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Abstract:  

      In this paper, we introduce the notion of a 2-prime module as a generalization of 

prime module E over a ring R, where E is said to be prime module if (0) is a prime 

submodule. We introduced the concept of the 2-prime R-module. Module E is said 

to be 2-prime if (0) is 2-prime submodule of E. where a proper submodule K of 

module E is 2-prime submodule if, whenever r∈R, x∈E, 𝑟𝑥 ∈E, Thus x∈K or 

𝑟2 ∈[K: E]. 

 

Keywords: prime ideal, 2-prime ideal, prime module, 2-prime module, primary 

module. 
 

  -2-المقاس الاولي من النمط
  

, الاء عباس عليوي  *فاطمة ضياء جاسم  
 قسم الرياضيات ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق

  
 الخلاصة:

 Eكأعمام لمفهوم المقاس الاولي -2-في هذا البحث اعطينا تعريفا لمفهوم المقاس الاولي من النمط      
( مقاس جزئي اولي. اعطينا تعريفا 0انه مقاس اولي اذا )  E. حيث يقال للمقاس Rالمعرف على الحلقة  

( 0اذا كان ) -2-انه مقاس اولي من النمط  E: يقال للمقاس -۲-جديدا وهو مفهوم المقاس الاولي من النمط
انه مقاس جزئي اولي   Eمن المقاس  k. حيث يقال للمقاس الجزئي الفعلي -2-مقاس جزئي اولي من النمط 

𝑟𝑥اذا كان -2-من النمط  ∈ 𝑘  حيث 𝐸 ∋ 𝑥 ,𝑅 ∋ 𝑟  فأنه اما𝐾 ∋ 𝑥  او[𝐾: 𝐸] ∋ 𝑟2 
 

1. Introduction:  

     Let E be a module over a ring R with identity. In [1] we introduced a 2-prime submodule 

as a generalization of a 2-prime ideal. A proper submodule of H of module E over a ring R is 

said to be 2- prime submodule, if rx∈H, where r∈R, x∈E, either x∈H or r
2∈[H: E]. Messirdi 

introduced in [2] concept of 2-prime ideals, where a proper ideal I of a ring R is 2-prime ideal 

if for all x,y∈R such that xy∈I, so either x
2
or y

2
 lies in I. In [3, P.548], the concept of a prime 

module was introduced, where module E is called a prime module if 𝑎𝑛𝑛𝑅𝐸 = 𝑎𝑛𝑛𝑅𝐾 for 

every0 ≠ 𝐾 < 𝐸. 

 

      As a generalization to the primary ring, P.F smith [4] introduced the concept primary R-

module, E is primary R-module if (0) is a primary R-submodule of E. 
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As a generalization of prime module, we introduce 2-prime module, where E is 2-prime R-

module if (0) is a 2-prime submodule of  module E. Also, we prove many properties for this 

kind of module, such as E is a 2-prime module so that 𝑎𝑛𝑛𝐾 is a 2-prime ideal for each 0 ≠
𝐾 < 𝐸. Let E is multiplication R-module, then E is 2-prime R-module if and only if 𝑎𝑛𝑛𝑅𝐸 is 

a 2-prime ideal of R. where module E is called a multiplication module if for every 

submodule K of E, there exists an ideal A of R such that AE=K. [5]. 

 

2. Basic Properties of 2-prime module 

     We study a 2-prime module and we shall give some properties and characterization of this 

kind of module in this section. 

 

Definition (2.1). 

    A module E over a ring R said to be 2-prime if (0) is a 2-prime submodule of E. Where 

proper submodule K is 2-prime submodule whenever, 𝑟 ∈ 𝑅 and x∈E,𝑟𝑥 ∈ 𝐸  implies 𝑥 ∈
𝐾 or 𝑟2 ∈[K: E]. 

Especially, a ring R said to be 2-prime ring if (0) is 2-prime ideal of R. 

 

Examples and Remarks (2.2) 

1. Each prime module is 2-prime module. 

 

Proof: Let E be prime, so (0) is the prime submodule. Thus by [[1] Remarks and Examples 

(2.2)] (0) is 2-prime submodule hence E is a 2-prime module. 

