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Abstract:

Coherent density fluctuation model (CDFM) has been used to calculate the
proton momentum distributions (PMD) and elastic electron scattering form factors,
F(q), of the ground state for some even mass nuclei of fp-shell, such as **Cr, *®Fe and
%Ni nuclei. Both of the PMD and F(q) have been expressed in terms of the weight
function (| f (X)|2)which is determined by means of the charge density

distributions (CDD) of the nuclei and determined from theory and experiment. The
feature of the long-tail behavior at high momentum region of the PMD’s has been
obtained by both the theoretical and experimental weight functions. The calculated
form factors of these nuclei are in reasonable agreement with those of the
experimental data.
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1. Introduction
Electron scattering method is a powerful tool for studying nuclear structure because there are two
reasons; the first is that the interaction is known, as the electron interacts electromagnetically with the
local charge and current density in the target. Since this interaction is relatively weak, one can make
measurement without greatly disturbing the structure of the target. The second advantage of electrons
is that for fixed energy loss to the target, one can vary the three-momentum transfer G and map out

the Fourier transforms of the static and transition densities [1].With electron scattering one can
immediately relate the cross section to the transition matrix elements of the local charge and current
density operators and this directly to the structure of the target itself.
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The scattering of electrons from a target nucleus can occur in two ways. In one, the nucleus is left
in its ground state after the scattering and the energy of the electrons is unchanged. In the other, the
scattered electron leaves the nucleus in different excited state and has a final energy reduced from the
initial just by the amount taken up by the nucleus in its excited state. These two kinds of processes are
referred to elastic and inelastic electron scattering [2,3].

In coherent density fluctuation model (CDFM), which is exemplified by the work of Antonov et al.
[4-6], the local nucleon density distribution (NDD) and the nucleon momentum distributions (NMD)
are simply related and expressed in terms of experimentally obtainable fluctuation function (weight

function) |f(x)|2. They [4-6] studied the NMD of (*He and *°0), **C and (**K, “’Ca and *Ca) nuclei

using weight functions |f(x)|2 specified by the two parameter Fermi (2PF) NDD [7], the data of

Reuter et al. [8] and the model independent NDD [8], respectively. It is significant to remark that all
above studies, employed the framework of the CDFM, proved a high momentum tail in the NMD.
Elastic electron scattering from “°Ca nucleus was also investigated in Ref. [4], where the calculated
elastic differential cross sections (da/ dQ) are in good agreement with those of experimental data.

Recently, Al-Rahmani [9] have studied the PMD and F(q) for 2s-1d shell nuclei using the
framework of CDFM and derived an analytical form for the CDD based on the use of the single
particle harmonic oscillator wave functions and the occupation number of the states. The derived
CDD’s, which are applicable throughout the whole 2s-1d shell nuclei, have been used in the CDFM.
The calculated PMD and elastic form factors of all considered nuclei have been in very good
agreement with experimental data.

The aim of the present work is to extend the calculations of Al-Rahmani [9] to higher shells (such
as the 1f-2p shell nuclei) and to derive an analytical expression for the CDD based on the use of the
single particle harmonic oscillator wave functions and the occupation numbers of the states. The

derived CDD is employed in determining the theoretical weight function |f(x)|2 which is used in the
CDFM to study the PMD and elastic form factors for *°Cr, *®Fe and *Ni nuclei. We shall see later that
the theoretical |f(x)|2, based on the derived CDD, is capable to provide information about the PMD

and elastic electron scattering form factors as do those of experimental CDD of Ref. [7].
2. Theory
The charge density distribution CDD of one body operator can be written as [10]:

1

Where ¢, is the proton occupation probability of the state n/ (&, =0or 1 for closed shell nuclei

|2

)

and 0<¢&,, <1for open shell nuclei) and R,, is the radial part of the single particle harmonic

oscillator wave function.
The CDD form of *°Cr, *®Fe and *Ni nuclei is derived on the assumption that there are filled 1s, 1p
and 1d orbitals and the proton occupation numbers in 2s, 1f and 2p orbitals are equal to, respectively,

