
Abdullah                                                  Iraqi Journal of Science, 2016, Vol. 57, No.2C, pp:1426-1435 

________________________________ 

*Email:Ahmednajim1979@yahoo.com 

1426 

Elastic Electron Scattering From 
52

Cr,
 58

Fe and 
64

Ni Nuclei in the 

Framework of the Coherent Density Fluctuation Model 
 

Ahmed N. Abdullah* 
Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq 

 

Abstract: 
Coherent density fluctuation model (CDFM) has been used to calculate the 

proton momentum distributions (PMD) and elastic electron scattering form factors, 

F(q), of the ground state for some even mass nuclei of fp-shell, such as 
52

Cr,
 58

Fe and 
64

Ni nuclei. Both of the PMD and F(q) have been expressed in terms of the weight 

function ))((
2

xf which is determined by means of the charge density 

distributions (CDD) of the nuclei and determined from theory and experiment. The 

feature of the long-tail behavior at high momentum region of the PMD’s has been 

obtained by both the theoretical and experimental weight functions. The calculated 

form factors of these nuclei are in reasonable agreement with those of the 

experimental data. 
  

Keywords: Proton momentum distributions, Charge density distributions, Coherent density 
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 الخلاصة
للحالة  (PMD) تونو البر توزيعات زخم استخدام أنموذج تموج الكثافة المترابط في حساب كل من تم 

الواقعة ضمن القشرة  الزوجية للاستطارة الالكترونية المرنة لبعض النوى F(q) الارضية وعوامل التشكل 
بدلالة دالة التموج   F(q)و   PMDكل من  قد تم التعبير عنل. 64Ni و 52Cr ،58Fe مثل fp النووية

))((
2

xf  التي تحسب بواسطة توزيعات كثافة الشحنة(CDD) في هذه الدراسة تم حساب دالة التموج .
ى )المستندة عل تونو البر تميزت نتائج توزيعات زخم  .لتوزيعات كثافة الشحنة النتائج النظرية والعملية من خلال

دالة التموج النظرية والعملية( بخاصية الذيل الطويل عند قيم الزخوم العالية. أظهرت هذه الدراسة بان النتائج 
والمحسوبة بأنموذج التموج   64Niو  52Cr ،58Feللنوى النظرية لعوامل التشكل للاستطارة الالكترونية المرنة 

 .المتشاكه تتفق مع النتائج العملية
1. Introduction 

Electron scattering method is a powerful tool for studying nuclear structure because there are two 

reasons; the first is that the interaction is known, as the electron interacts electromagnetically with the 

local charge and current density in the target. Since this interaction is relatively weak, one can make 

measurement without greatly disturbing the structure of the target. The second advantage of electrons 

is that for fixed energy loss to the target, one can vary the three-momentum transfer q


 and map out 

the Fourier transforms of the static and transition densities [1].With electron scattering one can 

immediately relate the cross section to the transition matrix elements of the local charge and current 

density operators and this directly to the structure of the target itself.  
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The scattering of electrons from a target nucleus can occur in two ways. In one, the nucleus is left 

in its ground state after the scattering and the energy of the electrons is unchanged. In the other, the 

scattered electron leaves the nucleus in different excited state and has a final energy reduced from the 

initial just by the amount taken up by the nucleus in its excited state. These two kinds of processes are 

referred to elastic and inelastic electron scattering [2,3].  

In coherent density fluctuation model (CDFM), which is exemplified by the work of Antonov et al. 

[4-6], the local nucleon density distribution (NDD) and the nucleon momentum distributions (NMD) 

are simply related and expressed in terms of experimentally obtainable fluctuation function (weight 

function) 
2

)(xf . They [4-6] studied the NMD of (
4
He and 

16
O), 

12
C and (

39
K, 

40
Ca and 

48
Ca) nuclei 

using weight functions 
2

)(xf  specified by the two parameter Fermi (2PF) NDD [7], the data of 

Reuter et al. [8] and the model independent NDD [8], respectively. It is significant to remark that all 

above studies, employed the framework of the CDFM, proved a high momentum tail in the NMD. 

Elastic electron scattering from 
40

Ca nucleus was also investigated in Ref. [4], where the calculated 

elastic differential cross sections  dd /  are in good agreement with those of experimental data. 

Recently, Al-Rahmani [9] have studied the PMD and F(q) for 2s-1d shell nuclei using the 

framework of CDFM and derived an analytical form for the CDD based on the use of the single 

particle harmonic oscillator wave functions and the occupation number of the states. The derived 

CDD’s, which are applicable throughout the whole 2s-1d shell nuclei, have been used in the CDFM. 