2. Each simple module is 2-prime module. 

 

Proof: Let E be a simple R-module. By (1) every prime module is 2-prime module, and every 

simple R-module is prime by [6] 

The converse of (2) is not true for example Z as Z-module is a 2-prime module, which is not 

simple. 

3. Every 2-prime R-module is a primary module, where a module E is primary if (0) is the 

primary submodule of E. 

 

Proof: Let E is a 2-prime module, since E is 2-prime module over R, then (0) is a 2-prime 

submodule and by [[1, Remarks and examples (2.2), (5)] (0) is a primary submodule. So E is a 

primary R-module. 

In general, the converse of (3) is false for example; Z-module 𝑍8  is primary, but it is not 2-

prime module, because (0̅) is not a 2-prime submodule because2 ∙ 4̅ = 0̅ ∈ (0̅), but 22 = 4 ∉
[(0) 𝑍8] = 8𝑍𝑍

: . 

4. The converse of (1) is false, as the given example shows: the Z module Z4 is not a prime 

module, and 𝑍4, is 2-prime module, since (0) is a 2-prime submodule. 

5. The Z-module Z6 is not 2-prime module (which does not be primary by [7]) since (0̅) is not 

a 2-prime submodule because 3 ∙ 2̅ ∈(0), but 2̅ ∉(0) and 32 = 9 ∉ [(0) 𝑍6] = 6𝑍𝑍
: . 

6. Every non zero submodule of 2-prime module is 2-prime module.  

Proof: It is clear and easy to omit. 

7. Every module over a field is 2-prime R-module. 

8. The Z-module Q is a 2-prime module. 

9. R is a ring which is an integral domain, then R as module is 2-prime module, but converse 

is false, as the shown example; The Z-module Z4 is a 2-prime module, but it is not an integral 

domain since 2̅ ∙ 2̅ ∉ (0̅), but 2̅ ∈ [(0̅) Z4]Z4

: ={r∈R: rZ4⊆ (0̅)}=[0̅, 2̅] , but Z4 is not integral. 

10. The homomorphic image of a 2-prime module is not necessary to be 2-prime module 

for example; The Z module Z is a 2-prime module, but Z/6Z≈Z6 is not a 2-prime Z-module. 
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11. An R-module E is a 2-prime module if it satisfies the following equivalent conditions: 

1) 𝐼𝑥 = 0 for 𝑥 ∈ 𝐸 and I which is an ideal of ring R that implies either x=0 or 𝐼2 ⊆ 𝑎𝑛𝑛𝐸 

2) 𝑟𝑥 = 0 For 𝑥 ∈ 𝐸 and r∈R implies that either x=0 or 𝑟2 ∈ 𝑎𝑛𝑛𝑅𝐸. 

 

Proof: It is clear, so it is omitted. 

 

Lemma (2.3) [1] Let E be an R-module. Then the following statements are equivalents:- 

1) (0) is 2-prime submodule of E. 

2) 𝑎2 ∈ 𝑎𝑛𝑛𝐸, a∈ R if and only if 𝑎2 ∈ 𝑎𝑛𝑛(𝑐), for each c≠0, 𝑐 ∈ 𝐸. 

3) 𝑎2 ∈ 𝑎𝑛𝑛𝐸, 𝑎 ∈ 𝑅 if and only if a2 ∈ 𝑎𝑛𝑛𝑘, for each non-zero submodule K of E. 

By using Lemma (2.3) and Definition (2.1); we can give the following result. 

 

Proposition (2.4) Let E be an R-module. Then the following statements are equivalent:- 

1) E is 2-prime module. 

2) 𝑎2 ∈ 𝑎𝑛𝑛𝐸, 𝑎 ∈ 𝑅 if and only if 𝑎2 ∈ 𝑎𝑛𝑛𝑐, for each c≠0, 𝑐 ∈ 𝐸. 

3) 𝑎2 ∈ 𝑎𝑛𝑛𝐸, 𝑎 ∈ 𝑅 if and only if a2 ∈ 𝑎𝑛𝑛𝐾, for each non-zero submodule K of E. 