(2-p,), (Z-20-p,) and (B, + 8,) and not to 2, (Z —20) and 0 as in the simple shell model,

where the parameters S, and /3, are the occupation number of higher shells. Using this assumption in
Eq. (1), an analytical form for the ground state CDD of **Cr, *®Fe and *Ni nuclei is obtained as:

e ™ (3 (11 5 \(r) 4 \(rY
pc(r)—W{S_Eﬂl+(§ﬂ1+§ﬂzj(6j +(4_2ﬂ1_§ﬂ2j[6j
4 8 4 rY
+(2—1ﬂ2+ﬁ(2—20)+ﬁﬂ1j (Bj } (2)

where Z is the atomic number, b is the harmonic oscillator size parameter, the parameter f
characterizes the deviation of the proton occupation numbers from the prediction of the simple shell
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model (ﬁl = O). The parameter A, in Eq. (2) is a assumed as a free parameter to be adjusted to obtain
agreement with the experimental CDD.
The normalization condition of the p,(r) is given by [9]

z =4ﬁjp0(r)r2dr 3)
(0]
and the mean square radius (MSR) of the considered nuclei is given by [9]
(r*y =2Z [ g (ryrdr @
Z (0]
The central CDD, p, (r =0) is obtained from Eq. (2) as
1 3
. (0) :W{S_Eﬂl} )
Then p, is obtained from Eq. (5) as
2
p =5 6-p.0)7"’) ©)
Substituting Eq. (2) into Eq. (4) and after simplification gives:
b? (9Z — 60
<I’2>=7[—2 +/81j )

In Eq’s (5) and (7), the values of the central density pC(O) and (r®) are taken from the
experiments while the parameter b is chosen in such a way as to reproduce the experimental root mean
square radii of nuclei.The PMD, n(k), of the considered nuclei is studied using two distinct methods.

In the first, it is determined by the shell model using the single particle harmonic oscillator wave
functions in momentum representation and is given by [11]:

_ b3 —b2k2 4 _ 4 6
k)= 2 {5+4(bk) (2 20)105(bk)} @

k is the momentum of the particle.
Whereas in the second method, the n(k) is determined by the Coherent Density Fluctuation Model
(CDFM), where the mixed density is given by [4,5]

p(r ) =119 o, (r, r)dx (©)
0
where:
n __ jl(kF (X)|I7—I7') _1 —
2,.(r,r")=3p,(x) OO =T a(x 2|r+r ) (10)

is the density matrix for Z protons uniformly distributed in a sphere with radius x and density
P (X) =3Z / 47x®. The Fermi momentum is defined as [4,5]:

13 1/3
3z? V oY/ 74
0 =(3p00) =Yi v (%) )
and the step function @, is defined by
L y=20
o(y) = 12
) {O' i (12)

The diagonal element of Eq. (9) gives the one-particle density as
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p(r)=p.(r,r)| . = [T OO p, (rydx (13)
(0]
In Eq. (13), p,(r) and |f(x)|2 have the following forms [4,5]:
P(r) = p (X)0(x—r) (14)
» -1 dp(r)
0= dr |, )

The weight function of Eq. (15), determined in terms of the CDD satisfies the following normalization
condition [4,5]

T| f ()| dx =1, (16)
0

and holds for monotonically decreasing density CDD distribution, i.e. % <0.

On the basis of eq. (13), the PMD, n (k) is expressed as [4,5]:

n(k) = T| f (x)['n, (k)dx, (17)
where i

n, (k) =5 o0k, ()~ K], a9

is the Fermi-momentum distribution of the system with density p, (X). By means of Egs. (15), (17)
and (18), an explicit form for the PMD is expressed in terms of p_(r) as

o 00 =( 2] 2] {6pc<x)x5dx—(%] p. [\fﬂ (19)

with normalization condition

dZk
Z = _[ Nepem (k) W

The elastic monopole form factor F(q) of the target nucleus is also expressed in the CDFM as [4,5]:

17 2
F(a) == [If OO F(a, x)dx (21)
(0]
where F(q, x) is the form factor of uniform charge density distribution given by:

_ 3Z sin(gx)
F(q, x) = (@° |: ) cos(qx)} (22)

Inclusion the corrections of the nucleon finite size F (q)and the center of mass corrections F_, (q)

(20)

in the calculations requires multiplying the form factor of equation (21) by these corrections. Here,
F.(q) is considered as free nucleon form factor which is assumed to be the same for protons and
neutrons. This correction takes the form [12]:
{—0.43q2]
4

