

ISSN: 0067-2904

2-Prime Modules

Fatima Dhiyaa Jasem*, Alaa A.Elewi

Department of mathematics, College of Science, University of Baghdad, Baghdad, Iraq
Received: 18/4/2022 Accepted: 19/8/2022 Published: 30/5/2023

Abstract

: In this paper, we introduce the notion of a 2-prime module as a generalization of prime module E over a ring R , where E is said to be prime module if (0) is a prime submodule. We introduced the concept of the 2-prime R-module. Module E is said to be 2-prime if (0) is 2-prime submodule of E . where a proper submodule K of module E is 2-prime submodule if, whenever $\mathrm{r} \in \mathrm{R}$, $\mathrm{x} \in \mathrm{E}, r x \in \mathrm{E}$, Thus $\mathrm{x} \in \mathrm{K}$ or $r^{2} \in[\mathrm{~K}: \mathrm{E}]$.

Keywords: prime ideal, 2-prime ideal, prime module, 2-prime module, primary module.

$$
\begin{aligned}
& \text { المقاس الاولي من النمط -2- } \\
& \text { فاطمة ضياء جاسم * , الاء عباس عليوي } \\
& \text { قسم الرياضيات ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق }
\end{aligned}
$$

Abstract

الخلاصة: Eي هذا البحث اعطينا تعريفا لمفهوم المقاس الاولي من النمط -2- كأعمام لمفهوم المقاس الاولي المعرف على الحقة R. حيث يقال للمقاس E انه مقاس اولي اذا (0) مقاس جزئي اولي. اعطينا تعريفا جديدا وهو مفهوم المقاس الاولي من النمط-Y-: يقال للمقاس E انه مقاس اولي من النمط -2- اذا كان (0) مقاس جزئي اولي من النمط -2-. حيث يقال للمقاس الجزئي الفعلي k من المقاس E C (C انه مقاس جزئي اولي

1. Introduction:

Let E be a module over a ring R with identity. In [1] we introduced a 2-prime submodule as a generalization of a 2-prime ideal. A proper submodule of H of module E over a ring R is said to be 2- prime submodule, if $r x \in H$, where $r \in R$, $x \in E$, either $x \in H$ or $r^{2} \in[H$: E]. Messirdi introduced in [2] concept of 2-prime ideals, where a proper ideal I of a ring R is 2-prime ideal if for all $x, y \in R$ such that $x y \in I$, so either x^{2} or y^{2} lies in I. In [3, P.548], the concept of a prime module was introduced, where module E is called a prime module if $a n n_{R} E=a n n_{R} K$ for every $0 \neq K<E$.

As a generalization to the primary ring, P.F smith [4] introduced the concept primary Rmodule, E is primary R-module if (0) is a primary R-submodule of E .

[^0]As a generalization of prime module, we introduce 2-prime module, where E is 2-prime Rmodule if (0) is a 2-prime submodule of module E. Also, we prove many properties for this kind of module, such as E is a 2-prime module so that $a n n K$ is a 2-prime ideal for each $0 \neq$ $K<E$. Let E is multiplication R -module, then E is 2 -prime R -module if and only if $a n n_{R} E$ is a 2-prime ideal of R . where module E is called a multiplication module if for every submodule K of E, there exists an ideal A of R such that $A E=K$. [5].

2. Basic Properties of 2-prime module

We study a 2-prime module and we shall give some properties and characterization of this kind of module in this section.

Definition (2.1).

A module E over a ring R said to be 2-prime if (0) is a 2 -prime submodule of E . Where proper submodule K is 2 -prime submodule whenever, $r \in R$ and $\mathrm{x} \in \mathrm{E}, r x \in E$ implies $x \in$ K or $r^{2} \in[\mathrm{~K}: \mathrm{E}]$.
Especially, a ring R said to be 2-prime ring if (0) is 2-prime ideal of R.

Examples and Remarks (2.2)

1. Each prime module is 2-prime module.

Proof: Let E be prime, so (0) is the prime submodule. Thus by [[1] Remarks and Examples (2.2)] (0) is 2-prime submodule hence E is a 2-prime module.
2. Each simple module is 2-prime module.