By using the previous theorem, we have: 

 

Note (2.5): (1) The Z-module E = Z⨁Zn, not 2-prime Z-module [since it is not primary by [3, 

(2.1.4), p22] where n is any positive integer. By theorem (2.4) we need to show that E is not a 

2-prime module; let K= (0) ⨁Zn, notice that 𝑎𝑛𝑛𝑍𝐾 = 𝑍 ∩ 𝑛𝑍 = 𝑛𝑍 and 𝑎𝑛𝑛𝑍𝐸 =  (0). 

Therefore, if a2 ∈ 𝑎𝑛𝑛𝑍E and a∈Z, this is not necessary to implies that 𝑎2 ∈  𝑎𝑛𝑛𝐾. Thus, E 

is not a 2-prime module. 

(2) Consider the Z-module𝑍𝑝∞, then any proper submodule U of 𝑍𝑝∞ has the form〈
1

𝑝𝑛 + 𝑍〉, 

where n is a non-negative integer, so 𝑎𝑛𝑛𝑍𝑈 = 𝑃𝑛𝑍, 𝑏𝑢𝑡 𝑎𝑛𝑛𝑍𝑍𝑃∞ =  0. Thus, if a
2∈

𝑎𝑛𝑛𝑍𝑈 = 𝑝𝑛𝑍, this does not imply that a
2∈ 𝑎𝑛𝑛𝑍𝑍𝑝∞ = 0. So 𝑍𝑃∞ is not a 2-prime Z-

module; that is (0) is not a 2-prime submodule of 𝑍𝑃∞ hence. 𝑍𝑃∞ is not 2-prime R-module. 

The next result is immediate action from theorem (2.4). 

 

Corollary (2.6). If E is 2-prime R module, then 𝑎𝑛𝑛𝑅𝐾 is 2-prime ideal in R,   for every non-

zero submodule K of E. 

 

Proof: Let 𝑎𝑏 ∈ 𝑎𝑛𝑛𝑅𝐾, where 𝑎, 𝑏 ∈ 𝑅. Suppose 𝑏2 ∉ 𝑎𝑛𝑛𝑅𝐾, hence 𝑏2𝑥 ≠ 0 for some 

x∈K, and 𝑎𝑏 ∈ 𝑎𝑛𝑛𝑅𝐾 implies 𝑎𝑏𝑥 = 0. On the other hand, E is 2-prime R-module, so (0) is 

a 2-prime submodule of E and therefore a2 ∈ 𝑎𝑛𝑛𝐸 and by theorem (2.4) then a2 ∈ 𝑎𝑛𝑛𝑅𝐾. 

Thus 𝑎𝑛𝑛𝑅𝐾 is a 2-prime ideal in R 

 

Note (2.7). The converse of corollary (2.6) is false as the following example; Z module Z8 is 

not a 2-prime module since 2 ∙ 4̅ = 0̅ ∈ (0̅), 4̅ ∉ (0̅) but 22 = 4 ∉annZ8 =8Z. On the other 

hand for every non zero submodule K of 𝑍8, 𝑎𝑛𝑛𝑍𝐾 is a 2-prime ideal. 

 

Corollary (2.8). If E is 2-prime R-module, then 𝑎𝑛𝑛𝑅𝐸 is the 2-prime ideal of R. 

 

Remark (2.9). We will give the converse of corollary (2.8) which is false, for example: Let E 

be the Z-module Z⨁Z9, 𝑎𝑛𝑛𝑍𝐸 =  (0) is prime ideal, then it is 2-prime ideal in Z however, 

by [7, (2.1.7), P24] Z⨁Z9 is not primary, hence is not a 2-prime Z-module. 

The upcoming result will show the converse of corollary (2.8) which is true in the class 

multiplication module. 
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Proposition (2.10). Let E be multiplication R-module, then E is 2-prime R-module if and 

only if 𝑎𝑛𝑛𝑅𝐸 is 2-prime ideal of R.  

 

Proof: We get the result from definition (2.1) and [1].  

We know that every cyclic R-module is multiplication [8]. So that the following result comes 

from proposition (2.10). 

 

Corollary (2.11): Let E will be cyclic R-module and then 𝑎𝑛𝑛𝑅𝐸 is 2-prime ideal if and only 

if E is 2-prime R-module. 

Proof: Easy to omit. 

 

Remark (2.12) [7]. 𝑍𝑤 as Z-module is primary module if and only if 𝑤 = 𝑃𝑛 for some prime 

number P and 𝑛 ∈ 𝑍+. 

