

On Nano Generalized Semi Generalized Closed Sets

Qays Hatem Imran*

Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq

Abstract:

In this paper we introduced a new class of N-CS called N*gsg*-CS and study their basic properties in nano topological spaces. We also introduce N*gsg*-closure and N*gsg*-interior and study some of their fundamental properties.

Keywords: Ngsg-CS, Ngsg-OS, Ngsg-closure and Ngsg-interior.

مجموعات النانو المعممة شبه المعممة المغلقة

قيس حاتم عمران *

قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة المثنى، السماوة، العراق

الخلاصة:

في هذا البحث قدمنا فئة جديدة من مجموعات النانو المغلقة تسمى بمجموعات النانو المعممة شبه المعممة المغلقة و دراسة خصائصها الأساسية في الفضاءات النانو التبولوجية. قدمنا أيضا انغلاق النانو المعممة شبه المعممة و مجموعة النقاط الداخلية النانو المعممة شبه المعممة و دراسة بعض خصائصها الأساسية.

1. Introduction

M. Lellis Thivagar and Carmel Richard [1] introduced nano topological space (or simply NTS) with respect to a subset X of a universe which is defined in terms of lower and upper approximations of X. He has also defined nano closed sets (briefly N-CS), nano interior and nano closure of a set. In 2014, Ng-CS was introduced by K. Bhuvaneswari and K. Mythili Gnanapriya [2]. K. Bhuvaneswari and A. Ezhilarasi [3] introduced the concept of Nsg-CS and Ngs-CS in NTS. The concept gsg-CS have been introduced and studied by M. Lellis et al [4] in classical topology. The purpose of this paper is to introduce the concept of Ngsg-CS and study their basic properties in NTS. We also introduce Ngsg-closure and Ngsg-interior and obtain some of its properties.

2. Preliminaries

Throughout this paper, $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and $(\mathcal{V}, \sigma_{\mathcal{R}}(Y))$ (or simply \mathcal{U} and \mathcal{V}) always mean NTS on which no separation axioms are assumed unless otherwise mentioned. For a set \mathcal{A} in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, $Ncl(\mathcal{A})$, $Nint(\mathcal{A})$ and $\mathcal{A}^{c} = \mathcal{U} - \mathcal{A}$ denote the nano closure of \mathcal{A} , the nano interior of \mathcal{A} and the nano complement of \mathcal{A} respectively.

Definition 2.1:[5] Let \mathcal{U} be a non-empty finite set of objects called the universe and \mathcal{R} be an equivalence relation on \mathcal{U} named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with in another. The pair $(\mathcal{U}, \mathcal{R})$ is called the approximation space.

Remark 2.2:[5] Let $(\mathcal{U}, \mathcal{R})$ be an approximation space and $X \subseteq \mathcal{U}$. Then:

i. The lower approximation of X with respect to \mathcal{R} is the set of all objects, which can be for certain classified as X with respect to \mathcal{R} and it is denoted by $L_{\mathcal{R}}(X)$. That is, $L_{\mathcal{R}}(X) = \bigcup \{\mathcal{R}(x) : \mathcal{R}(x) \subseteq X, x \in \mathcal{U}\}$, where $\mathcal{R}(x)$ denotes the equivalence class determined by x.

*Email: qays.imran@mu.edu.iq

- **ii.** The upper approximation of X with respect to \mathcal{R} is the set of all objects, which can be possibly classified as X with respect to \mathcal{R} and it is denoted by $U_{\mathcal{R}}(X)$. That is, $U_{\mathcal{R}}(X) = \bigcup \{\mathcal{R}(x) : \mathcal{R}(x) \cap X \neq \phi, x \in \mathcal{U}\}.$
- iii. The boundary region of X with respect to \mathcal{R} is the set of all objects, which can be classified neither as X nor as not X with respect to \mathcal{R} and it is denoted by $B_{\mathcal{R}}(X)$. That is, $B_{\mathcal{R}}(X) = U_{\mathcal{R}}(X) L_{\mathcal{R}}(X)$.
- **Proposition 2.3:[6]** If $(\mathcal{U}, \mathcal{R})$ is an approximation space and $X, Y \subseteq \mathcal{U}$. Then:
 - i. $L_{\mathcal{R}}(X) \subseteq X \subseteq U_{\mathcal{R}}(X)$.
 - ii. $L_{\mathcal{R}}(\phi) = U_{\mathcal{R}}(\phi) = \phi$ and $L_{\mathcal{R}}(\mathcal{U}) = U_{\mathcal{R}}(\mathcal{U}) = \mathcal{U}$.
 - iii. $U_{\mathcal{R}}(X \cup Y) = U_{\mathcal{R}}(X) \cup U_{\mathcal{R}}(Y).$
 - iv. $U_{\mathcal{R}}(X \cap Y) \subseteq U_{\mathcal{R}}(X) \cap U_{\mathcal{R}}(Y).$
 - **v.** $L_{\mathcal{R}}(X \cup Y) \supseteq L_{\mathcal{R}}(X) \cup L_{\mathcal{R}}(Y).$
 - vi. $L_{\mathcal{R}}(X \cap Y) = L_{\mathcal{R}}(X) \cap L_{\mathcal{R}}(Y).$
- vii. $L_{\mathcal{R}}(X) \subseteq L_{\mathcal{R}}(Y)$ and $U_{\mathcal{R}}(X) \subseteq U_{\mathcal{R}}(Y)$ whenever $X \subseteq Y$.
- viii. $U_{\mathcal{R}}(X^c) = (L_{\mathcal{R}}(X))^c$ and $L_{\mathcal{R}}(X^c) = (U_{\mathcal{R}}(X))^c$.
- ix. $U_{\mathcal{R}}U_{\mathcal{R}}(X) = L_{\mathcal{R}}U_{\mathcal{R}}(X) = U_{\mathcal{R}}(X).$
- **x.** $L_{\mathcal{R}}L_{\mathcal{R}}(X) = U_{\mathcal{R}}L_{\mathcal{R}}(X) = L_{\mathcal{R}}(X).$

Definition 2.4:[1] Let \mathcal{U} be the universe, \mathcal{R} be an equivalence relation on \mathcal{U} and $\tau_{\mathcal{R}}(X) = \{\phi, \mathcal{U}, L_{\mathcal{R}}(X), U_{\mathcal{R}}(X), B_{\mathcal{R}}(X)\}$ where $X \subseteq \mathcal{U}$. Then by proposition (2.3), $\tau_{\mathcal{R}}(X)$ satisfies the following axioms:

i. $\phi, \mathcal{U} \in \tau_{\mathcal{R}}(X)$.