Proof: Let E be a simple R-module. By (1) every prime module is 2-prime module, and every simple R-module is prime by [6]
The converse of (2) is not true for example Z as Z -module is a 2-prime module, which is not simple.
3. Every 2-prime R-module is a primary module, where a module E is primary if (0) is the primary submodule of E .

Proof: Let E is a 2-prime module, since E is 2-prime module over R, then (0) is a 2-prime submodule and by [[1, Remarks and examples (2.2), (5)] (0) is a primary submodule. So E is a primary R-module.
In general, the converse of (3) is false for example; Z-module Z_{8} is primary, but it is not 2prime module, because $(\overline{0})$ is not a 2-prime submodule because $2 \cdot \overline{4}=\overline{0} \in(\overline{0})$, but $2^{2}=4 \notin$ $\left[(0)_{\dot{Z}} Z_{8}\right]=8 Z$.
4. The converse of (1) is false, as the given example shows: the Z module Z_{4} is not a prime module, and Z_{4}, is 2-prime module, since (0) is a 2-prime submodule.
5. The Z -module Z_{6} is not 2 -prime module (which does not be primary by [7]) since ($\overline{0}$) is not a 2-prime submodule because $3 \cdot \overline{2} \in(0)$, but $\overline{2} \notin(0)$ and $3^{2}=9 \notin\left[(0) \dot{Z}_{6} Z_{6}\right]=6 Z$.
6. Every non zero submodule of 2-prime module is 2-prime module.

Proof: It is clear and easy to omit.
7. Every module over a field is 2-prime R-module.
8. The Z -module Q is a 2 -prime module.
9. R is a ring which is an integral domain, then R as module is 2-prime module, but converse is false, as the shown example; The Z -module Z_{4} is a 2-prime module, but it is not an integral domain since $\overline{2} \cdot \overline{2} \notin(\overline{0})$, but $\overline{2} \in\left[(\overline{0})_{Z_{4}}^{:} \mathrm{Z}_{4}\right]=\left\{\mathrm{r} \in \mathrm{R}: \mathrm{rZ} \mathrm{Z}_{4} \subseteq(\overline{0})\right\}=[\overline{0}, \overline{2}]$, but Z_{4} is not integral.
10. The homomorphic image of a 2-prime module is not necessary to be 2-prime module for example; The Z module Z is a 2-prime module, but $\mathrm{Z} / 6 \mathrm{Z} \approx \mathrm{Z}_{6}$ is not a 2-prime Z -module.
11. An R -module E is a 2-prime module if it satisfies the following equivalent conditions:

1) $I x=0$ for $x \in E$ and I which is an ideal of ring R that implies either $\mathrm{x}=0$ or $I^{2} \subseteq a n n E$
2) $r x=0$ For $x \in E$ and $\mathrm{r} \in \mathrm{R}$ implies that either $\mathrm{x}=0$ or $r^{2} \in a n n_{R} E$.

Proof: It is clear, so it is omitted.
Lemma (2.3) [1] Let E be an R-module. Then the following statements are equivalents:-

1) (0) is 2-prime submodule of E.
2) $a^{2} \in \operatorname{ann} E, \mathrm{a} \in \mathrm{R}$ if and only if $a^{2} \in \operatorname{ann}(c)$, for each $\mathrm{c} \neq 0, c \in E$.
3) $a^{2} \in a n n E, a \in R$ if and only if $a^{2} \in a n n k$, for each non-zero submodule K of E.

By using Lemma (2.3) and Definition (2.1); we can give the following result.
Proposition (2.4) Let E be an R-module. Then the following statements are equivalent:-

1) E is 2-prime module.
2) $a^{2} \in a n n E, a \in R$ if and only if $a^{2} \in a n n c$, for each $c \neq 0, c \in E$.
3) $a^{2} \in a n n E, a \in R$ if and only if $\mathrm{a}^{2} \in a n n K$, for each non-zero submodule K of E .