This result doesn’t satisfy for 2-prime module, for example the Z-module  𝑍8 is not 2-prime 

module see (example (2.2) (3)).  

 

Note (2.13) 

1. It is not necessary E is a 2-prime module over ring R, which R is 2-prime ring, for 

instance, the 𝑍6-module Z2 is 2-prime, but the ring Z6 is not 2-prime ring. 

2. If R is 2-prime ring, then is not necessary that E is 2-prime R-module, as the following 

example; the Z-module Z6 is not 2-prime Z-module, but Z is a 2-prime ring. 

＂A module E over a ring R is called faithful if 𝑎𝑛𝑛𝑅𝐸 = 0  [9]. By using this notion, we 

have the following remark. 

 

Remark (2.14): If E is a faithful 2-prime R-module, then R is 2-prime Ring. 

 

Proof: since E is 2-prime R-module, 𝑎𝑛𝑛𝑅𝐸 is 2-prime ideal of R by corollary (2.6). But E is 

faithful R-module, hence 𝑎𝑛𝑛𝑅𝐸 =  (0). This implies (0) is the 2-prime ideal of R. Therefore, 

R is the 2-prime ring. 

 Now, we will give enough conditions for 2-prime ring R to be 2-prime R-module in the 

following proposition. 

 

Proposition (2.15). Let E be multiplication faithful R-module. If R is a 2-prime ring then E is 

2-prime R-module. 

 

Proof: Since R is a 2-prime ring then (0) is the 2-prime ideal of R, but E is a faithful R-

module, hence 𝑎𝑛𝑛𝑅𝐸 =  (0). Therefore, 𝑎𝑛𝑛𝑅𝐸 is 2-prime ideal. On the other hand, E is 

multiplication R-module. Then by proposition (2.10). E is 2-prime R-module. 

 

     We know, that if E is an R-module and A is ideal of R that contains in 𝑎𝑛𝑛𝑅𝐸, then E is 

R/A-module, by taking (𝑟 + 𝐴) 𝑥 = 𝑟𝑥, for every 𝑥 ∈ 𝐸, 𝑟 ∈ 𝑅. 

 

We can give the upcoming result. 

 

Theorem (2.16). Let E be module over a ring R and A be ideal of R, which is contained 

in 𝑎𝑛𝑛𝑅𝐸. Then E is 2-prime R-module if and only if E is 2-prime R/A-module. 

 

Proof: If E is 2-prime R-module, to show that E is 2-prime R/A-module; that is to prove (0) 

is 2-prime R/𝐴-submodule. Let (𝑟 + 𝐴) 𝑥 = 0 for 𝑟 + 𝐴 ∈ 𝑅/𝐴, 𝑥 ∈ 𝐸 and suppose 𝑥 ≠ 0, 



Jasem and A.Elewi                                   Iraqi Journal of Science, 2023, Vol. 64, No. 5, pp: 2413-2421 
 

2417 

then (𝑟 + 𝐴) 𝑥 = 𝑟𝑥 = 0. But (0) is a 2-prime R-submodule and 𝑥 ≠ 0, this implies 𝑟2 ∈
𝑎𝑛𝑛𝑅𝐸. Hence, 

𝑟2𝑥 =  (𝑟2 + 𝐴) 𝑥 = (𝑟 + 𝐴)2 𝑥 = 0 For all 𝑥 ∈ 𝐸. Therefore, (r + A)2 ∈ annR/AE. Thus, (0) 

is 2-prime R/A-submodule and E is a 2prime R/A-module.  

The converse, let 𝑟𝑥 ∈ (0), where 𝑟 ∈ 𝑅, and𝑥 ∈ 𝐸, and assume that 𝑥 ≠ 0. Thus, 𝑟𝑥 = (𝑅 +
𝐴)𝑥 = 0, so(𝑟 + 𝐴)𝑥 ∈ (0). But (0) is a 2-prime 𝑅/𝐴-submodule and 𝑥 ≠ 0, this implies 

(𝑟 + 𝐴)2 ∈ 𝑎𝑛𝑛𝑅𝐸. But (𝑟 + 𝐴)2 = 𝑟2 + 𝐴 = 𝑟2. i.e. 𝑟2 ∈ 𝑎𝑛𝑛𝑅𝐸. Hence, E is 2prime R-

module. 