- **ii.** The union of the elements of any subcollection of $\tau_{\mathcal{R}}(X)$ is in $\tau_{\mathcal{R}}(X)$.
- iii. The intersection of the elements of any finite subcollection of $\tau_{\mathcal{R}}(X)$ is in $\tau_{\mathcal{R}}(X)$.

That is, $\tau_{\mathcal{R}}(X)$ is a topology on \mathcal{U} called the nano topology on \mathcal{U} with respect to X and the pair $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is called a nano topological space (or simply NTS). The elements of $\tau_{\mathcal{R}}(X)$ are called as nano open sets (briefly N-OS).

Remark 2.5:[1] Let $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ be a NTS with respect to X where $X \subseteq \mathcal{U}$ and \mathcal{R} be an equivalence relation on \mathcal{U} . Then \mathcal{U}/\mathcal{R} denotes the family of equivalence classes of \mathcal{U} by \mathcal{R} .

Definition 2.6:[1] A subset \mathcal{A} of a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is said to be:

- i. a nano semi-open set (briefly Ns-OS) if $\mathcal{A} \subseteq Ncl(Nint(\mathcal{A}))$ and a nano semi-closed set (briefly Ns-CS) if $Nint(Ncl(\mathcal{A})) \subseteq \mathcal{A}$. The nano semi-closure of a set \mathcal{A} of a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is the intersection of all Ns-CS that contain \mathcal{A} and is denoted by $Nscl(\mathcal{A})$.
- **ii.** a nano α -open set (briefly N α -OS) if $\mathcal{A} \subseteq Nint(Ncl(Nint(\mathcal{A})))$ and a nano α -closed set (briefly N α -CS) if $Ncl(Nint(Ncl(\mathcal{A}))) \subseteq \mathcal{A}$. The nano α -closure of a set \mathcal{A} of a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is the intersection of all N α -CS that contain \mathcal{A} and is denoted by $N\alpha cl(\mathcal{A})$.

Definition 2.7: A subset \mathcal{A} of a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is said to be:

- i. a nano generalized closed set (briefly Ng-CS) [2] if $Ncl(\mathcal{A}) \subseteq \mathcal{M}$ whenever $\mathcal{A} \subseteq \mathcal{M}$ and \mathcal{M} is a N-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. The complement of a Ng-CS is a Ng-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.
- **ii.** a nano αg -closed set (briefly N αg -CS) [7] if N $\alpha cl(\mathcal{A}) \subseteq \mathcal{M}$ whenever $\mathcal{A} \subseteq \mathcal{M}$ and \mathcal{M} is a N-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. The complement of a N αg -CS is a N αg -OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.
- iii. a nano $g\alpha$ -closed set (briefly N $g\alpha$ -CS) [7] if N $\alpha cl(\mathcal{A}) \subseteq \mathcal{M}$ whenever $\mathcal{A} \subseteq \mathcal{M}$ and \mathcal{M} is a N α -OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. The complement of a N $g\alpha$ -CS is a N $g\alpha$ -OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.
- iv. a nano *sg*-closed set (briefly N*sg*-CS) [3] if N*scl*(\mathcal{A}) $\subseteq \mathcal{M}$ whenever $\mathcal{A} \subseteq \mathcal{M}$ and \mathcal{M} is a N*s*-OS in ($\mathcal{U}, \tau_{\mathcal{R}}(X)$). The complement of a N*sg*-CS is a N*sg*-OS in ($\mathcal{U}, \tau_{\mathcal{R}}(X)$).
- **v.** a nano *gs*-closed set (briefly N*gs*-CS) [3] if N*scl*(\mathcal{A}) $\subseteq \mathcal{M}$ whenever $\mathcal{A} \subseteq \mathcal{M}$ and \mathcal{M} is a N-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. The complement of a N*gs*-CS is a N*gs*-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.

Proposition 2.8:[1,2] In a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, then the following statements hold and the converse of each statements are not true:

- **i.** Every N-OS (resp. N-CS) is a N α -OS (resp. N α -CS).
- **ii.** Every N-OS (resp. N-CS) is a Ng-OS (resp. Ng-CS).
- iii. Every N α -OS (resp. N α -CS) is a Ns-OS (resp. Ns-CS).

Proposition 2.9:[7] In a NTS ($\mathcal{U}, \tau_{\mathcal{R}}(X)$), then the following statements hold and the converse of each statements are not true:

i. Every Ng-OS (resp. Ng-CS) is a N α g-OS (resp. N α g-CS).

- **ii.** Every N α -OS (resp. N α -CS) is a N $g\alpha$ -OS (resp. N $g\alpha$ -CS).
- **iii.** Every Ng α -OS (resp. Ng α -CS) is a N α g-OS (resp. N α g-CS).

Proposition 2.10:[3] In a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, then the following statements hold and the converse of each statements are not true:

- **i.** Every Ng-OS (resp. Ng-CS) is a Ngs-OS (resp. Ngs-CS).
- **ii.** Every Ns-OS (resp. Ns-CS) is a Nsg-OS (resp. Nsg-CS).
- iii. Every Nsg-OS (resp. Nsg-CS) is a Ngs-OS (resp. Ngs-CS).
- iv. Every Ng α -OS (resp. Ng α -CS) is a Ngs-OS (resp. Ngs-CS).