By using the previous theorem, we have:
Note (2.5): (1) The Z-module $\mathrm{E}=\mathrm{Z} \oplus \mathrm{Z}_{\mathrm{n}}$, not 2-prime Z-module [since it is not primary by [3, (2.1.4), p 22] where n is any positive integer. By theorem (2.4) we need to show that E is not a 2-prime module; let $\mathrm{K}=(0) \oplus \mathrm{Z}_{\mathrm{n}}$, notice that $a n n_{Z} K=Z \cap n Z=n Z$ and $a n n_{Z} E=$ (0). Therefore, if $\mathrm{a}^{2} \in \operatorname{ann}_{Z} \mathrm{E}$ and $\mathrm{a} \in \mathrm{Z}$, this is not necessary to implies that $a^{2} \in \operatorname{annK}$. Thus, E is not a 2-prime module.
(2) Consider the Z-module $Z_{p \infty}$, then any proper submodule U of $Z_{p \infty}$ has the form $\left\langle\frac{1}{p^{n}}+Z\right\rangle$, where n is a non-negative integer, so $a n n_{Z} U=P^{n} Z$, but $a n n_{Z} Z_{P \infty}=0$. Thus, if $\mathrm{a}^{2} \in$ $a n n_{Z} U=p^{n} Z$, this does not imply that $\mathrm{a}^{2} \in a n n_{Z} Z_{p \infty}=0$. So $Z_{P \infty}$ is not a 2-prime Zmodule; that is (0) is not a 2-prime submodule of $Z_{P \infty}$ hence. $Z_{P \infty}$ is not 2-prime R-module.
The next result is immediate action from theorem (2.4).
Corollary (2.6). If E is 2-prime R module, then $\operatorname{ann}_{R} K$ is 2-prime ideal in R , for every nonzero submodule K of E .

Proof: Let $a b \in a n n_{R} K$, where $a, b \in R$. Suppose $b^{2} \notin a n n_{R} K$, hence $b^{2} x \neq 0$ for some $\mathrm{x} \in \mathrm{K}$, and $a b \in a n n_{R} K$ implies $a b x=0$. On the other hand, E is 2-prime R-module, so (0) is a 2-prime submodule of E and therefore $\mathrm{a}^{2} \in a n n E$ and by theorem (2.4) then $\mathrm{a}^{2} \in a n n_{R} K$. Thus $\operatorname{ann}_{R} K$ is a 2-prime ideal in R

Note (2.7). The converse of corollary (2.6) is false as the following example; Z module Z_{8} is not a 2-prime module since $2 \cdot \overline{4}=\overline{0} \in(\overline{0}), \overline{4} \notin(\overline{0})$ but $2^{2}=4 \notin \mathrm{annZ}_{8}=8 \mathrm{Z}$. On the other hand for every non zero submodule K of $Z_{8}, a n n_{Z} K$ is a 2-prime ideal.

Corollary (2.8). If E is 2-prime R-module, then $\operatorname{ann}_{R} E$ is the 2-prime ideal of R .
Remark (2.9). We will give the converse of corollary (2.8) which is false, for example: Let E be the Z -module $\mathrm{Z} \oplus \mathrm{Z}_{9}$, ann $_{Z} E=(0)$ is prime ideal, then it is 2-prime ideal in Z however, by $[7,(2.1 .7), \mathrm{P} 24] \mathrm{Z} \oplus \mathrm{Z}_{9}$ is not primary, hence is not a 2 -prime Z -module.
The upcoming result will show the converse of corollary (2.8) which is true in the class multiplication module.

Proposition (2.10). Let E be multiplication R-module, then E is 2-prime R-module if and only if $\operatorname{ann}_{R} E$ is 2-prime ideal of R .

Proof: We get the result from definition (2.1) and [1].
We know that every cyclic R-module is multiplication [8]. So that the following result comes from proposition (2.10).

Corollary (2.11): Let E will be cyclic R-module and then $\operatorname{ann}_{R} E$ is 2-prime ideal if and only if E is 2-prime R -module.
Proof: Easy to omit.
Remark (2.12) [7]. Z_{w} as Z-module is primary module if and only if $w=P^{n}$ for some prime number P and $n \in Z_{+}$.
This result doesn't satisfy for 2-prime module, for example the Z-module Z_{8} is not 2-prime module see (example (2.2) (3)).