 The next result follows from theorem (2.16). 

 

Corollary (2.17). Let E be over a ring R, then E is a 2-prime R-module if and only if E is a 2-

prime R/𝑎𝑛𝑛𝑅E-module. 

 

Proposition (2.18). Let E1 and E2 be two R-modules of E and Let E=E1⨁E2. If E is 2-prime 

R-module, then E1 and E2 are 2-prime R-modules. 

 

Proof: Since E=E1⨁E2 is 2-prime R module so that (0, 0) is 2-prime submodules of module 

E, but (0, 0) = (0) ⨁(0) by [1] (0)𝐸1
 is 2-prime submodule of E1 and (0)𝐸2

 is 2-prime 

submodule of E2 therefore, E1 and E2 are 2-prime R-modules by definition (2.1). 

 

       The converse of proposition (2.18) is false, for example, the Z-module E=Z2⨁Z3≅Z6 

(since E is not a primary Z-module, then it is not a 2-prime R-module by [7] while Z2 and Z3 

are 2-prime Z-module. 

 

Remark (2.19). A direct summand of 2-prime R modules is also a 2-prime R module. 

 

Proof: Let N be direct summand of 2-prime module E, E=N⨁K Let 𝑟𝑥 ∈ (0), r∈R, x∈N then 

𝑥 ∈ 𝐸 since E is 2-prime R-module so that either 𝑥 ∈ (0) or𝑟2 ∈ [(0): 𝐸] = 𝑎𝑛𝑛𝐸. Since 

𝑎𝑛𝑛𝐸 ⊆ 𝑎𝑛𝑛𝑁 then 𝑟2 ∈ 𝑎𝑛𝑛𝑁, therefore 𝑁 is 2-prime R-module. 

 

Definition (2.20) [10]. We can call the subset W of ring R a multiplicatively closed if1 ∈ 𝑊, 

and ab∈ 𝑊 ∀𝑎, 𝑏 ∈ 𝑊. It is known that a proper ideal J in R is 2-prime if and only if R∖J is 

multiplicatively closed. 

 

      Now, let E be R-module and W is a multiplicatively closed subset of R, and let Rs be the 

set of all fractional 𝑟́ ∕ 𝑚 where 𝑟́ ∈ 𝑅 and m∈W and Es is the set of all fractional x∕m where 

x∈E and m∈W. For 𝑥1,𝑥2 ∈ 𝑊 and𝑚1, 𝑚2 ∈ 𝑊, 𝑥1 𝑚1⁄ = 𝑥2 ∕ 𝑚2 if and only if there exist 

t∈ 𝑊 such that 𝑡(𝑚1𝑥2 − 𝑚2𝑥1) = 0. Now we make Es into Rs-module by setting 𝑥/𝑚 +
𝑦/𝑡 = (𝑡𝑥 + 𝑚𝑦)/𝑚𝑡 and 𝑟/𝑡. 𝑥/𝑚 = 𝑟́𝑥/𝑡𝑚 For every 𝑥, 𝑦 ∈ 𝐸, and 𝑚, 𝑡 ∈ 𝑊, 𝑟́ ∈ 𝑅. And 

Es is the module of fractions [11]. 

We see the upcoming proposition: 

 

Proposition (2.21). Let E be finitely generated 2-prime R-module, and W be multiplicatively 

closed subset of R, then 𝐸𝑤 is 2-prime 𝑅𝑤 module provided 𝐸𝑤 ≠ (
0

1
)

𝑤
. 

Proof: Let 
a

b
⋅

x

y
= 0, where 

a

b
∈ Rw, 

x

y
∈ Ew and suppose 

x

y
≠ 0, then for each w∈W,  𝑤𝑥 ≠ 0. 