3. Nano Generalized sg-Closed Sets

In this section we introduce and study the nano generalized *sg*-closed sets and some of its properties.

Definition 3.1: A subset \mathcal{A} of a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is said to be a nano generalized *sg*-closed set (briefly N*gsg*-CS) if N*cl*(\mathcal{A}) $\subseteq \mathcal{M}$ whenever $\mathcal{A} \subseteq \mathcal{M}$ and \mathcal{M} is a N*sg*-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. The family of all N*gsg*-CS of a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is denoted by N*gsg*-C(\mathcal{U}, X).

Proposition 3.2: In a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, the following statements are true:

- **i.** Every N-CS is a Ngsg-CS.
- ii. Every Ngsg-CS is a Ng-CS.

Proof: (i) Let \mathcal{A} be a N-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and let \mathcal{M} be a Nsg-OS in \mathcal{U} such that $\mathcal{A} \subseteq \mathcal{M}$. Then $Ncl(\mathcal{A}) = \mathcal{A} \subseteq \mathcal{M}$. Therefore \mathcal{A} is a Ngsg-CS.

(ii) Let \mathcal{A} be a Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and let \mathcal{M} be a N-OS in \mathcal{U} such that $\mathcal{A} \subseteq \mathcal{M}$. Since every N-OS is a Nsg-OS, we have $Ncl(\mathcal{A}) \subseteq \mathcal{M}$. Therefore \mathcal{A} is a Ng-CS.

The converse of the above proposition need not be true which can be seen from the following examples.

Example 3.3: Let $U = \{a, b, c, d\}$ with $U/\mathcal{R} = \{\{a\}, \{d\}, \{b, c\}\}$ and $X = \{a, c\}$.

Let $\tau_{\mathcal{R}}(X) = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}, \mathcal{U}\}$ be a NTS. Then the set $\{b, c\}$ is a Ngsg-CS but not N-CS.

Example 3.4: Let $\mathcal{U} = \{a, b, c, d, e\}$ with $\mathcal{U}/\mathcal{R} = \{\{d\}, \{a, b\}, \{c, e\}\}$ and $X = \{a, d\}$.

Let $\tau_{\mathcal{R}}(X) = \{\phi, \{d\}, \{a, b\}, \{a, b, d\}, \mathcal{U}\}$ be a NTS. Then the set $\{a, c, d\}$ is a N*g*-CS but not N*gsg*-CS.

Proposition 3.5: In a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, the following statements are true:

- **i.** Every Ngsg-CS is a N α g-CS.
- **ii.** Every Ngsg-CS is a Ng α -CS.
- iii. Every Ngsg-CS is a Nsg-CS.
- **iv.** Every Ngsg-CS is a Ngs-CS.

Proof:

- **i.** Let \mathcal{A} be a Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and let \mathcal{M} be a N-OS in \mathcal{U} such that $\mathcal{A} \subseteq \mathcal{M}$. Since every N-OS is a Nsg-OS, we have $N\alpha cl(\mathcal{A}) \subseteq Ncl(\mathcal{A}) \subseteq \mathcal{M}$ implies $N\alpha cl(\mathcal{A}) \subseteq \mathcal{M}$. Therefore \mathcal{A} is a N α g-CS.
- **ii.** Let \mathcal{A} be a Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and let \mathcal{M} be a N α -OS in \mathcal{U} such that $\mathcal{A} \subseteq \mathcal{M}$. Since every N α -OS is a Ns-OS which is a Nsg-OS, we have N $\alpha cl(\mathcal{A}) \subseteq Ncl(\mathcal{A}) \subseteq \mathcal{M}$ implies N $\alpha cl(\mathcal{A}) \subseteq \mathcal{M}$. Therefore \mathcal{A} is a Ng α -CS.
- **iii.** Let \mathcal{A} be a Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and let \mathcal{M} be a Ns-OS in \mathcal{U} such that $\mathcal{A} \subseteq \mathcal{M}$. Since every Ns-OS is a Nsg-OS, we have $Nscl(\mathcal{A}) \subseteq Ncl(\mathcal{A}) \subseteq \mathcal{M}$ implies $Nscl(\mathcal{A}) \subseteq \mathcal{M}$. Therefore \mathcal{A} is a Nsg-CS.
- iv. Let \mathcal{A} be a Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and let \mathcal{M} be a N-OS in \mathcal{U} such that $\mathcal{A} \subseteq \mathcal{M}$. Since every N-OS is a Nsg-OS, we have $Nscl(\mathcal{A}) \subseteq Ncl(\mathcal{A}) \subseteq \mathcal{M}$ implies $Nscl(\mathcal{A}) \subseteq \mathcal{M}$. Therefore \mathcal{A} is a Ngs-CS.

The converse of the above proposition need not be true as shown in the following examples.

Example 3.6: Let $\mathcal{U} = \{a, b, c, d\}$ with $\mathcal{U}/\mathcal{R} = \{\{a\}, \{c\}, \{b, d\}\}$ and $X = \{a, b\}$.

Let $\tau_{\mathcal{R}}(X) = \{\phi, \{a\}, \{b, d\}, \{a, b, d\}, \mathcal{U}\}$ be a NTS. Then the set $\{a, c\}$ is a Ng α -CS and hence N α g-CS but not Ngsg-CS.

Example 3.7: Let $\mathcal{U} = \{p, q, r, s\}$ with $\mathcal{U}/\mathcal{R} = \{\{p\}, \{r\}, \{q, s\}\}$ and $X = \{p, q\}$.

Let $\tau_{\mathcal{R}}(X) = \{\phi, \{p\}, \{q, s\}, \{p, q, s\}, \mathcal{U}\}$ be a NTS. Then the set $\{p\}$ is a Nsg-CS and hence Ngs-CS but not Ngsg-CS.