The calculated PMD and elastic form factors of all considered nuclei have been in very good 

agreement with experimental data. 

The aim of the present work is to extend the calculations of Al-Rahmani [9] to higher shells (such 

as the 1f-2p shell nuclei) and to derive an analytical expression for the CDD based on the use of the 

single particle harmonic oscillator wave functions and the occupation numbers of the states. The 

derived CDD is employed in determining the theoretical weight function 
2

)(xf  which is used in the 

CDFM to study the PMD and elastic form factors for 
52

Cr,
 58

Fe and 
64

Ni nuclei. We shall see later that 

the theoretical 
2

)(xf , based on the derived CDD, is capable to provide information about the PMD 

and elastic electron scattering form factors as do those of experimental CDD of Ref. [7]. 

2. Theory 

The charge density distribution CDD of one body operator can be written as [10]: 

  2
122

4

1
)( 


  n

n

nc Rr  


                                                                                                 (1) 

Where n  is the proton occupation probability of the state n  ( 0n or 1 for closed shell nuclei 

and 10  n for open shell nuclei) and nR  is the radial part of the single particle harmonic 

oscillator wave function.  

The CDD form of 
52

Cr,
 58

Fe and 
64

Ni nuclei is derived on the assumption that there are filled 1s, 1p 

and 1d orbitals and the proton occupation numbers in 2s, 1f and 2p orbitals are equal to, respectively,  

 12  ,   220 Z  and  21    and not to 2,  20Z  and 0 as in the simple shell model, 

where the parameters 1  and 2  are the occupation number of higher shells. Using this assumption in 

Eq. (1), an analytical form for the ground state CDD of 
52

Cr,
 58

Fe and 
64

Ni nuclei is obtained as: 

)2(
15

4
)20(

105

8

21

4

3

4
24

3

5

3

11

2

3
5)(

6

12

4

21

2

21132/3

/ 22



































































b

r
Z

b

r

b

r

b

e
r

br

c








 

where Z is the atomic number, b is the harmonic oscillator size parameter, the parameter 1  

characterizes the deviation of the proton occupation numbers from the prediction of the simple shell 
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model  01  . The parameter 2  in Eq. (2) is a assumed as a free parameter to be adjusted to obtain 

agreement with the experimental CDD. 

The normalization condition of the )(rc  is given by [9] 

drrrZ c

2

0

)(4 


                                                                                                                   (3) 

and the mean square radius (MSR) of the considered  nuclei is given by [9] 

drrr
Z

r c

4

0

2 )(
4



 


                                                                                                    (4) 

The central CDD, )0( rc  is obtained from Eq. (2) as 









 132/3 2

3
5

1
)0( 




b
c                                                                                                   (5) 

Then 1  is obtained from Eq. (5) as 

  32/3

1 05
3

2
bc                                                                                                                   (6) 

Substituting Eq. (2) into Eq. (4) and after simplification gives: 
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In Eq’s (5) and (7), the values of the central density  0c  and  2r  are taken from the 

experiments while the parameter b is chosen in such a way as to reproduce the experimental root mean 

square radii of nuclei.The PMD,  kn , of the considered nuclei is studied using two distinct methods. 

In the first, it is determined by the shell model using the single particle harmonic oscillator wave 

functions in momentum representation and is given by [11]: 
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k is the momentum of the particle.  

Whereas in the second method, the  kn  is determined by the Coherent Density Fluctuation Model 

(CDFM), where the mixed density is given by [4,5] 

dxrrxfrr x ),()(),(
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2
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where: 
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is the density matrix for Z protons uniformly distributed in a sphere with radius x and density 
3

0 4/3)( xZx   . The Fermi momentum is defined as [4,5]:  
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and the step function ,
 
is defined by 


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
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y
y                                                                                                        (12) 

The diagonal element of Eq. (9) gives the one-particle density as      
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

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0

2
)()(),()( dxrxfrrr xrrcc                                                                       (13) 

In Eq. (13), )(rx  and 
2

)(xf  have the following forms [4,5]: 

)()()( 0 rxxrx                                                                                                                     (14) 
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x
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The weight function of Eq. (15), determined in terms of the CDD satisfies the following normalization 

condition [4,5] 





0

2
,1)( dxxf                                                                                                                        (16) 

and holds for monotonically decreasing density CDD distribution, i.e.  .0
)(


dr

rd
   

On the basis of eq. (13), the PMD, )(kn , is expressed as [4,5]: 

