNgsg-cl(B) is a Ngsg-CS containing AUB. Since Ngsg-
cl(AUB) is the smallest Ngsg-CS containing AUB, we have Ngsg-cl(AUB) € Ngsg-
cl(A)UNgsg-cl(B) (2)
From (1) and (2), we have Ngsg-cl(AUB) = Ngsg-cl(:A)UNgsg-cl(B).
(vi) Since Ngsg-cl(A) is a Ngsg-CS, we have by proposition (4.3) part (ii), Ngsg-cl(Ngsg-cl(A))
= Ngsg-cl(A).
Theorem 4.6: Let A and B be two sets in a NTS (U, Tz (X)). Then the following properties hold:
i. Ngsg-int(¢) = ¢, Ngsg-int(U) = U.
ii. Ngsg-int(A) € A.
iii. A CB= Ngsg-int(A) S Ngsg-int(B).
iv.  Ngsg-int(ANB) = Ngsg-int(A)NNgsg-int(B).
V. Ngsg-int(AUB) 2 Ngsg-int(A)UNgsg-int(B).
vi. Ngsg-int(Ngsg-int(A)) = Ngsg-int(A).
Proof: (i), (ii), (iii), (iv), (v) and (vi) are obvious.
Definition 4.7: ANTS (U, tx(X)) is said to be a nano T%—space (briefly NT%—space) if every Ng-CS in
it is a N-CS.
Definition 4.8: A NTS (U, 7x(X)) is said to be a nano T,,,-space (briefly NT,,-space) if every
Ngsg-CS initis a N-CS.
Proposition 4.9: Every NT%—space is a NTy4-space.
Proof: Let (U,tx(X)) be a NT%—space and let A be a Ngsg-CS inU. Then A is a Ng-CS, by
proposition (3.2) part (ii). Since (U,t¢x(X)) is a NT%—space, then A is a N-CS in U. Hence

(U, 72(X)) is a NT,4-space.

The following example shows that the converse of the above proposition not be true.

Example 4.10: Let U = {x,y,z} with U/R = {{x},{y, z}} and X = {x, z}.

Let 72 (X) = {¢,{x}, {y, 2z}, U} be a NTS. Then (U, 72 (X)) is a NT,,4-space but not NT%—space.
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Theorem 4.11: For aNTS (U, t(X)), the following statements are equivalent:

i (U, tr(X)) is a NTy,,-space.

ii.  Everysingleton of a NTS (U, 7 (X)) is either Nsg-CS or N-OS.
Proof: (i) =(ii) Assume that for some x € U the set {x} is not a Nsg-CS in a NTS (U, tx(X)). Then
the only Nsg-OS containing U — {x} is the space U itself and U — {x} is a Ngsg-CS in (U, 12 (X)).

By assumption U — {x} is a N-CS in (U, T (X)) or equivalently {x} is a N-OS.

(if) =(i) Let A bea Ngsg-CS in (U, 7x(X)) and let x € Ncl(A). By assumption {x} is either Nsg-CS

or N-OS.

Case (1). Suppose {x} is a Nsg-CS. If x & A then Ncl(A) — A contains a non-empty Nsg-CS {x}

which is a contradiction to theorem (3.17). Therefore x € A.

Case (2). Suppose {x} is a N-0S. Since x € Ncl(A), {x}NA # ¢ and therefore Ncl(A) € A or

equivalently A is a N-CS ina NTS (U, t¢ (X)).

5. Conclusion

The class of Ngsg-CS defined using Nsg-CS forms a nano topology and lies between the class of

N-CS and the class of Ng-CS. The Ngsg-CS can be used to derive a new decomposition of nano

continuity and new nano separation axioms.
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