Remark 3.8: The N*gsg*-CS are independent of N α -CS and N*s*-CS.

Definition 3.9: A subset \mathcal{A} of a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is said to be a nano generalized *sg*-open set (briefly N*gsg*-OS) iff $\mathcal{U} - \mathcal{A}$ is a N*gsg*-CS. The family of all N*gsg*-OS of a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is denoted by N*gsg*-O (\mathcal{U}, X) .

Proposition 3.10: Let $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ be a NTS. If \mathcal{A} is a N-OS, then it is a Ngsg-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.

Proof: Let \mathcal{A} be a N-OS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, then $\mathcal{U} - \mathcal{A}$ is a N-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. By proposition (3.2) part (i), $\mathcal{U} - \mathcal{A}$ is a Ngsg-CS. Hence \mathcal{A} is a Ngsg-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.

Proposition 3.11: Let $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ be a NTS. If \mathcal{A} is a Ngsg-OS, then it is a Ng-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.

Proof: Let \mathcal{A} be a Ngsg-OS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, then $\mathcal{U} - \mathcal{A}$ is a Ngsg-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. By proposition (3.2) part (ii), $\mathcal{U} - \mathcal{A}$ is a Ng-CS. Hence \mathcal{A} is a Ng-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.

Proposition 3.12: In a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, the following statements are true:

- i. Every Ngsg-OS is a N α g-OS and Ng α -OS.
- **ii.** Every Ngsg-OS is a Nsg-OS and Ngs-OS.

Proof: Similar to above proposition.

Theorem 3.13: If \mathcal{A} and \mathcal{B} are N*gsg*-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, then $\mathcal{A} \cup \mathcal{B}$ is a N*gsg*-CS.

Proof: Let \mathcal{A} and \mathcal{B} be two Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and let \mathcal{M} be any Nsg-OS in \mathcal{U} such that $\mathcal{A} \subseteq \mathcal{M}$ and $\mathcal{B} \subseteq \mathcal{M}$. Then we have $\mathcal{A} \cup \mathcal{B} \subseteq \mathcal{M}$. Since \mathcal{A} and \mathcal{B} are Ngsg-CS in \mathcal{U} , Ncl $(\mathcal{A}) \subseteq \mathcal{M}$ and Ncl $(\mathcal{B}) \subseteq \mathcal{M}$. Now, Ncl $(\mathcal{A} \cup \mathcal{B}) = Ncl(\mathcal{A}) \cup Ncl(\mathcal{B}) \subseteq \mathcal{M}$ and so Ncl $(\mathcal{A} \cup \mathcal{B}) \subseteq \mathcal{M}$. Hence $\mathcal{A} \cup \mathcal{B}$ is a Ngsg-CS in \mathcal{U} .

Theorem 3.14: If a set \mathcal{A} is Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, then Ncl $(\mathcal{A}) - \mathcal{A}$ contains no non-empty N-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.

Proof: Let \mathcal{A} be a Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and let \mathcal{F} be any N-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ such that $\mathcal{F} \subseteq$ Ncl $(\mathcal{A}) - \mathcal{A}$. Since \mathcal{A} is a Ngsg-CS, we have Ncl $(\mathcal{A}) \subseteq \mathcal{U} - \mathcal{F}$. This implies $\mathcal{F} \subseteq \mathcal{U} - Ncl(\mathcal{A})$. Then $\mathcal{F} \subseteq Ncl(\mathcal{A}) \cap (\mathcal{U} - Ncl(\mathcal{A})) = \phi$. Thus, $\mathcal{F} = \phi$. Hence Ncl $(\mathcal{A}) - \mathcal{A}$ contains no non-empty N-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.

Theorem 3.15: A set \mathcal{A} is Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ iff Ncl $(\mathcal{A}) - \mathcal{A}$ contains no non-empty Nsg-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.

Proof: Let \mathcal{A} be a Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and let \mathcal{D} be any Nsg-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ such that $\mathcal{D} \subseteq \operatorname{Ncl}(\mathcal{A}) - \mathcal{A}$. Since \mathcal{A} is a Ngsg-CS, we have $\operatorname{Ncl}(\mathcal{A}) \subseteq \mathcal{U} - \mathcal{D}$. This implies $\mathcal{D} \subseteq \mathcal{U} - \operatorname{Ncl}(\mathcal{A})$. Then $\mathcal{D} \subseteq \operatorname{Ncl}(\mathcal{A}) \cap (\mathcal{U} - \operatorname{Ncl}(\mathcal{A})) = \phi$. Thus, \mathcal{D} is empty.

Conversely, suppose that $Ncl(\mathcal{A}) - \mathcal{A}$ contains no non-empty Nsg-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. Let $\mathcal{A} \subseteq \mathcal{M}$ and \mathcal{M} is Nsg-OS. If $Ncl(\mathcal{A}) \subseteq \mathcal{M}$ then $Ncl(\mathcal{A}) \cap (\mathcal{U} - \mathcal{M})$ is non-empty. Since $Ncl(\mathcal{A})$ is N-CS and $\mathcal{U} - \mathcal{M}$ is Nsg-CS, we have $Ncl(\mathcal{A}) \cap (\mathcal{U} - \mathcal{M})$ is non-empty Nsg-CS of $Ncl(\mathcal{A}) - \mathcal{A}$ which is a contradiction. Therefore $Ncl(\mathcal{A}) \notin \mathcal{M}$. Hence \mathcal{A} is a Ngsg-CS.

Theorem 3.16: If \mathcal{A} is a Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and $\mathcal{A} \subseteq \mathcal{B} \subseteq \operatorname{Ncl}(\mathcal{A})$, then \mathcal{B} is a Ngsg-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.