On the other hand 𝑎𝑥/𝑏𝑥 = 0, so ∃𝑡 ∈ 𝑊 suchthat 𝑡𝑎𝑥 = 0, and that is 𝑎(𝑡𝑥)  = 0. But 𝑡𝑥 ≠

0, and (0) is 2-prime R-submodule, then a2 ∈ annRE, therefore (
a

b
)2 =

a2

b2 ∈ (annRE)w. And 

since E is finitely generated, so (𝑎𝑛𝑛𝑅𝐸)𝑤 = 𝑎𝑛𝑛𝐸𝑤 by [[10] prop. 3.14. P.43]    
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hence.  (
𝑎

𝑏
)

2

∈ 𝑎𝑛𝑛𝑅𝐸𝑤 therefore, 0𝑠 is a 2-prime 𝑅𝑤-submodule and 𝐸𝑤 is a 2-prime 𝑅𝑤-

module. 

 

Remark (2.22): We will see that converse for proposition (2.21) is false, in the previous 

Example ((2.2), (5)), we saw 𝑍6as Z-module is not a 2-prime module. But if 𝑊 = 𝑍 −
{0}, 1 ∈ 𝑊 then 𝑅𝑤=Q. Hence, (𝑍6)𝑤 as Q-module is a 2-prime module by example (7). 

 

3. MORE RESULTS ABOUT 2-PRIME MODULES AND 2-PRIME SUBMODULES. 

      We will study in this section the relation between 2-prime modules and 2-prime 

submodules. 

Note if E is 2-prime R-module and K is a proper submodule of E, it is not necessary that K is 

2-prime submodule of E, for the example; Q as Z-module is 2-prime module, but Z is not 2-

prime submodule since 2⋅
1

2
= 1 ∈ 𝑍, but 

1

2
∉ 𝑍, and 22 ∉ [𝑍 𝑄] = 0𝑍

: . 

 

Definition (3.1) [12]. E is module over ring R and K is submodule of E is said to be pure if 

𝐼𝐸 ∩ 𝐾 = 𝐼𝐾 for every ideal I of R.  

In case R is principal ideal domain (PID) or E is cyclic, we said that K is pure submodule if 

and only if 𝑟𝐸 ∩ 𝐾 = 𝑟𝐾, for every r ∈ R. [12] 

The following proposition give the required condition for the submodule of a 2-prime module 

is 2-prime submodule. 

 

Proposition (3.2). Let K is proper submodule of 2-prime R-module E. If K is a pure 

submodule of E, then K will be 2-prime submodule of E. 

 

Proof: Let r∈R, and x∈E such that 𝑟𝑥 ∈ 𝐾 and assume that x∉K. Thus, 𝑟𝑥 ∈ 𝑟𝐸 ∩ 𝐾, but K is 

pure R submodule of E, implies that 𝑟𝑥 ∈ 𝑟𝐾 we mean that 𝑟𝑥 = 𝑟𝑥 ́ for some x ́∈K. Then 

r(x − x́) = 0 and x − x́ ≠ 0 (since 𝑥 ∉ 𝐾 and 𝑥 ≠ 𝑥́). Since E is a 2-prime R-module, 

therefore r2 ∈ annRE. This means that r2 ∈ [0  E]R
: . But[0: 𝐸] ⊆ [K  E]R

: . 

Hence,  𝑟2 ∈ [𝐾  ER
: ] therefore, K is a 2-prime R submodule of E. 

 

     The condition E is 2-prime R module cannot be dropped from proposition (3.2). The 

module E=Z⨁Z6 as Z module is not 2-prime module. The submodule K=Z ⨁(0) of E is pure, 

but K is notn2-prime submodule of E, since 3(1, 2) = (3, 0) ∈K, but (1̅, 2̅) ∉K and 

3
2∈[Z⨁(0) 𝑍⨁𝑍6𝑍

: ]=6Z. 

 

     The converse of proposition (3.2) is false as the following example shows: 

Let E=Z as Z-module and K=4Z which is 2-prime submodule of Z, so it is clear Z is 2-prime 

Z-module. But K is not a pure submodule, since I =  (2), then (2)E ∩ K=2Z ∩ 4Z = 4Z. 

But (2)K = (2)4Z = 23Z = 8Z. Thus IE ∩ K ≠ IK. 

Recall that the submodule K is divisible submodule if 𝑟𝐾 = 𝐾 for every 0 ≠ 𝑟 ∈ 𝑅. [13]  

 

Corollary (3.3). R is (PID), E is a 2-prime R-module. If K is divisible submodule of E, then 

K is 2-prime submodule of E. 