Note (2.13)

1. It is not necessary E is a 2-prime module over ring R , which R is 2-prime ring, for instance, the Z_{6}-module Z_{2} is 2-prime, but the ring Z_{6} is not 2-prime ring.
2. If R is 2-prime ring, then is not necessary that E is 2-prime R -module, as the following example; the Z -module Z_{6} is not 2-prime Z -module, but Z is a 2 -prime ring.
" A module E over a ring R is called faithful if $a n n_{R} E=0$ [9]. By using this notion, we have the following remark.

Remark (2.14): If E is a faithful 2-prime R -module, then R is 2-prime Ring.
Proof: since E is 2-prime R-module, ann $_{R} E$ is 2-prime ideal of R by corollary (2.6). But E is faithful R-module, hence $a n n_{R} E=(0)$. This implies (0) is the 2-prime ideal of R. Therefore, R is the 2-prime ring.
Now, we will give enough conditions for 2 -prime ring R to be 2 -prime R -module in the following proposition.

Proposition (2.15). Let E be multiplication faithful R -module. If R is a 2-prime ring then E is 2-prime R-module.

Proof: Since R is a 2-prime ring then (0) is the 2-prime ideal of R , but E is a faithful Rmodule, hence $a n n_{R} E=(0)$. Therefore, $\operatorname{ann}_{R} E$ is 2-prime ideal. On the other hand, E is multiplication R-module. Then by proposition (2.10). E is 2-prime R-module.

We know, that if E is an R -module and A is ideal of R that contains in $a n n_{R} E$, then E is R/A-module, by taking $(r+A) x=r x$, for every $x \in E, r \in R$.

We can give the upcoming result.
Theorem (2.16). Let E be module over a ring R and A be ideal of R , which is contained in $a n n_{R} E$. Then E is 2-prime R-module if and only if E is 2-prime R / A-module.

Proof: If E is 2-prime R -module, to show that E is 2-prime R / A-module; that is to prove (0) is 2-prime R / A-submodule. Let $(r+A) x=0$ for $r+A \in R / A, x \in E$ and suppose $x \neq 0$,
then $(r+A) x=r x=0$. But (0) is a 2-prime R -submodule and $x \neq 0$, this implies $r^{2} \in$ $a_{n} n_{R} E$. Hence,
$r^{2} x=\left(r^{2}+A\right) x=(r+A)^{2} x=0$ For all $x \in E$. Therefore, $(\mathrm{r}+\mathrm{A})^{2} \in \operatorname{ann}_{\mathrm{R} / \mathrm{A}} \mathrm{E}$. Thus, (0) is 2-prime R / A-submodule and E is a 2 prime R / A-module.
The converse, let $r x \in(0)$, where $r \in R$, and $x \in E$, and assume that $x \neq 0$. Thus, $r x=(R+$ $A) x=0$, $\operatorname{so}(r+A) x \in(0)$. But (0) is a 2-prime R / A-submodule and $x \neq 0$, this implies $(r+A)^{2} \in \operatorname{ann}_{R} E$. But $(r+A)^{2}=r^{2}+A=r^{2}$. i.e. $r^{2} \in \operatorname{ann}_{R} E$. Hence, E is 2 prime Rmodule.
The next result follows from theorem (2.16).
Corollary (2.17). Let E be over a ring R, then E is a 2-prime R-module if and only if E is a 2prime $\mathrm{R} / a n n_{R} \mathrm{E}-$ module.

Proposition (2.18). Let E_{1} and E_{2} be two R-modules of E and Let $\mathrm{E}=\mathrm{E}_{1} \oplus \mathrm{E}_{2}$. If E is 2-prime R-module, then E_{1} and E_{2} are 2-prime R-modules.

Proof: Since $\mathrm{E}=\mathrm{E}_{1} \oplus \mathrm{E}_{2}$ is 2-prime R module so that $(0,0)$ is 2-prime submodules of module E , but $(0,0)=(0) \oplus(0)$ by [1] $(0)_{E_{1}}$ is 2-prime submodule of E_{1} and $(0)_{E_{2}}$ is 2-prime submodule of E_{2} therefore, E_{1} and E_{2} are 2-prime R -modules by definition (2.1).