Proof: Suppose that \mathcal{A} is a Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. Let \mathcal{M} be a Nsg-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ such that $\mathcal{B} \subseteq \mathcal{M}$. Then $\mathcal{A} \subseteq \mathcal{M}$. Since \mathcal{A} is a Ngsg-CS, it follows that $Ncl(\mathcal{A}) \subseteq \mathcal{M}$. Now, $\mathcal{B} \subseteq Ncl(\mathcal{A})$ implies $Ncl(\mathcal{B}) \subseteq Ncl(Ncl(\mathcal{A})) = Ncl(\mathcal{A})$. Thus, $Ncl(\mathcal{B}) \subseteq \mathcal{M}$. Hence \mathcal{B} is a Ngsg-CS.

Theorem 3.17: Let $\mathcal{A} \subseteq \mathcal{V} \subseteq \mathcal{U}$ and if \mathcal{A} is a Ngsg-CS in \mathcal{U} then \mathcal{A} is a Ngsg-CS relative to \mathcal{V} .

Proof: $\mathcal{A} \subseteq \mathcal{V} \cap \mathcal{M}$ where \mathcal{M} is a Nsg-OS in \mathcal{U} . Then $\mathcal{A} \subseteq \mathcal{M}$ and hence $Ncl(\mathcal{A}) \subseteq \mathcal{M}$. This implies that $\mathcal{V} \cap Ncl(\mathcal{A}) \subseteq \mathcal{V} \cap \mathcal{M}$. Thus \mathcal{A} is a Ngsg-CS relative to \mathcal{V} .

Proposition 3.18: If \mathcal{A} is a Nsg-OS and a Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, then \mathcal{A} is a N-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.

Proof: Suppose that \mathcal{A} is a Nsg-OS and a Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, then Ncl $(\mathcal{A}) \subseteq \mathcal{A}$ and since $\mathcal{A} \subseteq Ncl(\mathcal{A})$. Thus, Ncl $(\mathcal{A}) = \mathcal{A}$. Hence \mathcal{A} is a N-CS.

Theorem 3.19: For each $x \in U$ either $\{x\}$ is a Nsg-CS or $U - \{x\}$ is a Ngsg-CS in U.

Proof: If $\{x\}$ is not a Nsg-CS in \mathcal{U} then $\mathcal{U} - \{x\}$ is not a Nsg-OS and the only Nsg-OS containing $\mathcal{U} - \{x\}$ is the space \mathcal{U} itself. Therefore Ncl $(\mathcal{U} - \{x\}) \subseteq \mathcal{U}$ and so $\mathcal{U} - \{x\}$ is a Ngsg-CS in \mathcal{U} .

Theorem 3.20: If \mathcal{A} and \mathcal{B} are Ngsg-OS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, then $\mathcal{A} \cap \mathcal{B}$ is a Ngsg-OS.

Proof: Let \mathcal{A} and \mathcal{B} be Ngsg-OS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. Then $\mathcal{U} - \mathcal{A}$ and $\mathcal{U} - \mathcal{B}$ are Ngsg-CS. By theorem (3.13), $(\mathcal{U} - \mathcal{A}) \cup (\mathcal{U} - \mathcal{B})$ is a Ngsg-CS. Since $(\mathcal{U} - \mathcal{A}) \cup (\mathcal{U} - \mathcal{B}) = \mathcal{U} - (\mathcal{A} \cap \mathcal{B})$. Hence $\mathcal{A} \cap \mathcal{B}$ is a Ngsg-OS.

Theorem 3.21: A set \mathcal{A} is Ngsg-OS iff $\mathcal{C} \subseteq Nint(\mathcal{A})$ where \mathcal{C} is a Ngsg-CS and $\mathcal{C} \subseteq \mathcal{A}$.

Proof: Suppose that $C \subseteq Nint(\mathcal{A})$ where C is a Ngsg-CS and $C \subseteq \mathcal{A}$. Then $\mathcal{U} - \mathcal{A} \subseteq \mathcal{U} - C$ and $\mathcal{U} - C$ is a Nsg-OS by proposition (3.12) part (ii). Now, $Ncl(\mathcal{U} - \mathcal{A}) = \mathcal{U} - Nint(\mathcal{A}) \subseteq \mathcal{U} - C$. Then $\mathcal{U} - \mathcal{A}$ is a Ngsg-CS. Hence \mathcal{A} is a Ngsg-OS.

Conversely, let \mathcal{A} be a Ngsg-OS and \mathcal{C} be a Ngsg-CS and $\mathcal{C} \subseteq \mathcal{A}$. Then $\mathcal{U} - \mathcal{A} \subseteq \mathcal{U} - \mathcal{C}$. Since $\mathcal{U} - \mathcal{A}$ is a Ngsg-CS and $\mathcal{U} - \mathcal{C}$ is a Nsg-OS, we have $Ncl(\mathcal{U} - \mathcal{A}) \subseteq \mathcal{U} - \mathcal{C}$. Then $\mathcal{C} \subseteq Nint(\mathcal{A})$.

Theorem 3.22: If $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{U}$ where \mathcal{A} is a N*gsg*-OS relative to \mathcal{B} and \mathcal{B} is a N*gsg*-OS in \mathcal{U} , then \mathcal{A} is a N*gsg*-OS in \mathcal{U} .