,)()()(
0

2
dxknxfkn x
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where 

),)((
3

4
)( 3 kxkxkn Fx


                                                                                                   (18) 

is the Fermi-momentum distribution of the system with density )(0 x . By means of Eqs. (15), (17) 

and (18), an explicit form for the PMD is expressed in terms of )(rc  as  
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with normalization condition 

 3

3

)2(
)(



kd
knZ CDFM                                                                                                             (20) 

The elastic monopole form factor )(qF  of the target nucleus is also expressed in the CDFM as [4,5]: 

dxxqFxf
Z

qF ),()(
1

)(
0

2




                                                                                         (21) 

where ),( xqF is the form factor of uniform charge density distribution given by: 


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Inclusion the corrections of the nucleon finite size )(qF fs
and the center of mass corrections )(qFcm  

in the calculations requires multiplying the form factor of equation (21) by these corrections. Here, 

)(qF fs
 is considered as free nucleon form factor which is assumed to be the same for protons and 

neutrons. This correction takes the form [12]: 












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
4

43.0 2

)(

q
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The correction Fcm (q) removes the spurious state arising from the motion of the center of mass when 

shell model wave function is used and given by [12]: 
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It is important to point out that all physical quantities studied above in the framework of the CDFM 

such as PMD and )(qF , are expressed in terms of the weight function 
2

)(
th

xf . Therefore, it is 

worthwhile trying to obtain the weight function firstly from the CDDs of two parameter Fermi (2PF) 

and three parameter Fermi (3PF) models extracted from the analysis of elastic electron-nuclei 

scattering experiments and secondly from theoretical considerations. The CDDs of 2PF and 3PF, 

respectively are given by [7] 
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Introducing Eqs. (25) into Eq. (15), we obtain the experimental weight function 
2

2
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PF
xf  and 

2

3
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xf  as 
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Moreover, introducing the derived CDD of Eq. (2) into Eq. (15), we obtain the theoretical weight 

function 
2

)(
th

xf  as 
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3. Results and Discussion 

The proton momentum distribution, n(k), and elastic electron scattering form factors, F(q), for 
52

Cr,
 

58
Fe and 

64
Ni nuclei are studied by means of the CDFM. The distribution n(k) of Eq. (19) is calculated 

in terms of the CDD obtained firstly from theoretical consideration as in Eq. (2) and secondly from 

experiments, such as, 2PF and 3PF [7].  The harmonic oscillator size parameter b is chosen such that 

to reproduce the measured root mean square radii (rms) of nuclei under study and the parameter 1  is 

determined by introducing the chosen value of b and the experimental central density )0(exp  into Eq. 

(6), while the parameter 2  is assumed as a free parameter to be adjusted to obtain agreement with 

the experimental CDD. It is important to remark that when 021  , Eq.(2) is reduced to that of 

the simple shell model prediction. The values of the harmonic oscillator size parameter b and the 

calculated parameters of 1  and 2 together with the other parameters employed in the present 

calculations for nuclei under study are listed in Table-1. The calculated occupation numbers of protons 

in the orbitals 2s, 1f, and 2p, which are equal to  12  ,  220 Z  and  21   , 

respectively, of the considered nuclei are displayed in Table 2. The calculated rms 
2/12

calr   and those 
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of experimental data 
2/1

exp

2 r  [7] are displayed in this table as well for comparison. The comparison 

shows a remarkable agreement between 
2/12

calr  and  
2/1

exp

2 r  for all considered nuclei.  
 

Table 1- Parameters for the CDD of the considered nuclei 

Nuclei Z 
Model

[7] 
w c (fm) z (fm) 

)0(exp  (fm
-

3
) [7] 

b (fm) 
1  2  

52
Cr 24 2PF ---- 4.01 0.487 0.0775185 2.046 0.867192 0.281153 

58
Fe 26 2PF ---- 4.027 0.576 0.0790024 2.059 0.771767 0.598975 

64
Ni 28 3PF -0.2284 4.5211 0.5278 0.0777104 2.104 0.644818 0.921457 

 
Table 2- Calculated occupation numbers of 2s, 1f, and 2p orbitals of the considered nuclei together with 

2/12

calr   and  
2/1

exp

2 r  

Nuclei 
Occupation No. 

of 2s  12   

Occupation No. 

of 1f  

 220 Z    

Occupation No. 

of 2p  21     
2/12

calr   (fm) 

2/1

exp

2 r  (fm) 

[7] 

52
Cr 1.132808 3.718847 1.148345 3.70 3.684 

58
Fe 1.228233 5.401025 1.370742 3.783 3.783 

64
Ni 1.355182 7.7078543 1.566275 3.908 3.907 

       

The dependence of the CDD’s (in fm
-3

) on r  (in fm) for 
52

Cr,
 58

Fe and 
64

Ni nuclei is shown in 

Figure-1. The blue and red curves are the calculated results using Eq. (2) with 021     and 

021  , respectively whereas the filled circle symbols correspond to the experimental data [7]. 