The converse of proposition (2.18) is false, for example, the Z -module $\mathrm{E}=\mathrm{Z}_{2} \oplus \mathrm{Z}_{3} \cong \mathrm{Z}_{6}$ (since E is not a primary Z -module, then it is not a 2-prime R -module by [7] while Z_{2} and Z_{3} are 2-prime Z-module.

Remark (2.19). A direct summand of 2-prime R modules is also a 2-prime R module.
Proof: Let N be direct summand of 2-prime module $\mathrm{E}, \mathrm{E}=\mathrm{N} \oplus \mathrm{K}$ Let $r x \in(0), \mathrm{r} \in \mathrm{R}, \mathrm{x} \in \mathrm{N}$ then $x \in E$ since E is 2 -prime R -module so that either $x \in(0)$ orr $^{2} \in[(0): E]=a n n E$. Since $a n n E \subseteq a n n N$ then $r^{2} \in a n n N$, therefore N is 2-prime R-module.

Definition (2.20) [10]. We can call the subset W of ring R a multiplicatively closed if1 $\in W$, and $\mathrm{ab} \in W \forall a, b \in W$. It is known that a proper ideal J in R is 2-prime if and only if $\mathrm{R} \backslash \mathrm{J}$ is multiplicatively closed.

Now, let E be R-module and W is a multiplicatively closed subset of R , and let R_{s} be the set of all fractional \dot{r} / m where $\dot{r} \in R$ and $\mathrm{m} \in \mathrm{W}$ and E_{s} is the set of all fractional x / m where $\mathrm{x} \in \mathrm{E}$ and $\mathrm{m} \in \mathrm{W}$. For $x_{1}, x_{2} \in W$ and $m_{1}, m_{2} \in W, x_{1} / m_{1}=x_{2} / m_{2}$ if and only if there exist $\mathrm{t} \in W$ such that $t\left(m_{1} x_{2}-m_{2} x_{1}\right)=0$. Now we make E_{s} into R_{s}-module by setting $x / m+$ $y / t=(t x+m y) / m t$ and $r / t . x / m=\dot{r} x / t m$ For every $x, y \in E$, and $m, t \in W, \dot{r} \in R$. And E_{S} is the module of fractions [11].
We see the upcoming proposition:
Proposition (2.21). Let E be finitely generated 2-prime R-module, and W be multiplicatively closed subset of R , then E_{w} is 2-prime R_{w} module provided $E_{w} \neq\left(\frac{0}{1}\right)_{w}$.
Proof: Let $\frac{\mathrm{a}}{\mathrm{b}} \cdot \frac{\mathrm{x}}{\mathrm{y}}=0$, where $\frac{\mathrm{a}}{\mathrm{b}} \in \mathrm{R}_{\mathrm{w}}, \frac{\mathrm{x}}{\mathrm{y}} \in \mathrm{E}_{\mathrm{w}}$ and suppose $\frac{\mathrm{x}}{\mathrm{y}} \neq 0$, then for each $\mathrm{w} \in \mathrm{W}, w x \neq 0$. On the other hand $a x / b x=0$, so $\exists t \in W$ suchthat $t a x=0$, and that is $a(t x)=0$. But $t x \neq$ 0 , and (0) is 2-prime R-submodule, then $a^{2} \in \operatorname{ann}_{R} E$, therefore $\left(\frac{a}{b}\right)^{2}=\frac{a^{2}}{b^{2}} \in\left(\operatorname{ann}_{R} E\right)_{w}$. And since E is finitely generated, so $\left(a n n_{R} E\right)_{w}=\operatorname{ann} E_{w}$ by [[10] prop. 3.14. P.43]
hence. $\left(\frac{a}{b}\right)^{2} \in a n n_{R} E_{w}$ therefore, 0_{s} is a 2 -prime $R_{w^{\prime}}$-submodule and E_{w} is a 2 -prime $R_{w^{-}}$ module.