Proof: Let \mathcal{F} be a Nsg-CS in \mathcal{U} and suppose that $\mathcal{F} \subseteq \mathcal{A}$. Then $\mathcal{F} = \mathcal{F} \cap \mathcal{B}$ is a Nsg-CS in \mathcal{B} . But \mathcal{A} is a Ngsg-OS relative to \mathcal{B} . Therefore $\mathcal{F} \subseteq \operatorname{Nint}_{\mathcal{B}}(\mathcal{A})$. Since $\operatorname{Nint}_{\mathcal{B}}(\mathcal{A})$ is a N-OS relative to \mathcal{B} . We have $\mathcal{F} \subseteq \mathcal{M} \cap \mathcal{B} \subseteq \mathcal{A}$, for some N-OS \mathcal{M} in \mathcal{U} . Since \mathcal{B} is a Ngsg-OS in \mathcal{U} , we have $\mathcal{F} \subseteq \operatorname{Nint}(\mathcal{B}) \subseteq \mathcal{B}$. Therefore $\mathcal{F} \subseteq \operatorname{Nint}(\mathcal{B}) \cap \mathcal{M} \subseteq \mathcal{B} \cap \mathcal{M} \subseteq \mathcal{A}$. It follows that $\mathcal{F} \subseteq \operatorname{Nint}(\mathcal{A})$. Thus \mathcal{A} is a Ngsg-OS in \mathcal{U} .

Theorem 3.23: If \mathcal{A} is a Ngsg-OS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and Nint $(\mathcal{A}) \subseteq \mathcal{B} \subseteq \mathcal{A}$, then \mathcal{B} is a Ngsg-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.

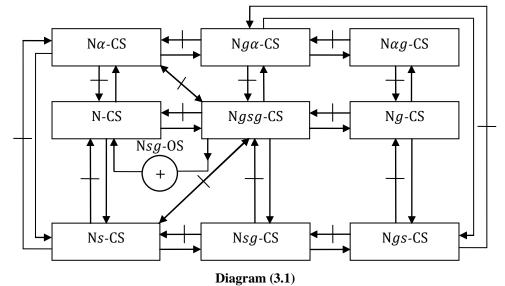
Proof: Suppose that \mathcal{A} is a Ngsg-OS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and Nint $(\mathcal{A}) \subseteq \mathcal{B} \subseteq \mathcal{A}$. Then $\mathcal{U} - \mathcal{A}$ is a Ngsg-CS and $\mathcal{U} - \mathcal{A} \subseteq \mathcal{U} - \mathcal{B} \subseteq \operatorname{Ncl}(\mathcal{U} - \mathcal{A})$. Then $\mathcal{U} - \mathcal{B}$ is a Ngsg-CS by theorem (3.16). Hence, \mathcal{B} is a Ngsg-OS.

Theorem 3.24: For a subset \mathcal{A} of a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, the following statements are equivalent:

- i. \mathcal{A} is a Ngsg-CS.
- ii. Ncl(A) A contains no non-empty Nsg-CS.
- iii. $Ncl(\mathcal{A}) \mathcal{A}$ is a Ngsg-OS.

Proof: Follows from theorem (3.15) and theorem (3.17).

Remark 3.25: The following diagram shows the relation between the different types of N-CS:



4. Nano *gsg*-Closure and Nano *gsg*-Interior

We introduce nano gsg-closure and nano gsg-interior and obtain some of its properties in this section.

Definition 4.1: The intersection of all Ngsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ containing \mathcal{A} is called nano gsg-closure of \mathcal{A} and is denoted by Ngsg- $cl(\mathcal{A})$, Ngsg- $cl(\mathcal{A}) = \bigcap \{\mathcal{B}: \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a } Ngsg$ -CS}. **Definition 4.2:** The union of all Ngsg-OS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ contained in \mathcal{A} is called nano gsg-interior of \mathcal{A} and is denoted by Ngsg- $int(\mathcal{A})$, Ngsg- $int(\mathcal{A}) = \bigcup \{\mathcal{B}: \mathcal{A} \supseteq \mathcal{B}, \mathcal{B} \text{ is a } Ngsg$ -OS}. **Proposition 4.3:** Let \mathcal{A} be any set in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. Then the following properties hold:

i. Ngsg-int(\mathcal{A}) = \mathcal{A} iff \mathcal{A} is a Ngsg-OS.

- ii. Ngsq-cl(\mathcal{A}) = \mathcal{A} iff \mathcal{A} is a Ngsq-CS.
- **iii.** Ngsg-int(\mathcal{A}) is the largest Ngsg-OS contained in \mathcal{A} .
- iv. Ngsg-cl(A) is the smallest Ngsg-CS containing A.

Proof: (i), (ii), (iii) and (iv) are obvious.

Proposition 4.4: Let \mathcal{A} be any set in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. Then the following properties hold:

i. $\operatorname{Ngsg-int}(\mathcal{U}-\mathcal{A}) = \mathcal{U} - (\operatorname{Ngsg-cl}(\mathcal{A})),$

ii. $\operatorname{N}gsg\operatorname{-}cl(\mathcal{U}-\mathcal{A}) = \mathcal{U} - (\operatorname{N}gsg\operatorname{-}int(\mathcal{A})).$

Proof: (i) By definition, $Ngsg-cl(\mathcal{A}) = \bigcap \{\mathcal{B}: \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a } Ngsg-CS\}$

 $\mathcal{U} - (\mathrm{N}gsg\text{-}cl(\mathcal{A})) = \mathcal{U} - \bigcap \{\mathcal{B}: \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a } \mathrm{N}gsg\text{-}\mathrm{CS} \}$

- $= \bigcup \{ \mathcal{U} \mathcal{B} \colon \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a } \mathsf{N}gsg\mathsf{-}\mathsf{CS} \}$
- $= \bigcup \{\mathcal{M} \colon \mathcal{U} \mathcal{A} \supseteq \mathcal{M}, \mathcal{M} \text{ is a } \mathsf{N}gsg\text{-}\mathsf{OS} \}$
- $= \operatorname{N}gsg\operatorname{-}int(\mathcal{U}-\mathcal{A}).$

(ii) The proof is similar to (i).