This figure shows that the blue curves are in poor agreement with the experimental data, especially for 

small r. Inclusion of the parameters 1  and 2  (i.e., considering the higher orbitals) in the calculation 

leads to a very good agreement with the experimental data as demonstrated by the red curves. 

The dependence of  n(k) (in fm
3
) on k (in fm

-1
) for 

52
Cr,

 58
Fe and 

64
Ni nuclei is shown in Figure-2. 

The blue curves are the calculated  n(k) of Eq. (8) obtained by the shell model calculation using the 

single particle harmonic oscillator wave functions in momentum representation. The filled circle 

symbols and red curves are the  n(k) obtained by the CDFM of Eq. (19) using the experimental and 

theoretical CDD, respectively. It is clear that the behavior of the blue curves obtained by the shell 

model calculations is in contrast with those reproduced by the CDFM. The important feature of the 

blue distributions is the steep slope behavior when k increases. This behavior is in disagreement with 

the studies [4, 5, 13- 15] and it is attributed to the fact that the ground state shell model wave function 

given in terms of a Slater determinant does not take into account the important effect of the short range 

dynamical correlation functions. Hence, the short-range repulsive features of the nucleon-nucleon 

forces are responsible for the high momentum behavior of the  n(k) [14, 15]. It is noted that the general 

structure of the filled circle symbols and red curves at the region of high momentum components is 

almost the same for 
52

Cr,
 58

Fe and 
64

Ni nuclei, where these curves have the property of long tail 

manner at momentum region k ≥ 2 fm
-1

. The property of long-tail manner obtained by the CDFM, 

which is in agreement with the studies [4, 5, 13- 15], is connected to the presence of high densities 

)(rx  in the decomposition of Eq. (14), though their fluctuation functions 
2

)(xf  are small. 

The dependence of elastic electron scattering form factors F(q) on the momentum transfer q (in 

fm
1
) for considered nuclei is shown in Figure-3. The calculated form factors (solid curves) of 

52
Cr,

 58
Fe 

and 
64

Ni nuclei, obtained in the framework of CDFM using the theoretical weight function of Eq. (27), 

are compared with those of experimental data [7,16,17]. As there is no data available for the 
58

Fe 

nucleus, we have compared the calculated form factors of this nucleus with those obtained by the 

Fourier transform of the 3PF density.  Figure-3 shows that the diffraction minima and maxima of the 

considered nuclei are reproduced in the correct places. Both the behavior and the magnitudes of the 

calculated form factors of these nuclei are in reasonable agreement with those of the experimental 

data. 
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4. Conclusions 

It is concluded that the derived form of CDD of Eq.(2) employed in the determination of theoretical 

weight function of Eq. (27) is capable to reproduce information about the  n(k) and elastic form factors 

as do those of the experimental data. 

 

  

 
Figure 1- The dependence of the CDD on r for 

52
Cr,

 58
Fe and 

64
Ni nuclei. The blue and red curves are the 

calculated CDD of Eq. (2) when 021    and 021  , respectively. The filled circle 

symbols are the experimental data taken from ref. [7]. 
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Figure 2-The dependence of  n(k) on k for 
52

Cr,
 58

Fe and 
64

Ni nuclei. The red curves and filled circle symbols are 

the calculated  n(k) expressed by the CDFM of Eq. (19) using the theoretical CDD of Eq. (2) and the 

experimental data of ref. [7], respectively. The blue curves are the calculated  n(k) of Eq. (8) obtained 

by the shell model calculation using the single-particle harmonic oscillator wave functions in 

momentum representation. 
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Figure 3- The dependence of the form factors on momentum transfer q for 

52
Cr,

 58
Fe and 

64
Ni nuclei. The solid 

curves are the form factors calculated using Eq. (21). The experimental data (filled circle symbols) are 

taken from Refs. [16], [7] and [17] for 
52

Cr,
 58

Fe and 
64

Ni nuclei, respectively. 
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