Remark (2.22): We will see that converse for proposition (2.21) is false, in the previous Example ((2.2), (5)), we saw Z_{6} as Z-module is not a 2-prime module. But if $W=Z-$ $\{0\}, 1 \in W$ then $R_{w}=\mathrm{Q}$. Hence, $\left(Z_{6}\right)_{w}$ as Q -module is a 2-prime module by example (7).

3. MORE RESULTS ABOUT 2-PRIME MODULES AND 2-PRIME SUBMODULES.

We will study in this section the relation between 2-prime modules and 2-prime submodules.
Note if E is 2-prime R -module and K is a proper submodule of E , it is not necessary that K is 2-prime submodule of E , for the example; Q as Z -module is 2-prime module, but Z is not 2prime submodule since $2 \cdot \frac{1}{2}=1 \in Z$, but $\frac{1}{2} \notin Z$, and $2^{2} \notin\left[Z_{Z} \dot{Q} Q\right]=0$.

Definition (3.1) [12]. E is module over ring R and K is submodule of E is said to be pure if $I E \cap K=I K$ for every ideal I of R .
In case R is principal ideal domain (PID) or E is cyclic, we said that K is pure submodule if and only if $r E \cap K=r K$, for every $\mathrm{r} \in \mathrm{R}$. [12]
The following proposition give the required condition for the submodule of a 2 -prime module is 2-prime submodule.

Proposition (3.2). Let K is proper submodule of 2-prime R-module E. If K is a pure submodule of E , then K will be 2-prime submodule of E .

Proof: Let $\mathrm{r} \in \mathrm{R}$, and $\mathrm{x} \in \mathrm{E}$ such that $r x \in K$ and assume that $\mathrm{x} \notin \mathrm{K}$. Thus, $r x \in r E \cap K$, but K is pure R submodule of E , implies that $r x \in r K$ we mean that $r x=r \dot{x}$ for some $\mathrm{x}^{\prime} \in \mathrm{K}$. Then $\mathrm{r}(\mathrm{x}-\dot{\mathrm{x}})=0$ and $\mathrm{x}-\dot{\mathrm{x}} \neq 0$ (since $x \notin K$ and $x \neq \dot{x}$). Since E is a 2-prime R-module, therefore $r^{2} \in$ ann $_{R} E$. This means that $r^{2} \in\left[0_{R}^{*} E\right]$. But $[0: E] \subseteq\left[K_{R}^{\dot{R}} E\right]$.
Hence, $r^{2} \in\left[K_{\mathrm{R}}{ }^{\mathrm{E}} \mathrm{E}\right]$ therefore, K is a 2-prime R submodule of E .
The condition E is 2-prime R module cannot be dropped from proposition (3.2). The module $\mathrm{E}=\mathrm{Z} \oplus \mathrm{Z}_{6}$ as Z module is not 2-prime module. The submodule $\mathrm{K}=\mathrm{Z} \oplus(0)$ of E is pure, but K is notn2-prime submodule of E, since $3(1,2)=(3,0) \in K$, but $(\overline{1}, \overline{2}) \notin K$ and $3^{2} \in\left[Z \oplus(0) \dot{Z} Z \oplus Z_{6}\right]=6 Z$.

The converse of proposition (3.2) is false as the following example shows:
Let $\mathrm{E}=\mathrm{Z}$ as Z -module and $\mathrm{K}=4 \mathrm{Z}$ which is 2-prime submodule of Z , so it is clear Z is 2-prime Z-module. But K is not a pure submodule, since $\mathrm{I}=$ (2), then (2) $\mathrm{E} \cap \mathrm{K}=2 \mathrm{Z} \cap 4 \mathrm{Z}=4 \mathrm{Z}$. But (2) $K=(2) 4 Z=2^{3} Z=8 Z$. Thus IE $\cap K \neq I K$.
Recall that the submodule K is divisible submodule if $r K=K$ for every $0 \neq r \in R$. [13]
Corollary (3.3). R is (PID), E is a 2-prime R -module. If K is divisible submodule of E , then K is 2-prime submodule of E .

Proof: It is enough to prove that K is pure in E . Since K is a divisible submodule of E , then $r K=K$ for every $0 \neq r \in R$, and so $r E \cap K=r E \cap r K=r K$. Thus, K is pure, therefore, K is a 2prime R -submodule by proposition (3.2).
" module E over a ring R said to be F-regular if every submodule of E is pure " [12].