 

Proof: It is enough to prove that K is pure in E. Since K is a divisible submodule of E, then 

rK = K for every0 ≠ r ∈ R, and so rE⋂K = rE⋂rK = rK. Thus, K is pure, therefore, K is a 2-

prime R-submodule by proposition (3.2). 

＂module E over a ring R said to be F-regular if every submodule of E is pure＂ [12]. 



Jasem and A.Elewi                                   Iraqi Journal of Science, 2023, Vol. 64, No. 5, pp: 2413-2421 
 

2419 

The upcoming result comes from proposition (3.2) 

 

Corollary (3.4). If E is an F-regular 2-prime R-module, then each submodule of E is a 2-

prime submodule. 

 

Proposition (3.5).  Let K be proper submodule of module E, then K is a 2-prime submodule 

of E if and only if E/K is 2-prime R-module.  

 

Proof: Let K is 2-prime submodule, we want to prove E/K is 2-prime module over a ring R. 

Let 𝑟 ∈ 𝑅  and  x̅ = x + K ∈ E/K.  

If rx̅ = 0̅E/K, and suppose x≠ 0̅E/K then 𝑟𝑥 ∈ 𝐾, and 𝑥 ∉ 𝐾. Since K is 2-prime submodule of 

E, sor2 ∈ [K  ER
: ]. On the other hand, [K  ER

: ] = annR(E/K), hence r
2∈ annR(E K⁄ ). Thus, 

𝐸/𝐾 is 2-prime module. 

Now, if E/K is 2-prime R-module, to prove K is 2-prime submodule of E. Let 𝑟 ∈ 𝑅, 𝑥 ∈ 𝐸 

such that 𝑟𝑥 ∈ 𝐾 and suppose x∉K, then rx + K = r(x + K) = 0̅E/K, but on the other hand, 

0̅E/K is 2-prime submodule, so either x + K = 0̅E/K or r2 ∈ annR(E K⁄ ) = [K  ER
: ]. Therefore, 

x∈K is a contradiction thus r2 ∈ [K  ER
: ]. Hence, K is a 2-prime submodule of E. 

 

Proposition (3.6). Let K be a pure submodule of 2-prime module over ring R. Then E/K is a 

2-prime module. 

Proof: Since E is a 2-prime module and K is pure submodule of E, then K is 2-prime 

submodule by proposition (3.2). Therefore, E/K is a 2-prime module, by (3.5). 

 

Definition (3.7). A non-trivial R-module E is simple module if E has no proper submodule.  

The converse of proposition (3.6) is true in the class of simple submodules.  

 

Proposition (3.8). Let K be simple submodule of module E over ring R. If E/K is 2-prime 

module, then E is 2-prime module. 

 

Proof: Let 𝑟 ∈ 𝑅, 𝑥 ∈ 𝐸 such that rx = 0, then rx = 0 ∈ K. But E/K is 2-prime module, so K 

is 2-prime submodule of E by proposition (3.5). Thus, either x∈K or r2 ∈ [K  ER
: ] and so either 

(𝑥) ⊆ 𝐾 or r2E ⊆ K. But K is a simple R-submodule of E, then either x=0 or r2E = 0. Thus, 

either x=0 or r2 ∈ annRE, which means that (0) is 2-prime submodule of E, hence E is 2-

prime module. 

The condition K is a simple R-submodule of E in proposition (3.8) is necessary, for example: 

Let E be Z-module, Z2⨁Z3⨁Z5 ≅ Z30 and let K be the submoduleZ3⨁Z5 ≅ Z15, then E/K=Z2 

is 2-prime Z module. Notice that K is not simple submodule of E, also E ≅ Z30 is not a 2-

prime Z-module.  

 

4. SOME RELATIONS OF 2-PRIME MODULES WITH OTHER MODULES     

      At this section we want to study the relation between 2-prime modules and prime 

modules, faithful modules. 

 

Definition (4.1). The proper submodule 𝐾 < 𝐸 is semi-prime submodule if 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈ 𝑅, 

x∈E, such that 𝑟𝑘𝑥 ∈K, and ∀ 𝑘 ∈ 𝑍+ then 𝑟𝑥 ∈ 𝐾 [14]. 