Fo(a)=e (23)
The correction F., (q) removes the spurious state arising from the motion of the center of mass when
shell model wave function is used and given by [12]:
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Fen (@) = e{b‘?’fJ (24)

It is important to point out that all physical quantities studied above in the framework of the CDFM
such as PMD and F(q), are expressed in terms of the weight function |f(x)|t2h. Therefore, it is

worthwhile trying to obtain the weight function firstly from the CDDs of two parameter Fermi (2PF)
and three parameter Fermi (3PF) models extracted from the analysis of elastic electron-nuclei
scattering experiments and secondly from theoretical considerations. The CDDs of 2PF and 3PF,
respectively are given by [7]

o

(r) = 25a
p ( ) 1+e(r_c)/z ( )
2 2
_ po@+wrs/c?)
pc(l‘) - 14 ez (25b)
Introducing Egs. (25) into Eq. (15), we obtain the experimental weight function |f(x)|§PF and
2
|f(X)|3PF as
fo =41 ) X (26a)
| (X)|2PF T 3A7 +e exp( 7 )
Wx2 xe\? xc xe 7
o [1+ o2 J(1+e z j e’ 2wx[1+e z j
2 Anxp 26b
|f(X)|3PF T 3A > 7 - c2 (26D)

Moreover, introducing the derived CDD of Eq. (2) into Eqg. (15), we obtain the theoretical weight
function |f(x)|t2h as

., 8rx* 16x* |11 5 4 x )
£ ()|, =WPC(X)—W|:EIB1+—,32 +(4—2ﬁ1—§ﬂzj[6j

6
4z o0+25 25 (X)) |er
+(35 (4 20)+5ﬁ1+7ﬂ2j(bj :le (27)

3. Results and Discussion

The proton momentum distribution, n(k), and elastic electron scattering form factors, F(q), for *°Cr,
*8Fe and *Ni nuclei are studied by means of the CDFM. The distribution n(k) of Eq. (19) is calculated
in terms of the CDD obtained firstly from theoretical consideration as in Eq. (2) and secondly from
experiments, such as, 2PF and 3PF [7]. The harmonic oscillator size parameter b is chosen such that

to reproduce the measured root mean square radii (rms) of nuclei under study and the parameter f, is
determined by introducing the chosen value of b and the experimental central density p,,,(0) into Eg.

(6), while the parameter S, is assumed as a free parameter to be adjusted to obtain agreement with
the experimental CDD. It is important to remark that when g, =/, =0, Eq.(2) is reduced to that of
the simple shell model prediction. The values of the harmonic oscillator size parameter b and the
calculated parameters of S, and f,together with the other parameters employed in the present
calculations for nuclei under study are listed in Table-1. The calculated occupation humbers of protons
in the orbitals 2s, 1f, and 2p, which are equal to (2—4,), (Z—-20—p,) and (B, +5,),

respectively, of the considered nuclei are displayed in Table 2. The calculated rms (r?)?

cal

and those
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1/2

of experimental data (r*)g.

[7] are displayed in this table as well for comparison. The comparison

shows a remarkable agreement between (r2?)“2and (r?)*'2 for all considered nuclei.

cal exp

Table 1- Parameters for the CDD of the considered nuclei

. Model 0) (fm
Nuclei | Z F??e w cm | z(m) | P exg)(n)] ( b (fm) B 5,
“Cr | 24 | 2PF 401 | 0487 | 00775185 | 2.046 | 0.867192 | 0.281153
®Fe | 26 | 2PF | 4027 | 0576 | 0.0790024 | 2.059 | 0.771767 | 0.598975
Ni | 28 | 3PF | -0.2284 | 45211 | 05278 | 0.777104 | 2.104 | 0.644818 | 0.921457

Table 2- Calculated occupation numbers of 2s, 1f, and 2p orbitals of the considered nuclei together with

<r2>l/2 and <r2>1/2

exp

cal

n Occupation No. .
Nuclei Occupation No. of 1f Occupation No. Y2 @m) <r2>2)/(§ (fm)
of 25 (2 f3,) (z-20-p,) |°% (B, +5,) cal [7]
>Cr 1.132808 3.718847 1.148345 3.70 3.684
>¥Fe 1.228233 5.401025 1.370742 3.783 3.783
INi 1.355182 7.7078543 1.566275 3.908 3.907

The dependence of the CDD’s (in fm™) on r (in fm) for *Cr, *®Fe and ®Ni nuclei is shown in
Figure-1. The blue and red curves are the calculated results using Eq. (2) with g, =, =0 and

B, =B, #0, respectively whereas the filled circle symbols correspond to the experimental data [7].
This figure shows that the blue curves are in poor agreement with the experimental data, especially for
small r. Inclusion of the parameters S, and f, (i.e., considering the higher orbitals) in the calculation

leads to a very good agreement with the experimental data as demonstrated by the red curves.