The upcoming result comes from proposition (3.2)
Corollary (3.4). If E is an F-regular 2-prime R-module, then each submodule of E is a 2prime submodule.

Proposition (3.5). Let K be proper submodule of module E , then K is a 2-prime submodule of E if and only if E / K is 2-prime R-module.

Proof: Let K is 2-prime submodule, we want to prove E / K is 2-prime module over a ring R . Let $r \in R$ and $\overline{\mathrm{x}}=\mathrm{x}+\mathrm{K} \in \mathrm{E} / \mathrm{K}$.
If $\mathrm{r} \overline{\mathrm{x}}=\overline{0}_{\mathrm{E} / \mathrm{K}}$, and suppose $\mathrm{x} \neq \overline{0}_{\mathrm{E} / \mathrm{K}}$ then $r x \in K$, and $x \notin K$. Since K is 2-prime submodule of E, sor ${ }^{2} \in\left[K_{R} \dot{E}\right]$. On the other hand, $[K \dot{R} E]=\operatorname{ann}_{R}(E / K)$, hence $r^{2} \in \operatorname{ann}_{R}(E / K)$. Thus, E / K is 2-prime module.
Now, if E / K is 2-prime R -module, to prove K is 2-prime submodule of E . Let $r \in R, x \in E$ such that $r x \in K$ and suppose $\mathrm{x} \notin \mathrm{K}$, then $\mathrm{rx}+\mathrm{K}=\mathrm{r}(\mathrm{x}+\mathrm{K})=\overline{0}_{\mathrm{E} / \mathrm{K}}$, but on the other hand, $\overline{0}_{\mathrm{E} / \mathrm{K}}$ is 2-prime submodule, so either $\mathrm{x}+\mathrm{K}=\overline{0}_{\mathrm{E} / \mathrm{K}}$ or $\mathrm{r}^{2} \in \operatorname{ann}_{\mathrm{R}}(\mathrm{E} / \mathrm{K})=\left[\mathrm{K}_{\mathrm{R}}{ }^{\dot{E}} \mathrm{E}\right]$. Therefore, $x \in K$ is a contradiction thus $r^{2} \in\left[K_{R}^{*} E\right]$. Hence, K is a 2-prime submodule of E.

Proposition (3.6). Let K be a pure submodule of 2-prime module over ring R. Then E / K is a 2-prime module.
Proof: Since E is a 2-prime module and K is pure submodule of E , then K is 2-prime submodule by proposition (3.2). Therefore, E / K is a 2-prime module, by (3.5).

Definition (3.7). A non-trivial R-module E is simple module if E has no proper submodule. The converse of proposition (3.6) is true in the class of simple submodules.

Proposition (3.8). Let K be simple submodule of module E over ring R . If E / K is 2-prime module, then E is 2-prime module.

Proof: Let $r \in R, x \in E$ such that $\mathrm{rx}=0$, then $\mathrm{rx}=0 \in \mathrm{~K}$. But E / K is 2-prime module, so K is 2-prime submodule of E by proposition (3.5). Thus, either $x \in K$ or $r^{2} \in\left[K_{R} \dot{E}\right]$ and so either $(x) \subseteq K$ or $\mathrm{r}^{2} \mathrm{E} \subseteq \mathrm{K}$. But K is a simple R -submodule of E , then either $\mathrm{x}=0$ or $\mathrm{r}^{2} \mathrm{E}=0$. Thus, either $x=0$ or $r^{2} \in \operatorname{ann}_{R} E$, which means that (0) is 2-prime submodule of E, hence E is 2prime module.
The condition K is a simple R -submodule of E in proposition (3.8) is necessary, for example: Let E be Z -module, $\mathrm{Z}_{2} \oplus \mathrm{Z}_{3} \oplus \mathrm{Z}_{5} \cong \mathrm{Z}_{30}$ and let K be the submodule $\mathrm{Z}_{3} \oplus \mathrm{Z}_{5} \cong \mathrm{Z}_{15}$, then $\mathrm{E} / \mathrm{K}=\mathrm{Z}_{2}$ is 2-prime Z module. Notice that K is not simple submodule of E , also $\mathrm{E} \cong \mathrm{Z}_{30}$ is not a 2prime Z-module.