Theorem 4.5: Let \mathcal{A} and \mathcal{B} be two sets in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. Then the following properties hold:

i. $\operatorname{N} gsg-cl(\phi) = \phi, \operatorname{N} gsg-cl(\mathcal{U}) = \mathcal{U}.$

ii. $\mathcal{A} \subseteq \operatorname{Ngsg-cl}(\mathcal{A}).$

iii. $\mathcal{A} \subseteq \mathcal{B} \Longrightarrow \operatorname{Ngsg-cl}(\mathcal{A}) \subseteq \operatorname{Ngsg-cl}(\mathcal{B}).$

iv. $\operatorname{N}gsg-cl(\mathcal{A}\cap\mathcal{B}) \subseteq \operatorname{N}gsg-cl(\mathcal{A})\cap \operatorname{N}gsg-cl(\mathcal{B}).$

v. $\operatorname{Ngsg-cl}(\mathcal{A}\cup\mathcal{B}) = \operatorname{Ngsg-cl}(\mathcal{A})\cup\operatorname{Ngsg-cl}(\mathcal{B}).$

vi. $Ngsg-cl(Ngsg-cl(\mathcal{A})) = Ngsg-cl(\mathcal{A}).$

Proof: (i) and (ii) are obvious.

(iii) By part (ii), $\mathcal{B} \subseteq \operatorname{Ngsg-cl}(\mathcal{B})$. Since $\mathcal{A} \subseteq \mathcal{B}$, we have $\mathcal{A} \subseteq \operatorname{Ngsg-cl}(\mathcal{B})$. But $\operatorname{Ngsg-cl}(\mathcal{B})$ is a $\operatorname{Ngsg-cl}(\mathcal{B})$ is a $\operatorname{Ngsg-cl}(\mathcal{B})$ containing \mathcal{A} . Since $\operatorname{Ngsg-cl}(\mathcal{A})$ is the smallest $\operatorname{Ngsg-cl}(\mathcal{B})$ containing \mathcal{A} , we have $\operatorname{Ngsg-cl}(\mathcal{A}) \subseteq \operatorname{Ngsg-cl}(\mathcal{B})$. Hence, $\mathcal{A} \subseteq \mathcal{B} \Longrightarrow \operatorname{Ngsg-cl}(\mathcal{A}) \subseteq \operatorname{Ngsg-cl}(\mathcal{B})$. (iv) We know that $\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{A}$ and $\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{B}$. Therefore, by part (iii), $\operatorname{Ngsg-cl}(\mathcal{A} \cap \mathcal{B}) \subseteq \operatorname{Ngsg-cl}(\mathcal{B})$. (iv) We know that $\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{A}$ and $\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{B}$. Therefore, by part (iii), $\operatorname{Ngsg-cl}(\mathcal{A} \cap \mathcal{B}) \subseteq \operatorname{Ngsg-cl}(\mathcal{B})$. (iv) We know that $\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{A}$ and $\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{B}$. Therefore, by part (iii), $\operatorname{Ngsg-cl}(\mathcal{A} \cap \mathcal{B}) \subseteq \operatorname{Ngsg-cl}(\mathcal{B})$. (v) Since $\mathcal{A} \subseteq \mathcal{A} \cup \mathcal{B}$ and $\mathcal{B} \subseteq \mathcal{A} \cup \mathcal{B}$, it follows from part (iii) that $\operatorname{Ngsg-cl}(\mathcal{A}) \subseteq \operatorname{Ngsg-cl}(\mathcal{A} \cup \mathcal{B})$ and $\operatorname{Ngsg-cl}(\mathcal{B}) \subseteq \operatorname{Ngsg-cl}(\mathcal{A} \cup \mathcal{B})$. Hence $\operatorname{Ngsg-cl}(\mathcal{A}) \cup \operatorname{Ngsg-cl}(\mathcal{B}) \subseteq \operatorname{Ngsg-cl}(\mathcal{A} \cup \mathcal{B})$ and $\operatorname{Ngsg-cl}(\mathcal{A})$ and $\operatorname{Ngsg-cl}(\mathcal{B})$. Hence $\operatorname{Ngsg-cl}(\mathcal{A}) \cup \operatorname{Ngsg-cl}(\mathcal{B}) \subseteq \operatorname{Ngsg-cl}(\mathcal{A} \cup \mathcal{B})$ (1) Since $\operatorname{Ngsg-cl}(\mathcal{A})$ and $\operatorname{Ngsg-cl}(\mathcal{B})$ are $\operatorname{Ngsg-cl}(\mathcal{A}) \cup \operatorname{Ngsg-cl}(\mathcal{B})$ is also $\operatorname{Ngsg-cl}(\mathcal{B})$ is the syngsg-cl}(\mathcal{A}) \cup \operatorname{Ngsg-cl}(\mathcal{B}) is also $\operatorname{Ngsg-cl}(\mathcal{A}) \cup \operatorname{Ngsg-cl}(\mathcal{A}) \cup \operatorname{Ngsg-cl}(\mathcal{B})$. Thus $\operatorname{Ngsg-cl}(\mathcal{A}) \cup \operatorname{Ngsg-cl}(\mathcal{B})$ is a $\operatorname{Ngsg-cl}(\mathcal{A} \cup \mathcal{B}) \subseteq \operatorname{Ngsg-cl}(\mathcal{A} \cup \mathcal{B}) \subseteq \operatorname{Ngsg-cl}(\mathcal{A} \cup \mathcal{B})$ is the smallest $\operatorname{Ngsg-cl}(\mathcal{A}) \cup \operatorname{Ngsg-cl}(\mathcal{B})$, we have $\operatorname{Ngsg-cl}(\mathcal{A} \cup \mathcal{B}) \subseteq \operatorname{Ngsg-cl}(\mathcal{A} \cup \mathcal{B}) \subseteq \operatorname{Ngsg-cl}(\mathcal{A$

From (1) and (2), we have $Ngsg-cl(A \cup B) = Ngsg-cl(A) \cup Ngsg-cl(B)$.

(vi) Since Ngsg-cl(A) is a Ngsg-CS, we have by proposition (4.3) part (ii), Ngsg-cl(Ngsg-cl(A)) = Ngsg-cl(A).