 

Proposition (4.2). If E is 2-prime R module and 𝑎𝑛𝑛𝑅𝐸 is semi-prime ideal of ríng R, then E 

is prime R-module. 
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Proof: Since E is 2-prime module, then (0) is 2-prime submodule of E. But 𝑎𝑛𝑛𝐸 = [0  𝐸𝑅
: ] is 

the semi-prime ideal of R, by [1, Remarks (2.2) (1) and (3)] (0) is prime submodule of E 

therefore, E is prime R module [15]. 

By using this concept, we have the following corollary to show the converse of Examples 

(2.2), (1) is true. 

 

Corollary (4.3). If E is 2-prime module over ring R and (0) is a semi-prime submodule, then 

E is a prime R-module. 

 

Proof: Since (0) is semi-prime submodule of E, so annRE is semi-prime ideal by [16, 

proposition (1-5), chapter2]. The result follows by proposition (4.2) 

 

Proposition (4.4). R is an Integral Domain if E is faithful multiplication R module, then E is 

2-prime module. 

 

Proof: Since E is faithful R-module, then 𝑎𝑛𝑛𝑅𝐸 =  (0) is prime ideal òf R, hence it is 2-

prime ideal. But E is multiplication and by proposition (2.10) E is 2-prime module. 

In the fact every divisible R-module is faithful. 

 

Corollary (4.5). R is integral domain and E be divisible multiplication R module, then E is 2-

prime.  

We shall study the relation between the 2-prime modules and Quasi-Dedekined modules. 

 

Definition (4.6) [17]. Let E be an R-module and submodule K of E is called quasi-invertible 

if HomR(E K⁄ , E) = (0), and E is a Quasi-Dedekined module if for every submodule K of E 

is quasi-invertible. 

 

Remark (4.7). Every Quasi-Dedekind module over a ring R is a 2-prime R-module. 

Proof: By [16] every Quasi-Dedekined is prime and hence it is 2-prime. 

   On the other hand, converse of remark is false, for example; Z4 as Z module is 2-prime. But 

it is not prime (since 𝑎𝑛𝑛𝑍4 = 4𝑍 and 𝑎𝑛𝑛𝑧(2) = 2𝑍) then it is not Quasi-Dedekined. By 

definition (4.6). 

 

Conclusions 

 Let E be an R-module. Then the following statements are equivalent:- 

1) E is 2-prime module. 

2) 𝑎2 ∈ 𝑎𝑛𝑛𝐸, 𝑎 ∈ 𝑅 if and only if 𝑎2 ∈ 𝑎𝑛𝑛𝐶, for each c≠0, 𝑐 ∈ 𝐸. 

3) 𝑎2 ∈ 𝑎𝑛𝑛𝐸, 𝑎 ∈ 𝑅 if and only if a2 ∈ 𝑎𝑛𝑛𝑘, for each non-zero submodule k of E. 

 Let E be multiplication R-module, then E is 2-prime R-module if and only if 𝑎𝑛𝑛𝑅𝐸 is 2-

prime ideal of R.  

 Let E will be cyclic R-module and then 𝑎𝑛𝑛𝑅𝐸 is 2-prime ideal if and only if E is 2-prime 

R-module. 

 Let E be multiplication faithful R-module. If R is a 2-prime ring then E is 2-prime R-

module. 

 Let E be module over a ring R and A be ideal of R, which is contained in 𝑎𝑛𝑛𝑅𝐸. Then E 

is 2-prime R-module if and only if E is 2-prime R∖A-module. 

 Let E be finitely generated 2-prime R-module, and W be multiplicatively closed subset of 

R, then 𝐸𝑤 is 2-prime 𝑅𝑤 module provided 𝐸𝑤 ≠ (
0

1
)

𝑤
. 
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 Let K be proper submodule of 2-prime R-module E. If K is a pure submodule of E, then K 

will be 2-prime submodule of E. 

 R is (PID), E is a 2-prime R-module. If K is divisible submodule of E, then K is 2-prime 

submodule of E. 

 If E is an E-regular 2-prime R-module, then each submodule of E is a 2-prime submodule.  

 If E is 2-prime module over ring R and (0) is a semi-prime submodule, then E is a prime R-

module. 

 Every Quasi-Dedekind module over ring R is a 2prime R-module 
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