The dependence of n(k) (in fm®) on k (in fm™) for *°Cr, **Fe and *Ni nuclei is shown in Figure-2.
The blue curves are the calculated n(k) of Eg. (8) obtained by the shell model calculation using the
single particle harmonic oscillator wave functions in momentum representation. The filled circle
symbols and red curves are the n(k) obtained by the CDFM of Eq. (19) using the experimental and
theoretical CDD, respectively. It is clear that the behavior of the blue curves obtained by the shell
model calculations is in contrast with those reproduced by the CDFM. The important feature of the
blue distributions is the steep slope behavior when k increases. This behavior is in disagreement with
the studies [4, 5, 13- 15] and it is attributed to the fact that the ground state shell model wave function
given in terms of a Slater determinant does not take into account the important effect of the short range
dynamical correlation functions. Hence, the short-range repulsive features of the nucleon-nucleon
forces are responsible for the high momentum behavior of the n(k) [14, 15]. It is noted that the general
structure of the filled circle symbols and red curves at the region of high momentum components is
almost the same for *°Cr, *®Fe and *Ni nuclei, where these curves have the property of long tail
manner at momentum region k > 2 fm™. The property of long-tail manner obtained by the CDFM,
which is in agreement with the studies [4, 5, 13- 15], is connected to the presence of high densities

P, (r) in the decomposition of Eq. (14), though their fluctuation functions | f (x)|2 are small.

The dependence of elastic electron scattering form factors F(q) on the momentum transfer g (in
fm?) for considered nuclei is shown in Figure-3. The calculated form factors (solid curves) of *’Cr, *°Fe
and ®Ni nuclei, obtained in the framework of CDFM using the theoretical weight function of Eq. (27),
are compared with those of experimental data [7,16,17]. As there is no data available for the *°Fe
nucleus, we have compared the calculated form factors of this nucleus with those obtained by the
Fourier transform of the 3PF density. Figure-3 shows that the diffraction minima and maxima of the
considered nuclei are reproduced in the correct places. Both the behavior and the magnitudes of the
calculated form factors of these nuclei are in reasonable agreement with those of the experimental
data.
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4. Conclusions
It is concluded that the derived form of CDD of Eq.(2) employed in the determination of theoretical

weight function of Eq. (27) is capable to reproduce information about the n(k) and elastic form factors
as do those of the experimental data.

0-12 T | T | T | T 0.12 T T I T | T

CDD when f31=p2=0
CDD when (31 £p2#0 |
® ©® OExperimental data

CDD when g1=2=0
CDD when 1#f2%0 |1
® @ OExperimental data

=0.08, - ~0.08;
? 52¢cr 2 58Fe

E £

< - = 1
8 a

©0.04 - © 0.04 |

CDD when (31=p2=0
CDD when 31 £f220 |1
® ® OFExperimental data

64N

r {fm)
Figure 1- The dependence of the CDD on r for *°Cr, *®Fe and ®Ni nuclei. The blue and red curves are the
calculated CDD of Eq. (2) when S, =f, =0 and S, # /3, #0, respectively. The filled circle

symbols are the experimental data taken from ref. [7].
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Figure 2-The dependence of n(k) on k for ®°Cr, *®Fe and *Ni nuclei. The red curves and filled circle symbols are
the calculated n(k) expressed by the CDFM of Eq. (19) using the theoretical CDD of Eq. (2) and the
experimental data of ref. [7], respectively. The blue curves are the calculated n(k) of Eg. (8) obtained
by the shell model calculation using the single-particle harmonic oscillator wave functions in
momentum representation.
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Figure 3- The dependence of the form factors on momentum transfer q for *Cr, *®Fe and ®*Ni nuclei. The solid
curves are the form factors calculated using Eq. (21). The experimental data (filled circle symbols) are
taken from Refs. [16], [7] and [17] for ®Cr, *®Fe and ®Ni nuclei, respectively.
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