Theorem 4.6: Let \mathcal{A} and \mathcal{B} be two sets in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. Then the following properties hold:

- i. $\operatorname{N}gsg\operatorname{-}int(\phi) = \phi, \operatorname{N}gsg\operatorname{-}int(\mathcal{U}) = \mathcal{U}.$
- ii. $\operatorname{Ngsg-int}(\mathcal{A}) \subseteq \mathcal{A}.$
- **iii.** $\mathcal{A} \subseteq \mathcal{B} \Longrightarrow \operatorname{Ngsg-int}(\mathcal{A}) \subseteq \operatorname{Ngsg-int}(\mathcal{B}).$
- iv. $\operatorname{Ngsg-int}(\mathcal{A} \cap \mathcal{B}) = \operatorname{Ngsg-int}(\mathcal{A}) \cap \operatorname{Ngsg-int}(\mathcal{B}).$
- **v.** Ngsg-int($\mathcal{A} \cup \mathcal{B}$) \supseteq Ngsg-int(\mathcal{A}) \cup Ngsg-int(\mathcal{B}).
- vi. $Ngsg-int(Ngsg-int(\mathcal{A})) = Ngsg-int(\mathcal{A}).$

Proof: (i), (ii), (iii), (iv), (v) and (vi) are obvious.

Definition 4.7: A NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is said to be a nano $T_{\frac{1}{2}}$ -space (briefly $NT_{\frac{1}{2}}$ -space) if every Ng-CS in it is a N-CS.

Definition 4.8: A NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is said to be a nano T_{gsg} -space (briefly NT_{gsg} -space) if every Ngsg-CS in it is a N-CS.

Proposition 4.9: Every $NT_{\frac{1}{2}}$ -space is a NT_{gsg} -space.

Proof: Let $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ be a $NT_{\frac{1}{2}}$ -space and let \mathcal{A} be a Ngsg-CS in \mathcal{U} . Then \mathcal{A} is a Ng-CS, by proposition (3.2) part (ii). Since $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is a $NT_{\frac{1}{2}}$ -space, then \mathcal{A} is a N-CS in \mathcal{U} . Hence $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is a NT_{gsg} -space.

The following example shows that the converse of the above proposition not be true.

Example 4.10: Let $\mathcal{U} = \{x, y, z\}$ with $\mathcal{U}/\mathcal{R} = \{\{x\}, \{y, z\}\}$ and $X = \{x, z\}$.

Let $\tau_{\mathcal{R}}(X) = \{\phi, \{x\}, \{y, z\}, \mathcal{U}\}$ be a NTS. Then $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is a NT_{gsg} -space but not $NT_{\frac{1}{2}}$ -space.

Theorem 4.11: For a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$, the following statements are equivalent:

- i. $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is a NT_{gsg}-space.
- **ii.** Every singleton of a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ is either Nsg-CS or N-OS.

Proof: (i) \Rightarrow (ii) Assume that for some $x \in U$ the set $\{x\}$ is not a Nsg-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. Then the only Nsg-OS containing $\mathcal{U} - \{x\}$ is the space \mathcal{U} itself and $\mathcal{U} - \{x\}$ is a Ngsg-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$. By assumption $\mathcal{U} - \{x\}$ is a N-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ or equivalently $\{x\}$ is a N-OS.

(ii) \Rightarrow (i) Let \mathcal{A} be a Ngsg-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(X))$ and let $x \in Ncl(\mathcal{A})$. By assumption $\{x\}$ is either Nsg-CS or N-OS.

Case (1). Suppose $\{x\}$ is a Nsg-CS. If $x \notin A$ then Ncl(A) - A contains a non-empty Nsg-CS $\{x\}$ which is a contradiction to theorem (3.17). Therefore $x \in A$.

Case (2). Suppose $\{x\}$ is a N-OS. Since $x \in Ncl(\mathcal{A})$, $\{x\} \cap \mathcal{A} \neq \phi$ and therefore $Ncl(\mathcal{A}) \subseteq \mathcal{A}$ or equivalently \mathcal{A} is a N-CS in a NTS $(\mathcal{U}, \tau_{\mathcal{R}}(X))$.

5. Conclusion

The class of Ngsg-CS defined using Nsg-CS forms a nano topology and lies between the class of N-CS and the class of Ng-CS. The Ngsg-CS can be used to derive a new decomposition of nano continuity and new nano separation axioms.

References

- 1. Lellis Thivagar, M. and Carmel Richard. 2013. On nano forms of weakly open sets, *International Journal of Mathematics and Statistics Invention*, 1(1), pp:31-37.
- **2.** Bhuvaneswari, K. and Mythili Gnanapriya, K. **2014**. Nano generalized closed sets in nano topological spaces, *International Journal of Scientific and Research Publication*, 4(5), pp:1-3.
- **3.** Bhuvaneswari, K. and Ezhilarasi, A. **2014**. On nano semi-generalized and nano generalized-semi closed sets in nano topological spaces, *International Journal of Mathematics and Computer Applications Research*, 4(3), pp:117-124.
- 4. Lellis Thivagar, M. Nirmala Rebecca Paul and Saeid Jafari.2011. On new class of generalized closed sets, *Annals of the University of Craiova, Mathematics and Computer Science Series*, 38(3), pp:84-93.
- **5.** Pawlak, Z. **1982**. Rough Sets, *International Journal of Information and Computer Sciences*, 11, pp:341-356.
- 6. Reilly, L. and Vamanamurthy. **1985**. On α -sets in topological spaces, *Tamkang Journal Math.*, 16, pp:7-11.
- 7. Thanga Nachiyar, R. and Bhuvaneswari, K. 2014. On nano generalized α -closed sets and nano α -generalized closed sets in nano topological spaces, *International Journal of Engineering Trends and Technology*, 13(6), pp:257-260.