4. SOME RELATIONS OF 2-PRIME MODULES WITH OTHER MODULES

At this section we want to study the relation between 2-prime modules and prime modules, faithful modules.

Definition (4.1). The proper submodule $K<E$ is semi-prime submodule if for all $r \in R$, $\mathrm{x} \in \mathrm{E}$, such that $r^{k} x \in \mathrm{~K}$, and $\forall k \in Z_{+}$then $r x \in K$ [14].

Proposition (4.2). If E is 2-prime R module and $\operatorname{ann}_{R} E$ is semi-prime ideal of ríng R, then E is prime R -module.

Proof: Since E is 2-prime module, then (0) is 2-prime submodule of E. But annE $=\left[0_{R} \dot{E} E\right]$ is the semi-prime ideal of R , by [1, Remarks (2.2) (1) and (3)] (0) is prime submodule of E therefore, E is prime R module [15].
By using this concept, we have the following corollary to show the converse of Examples (2.2), (1) is true.

Corollary (4.3). If E is 2-prime module over ring R and (0) is a semi-prime submodule, then E is a prime R -module.

Proof: Since (0) is semi-prime submodule of E , so $\mathrm{ann}_{\mathrm{R}} \mathrm{E}$ is semi-prime ideal by [16, proposition (1-5), chapter2]. The result follows by proposition (4.2)

Proposition (4.4). R is an Integral Domain if E is faithful multiplication R module, then E is 2-prime module.

Proof: Since E is faithful R-module, then $\operatorname{ann}_{R} E=(0)$ is prime ideal òf R, hence it is 2prime ideal. But E is multiplication and by proposition (2.10) E is 2-prime module.
In the fact every divisible R-module is faithful.
Corollary (4.5). R is integral domain and E be divisible multiplication R module, then E is 2prime.
We shall study the relation between the 2-prime modules and Quasi-Dedekined modules.
Definition (4.6) [17]. Let E be an R -module and submodule K of E is called quasi-invertible if $\operatorname{Hom}_{R}(E / K, E)=(0)$, and E is a Quasi-Dedekined module if for every submodule K of E is quasi-invertible.

Remark (4.7). Every Quasi-Dedekind module over a ring R is a 2-prime R-module.
Proof: By [16] every Quasi-Dedekined is prime and hence it is 2-prime.
On the other hand, converse of remark is false, for example; Z_{4} as Z module is 2-prime. But it is not prime (since $a n n Z_{4}=4 Z$ and $a n n_{z}(2)=2 Z$) then it is not Quasi-Dedekined. By definition (4.6).

Conclusions

- Let E be an R-module. Then the following statements are equivalent:-

1) E is 2-prime module.
2) $a^{2} \in a n n E, a \in R$ if and only if $a^{2} \in a n n C$, for each $\mathrm{c} \neq 0, c \in E$.
3) $a^{2} \in a n n E, a \in R$ if and only if $\mathrm{a}^{2} \in a n n k$, for each non-zero submodule k of E .

- Let E be multiplication R-module, then E is 2-prime R-module if and only if $a n n_{R} E$ is 2prime ideal of R .
- Let E will be cyclic R-module and then $\operatorname{ann}_{R} E$ is 2-prime ideal if and only if E is 2-prime R-module.
- Let E be multiplication faithful R -module. If R is a 2-prime ring then E is 2-prime R module.
- Let E be module over a ring R and A be ideal of R , which is contained in $a n n_{R} E$. Then E is 2-prime R -module if and only if E is 2-prime $\mathrm{R} \backslash \mathrm{A}$-module.
- Let E be finitely generated 2-prime R-module, and W be multiplicatively closed subset of R , then E_{w} is 2-prime R_{w} module provided $E_{w} \neq\left(\frac{0}{1}\right)_{w}$.
- Let K be proper submodule of 2-prime R -module E . If K is a pure submodule of E , then K will be 2-prime submodule of E.
$\bullet R$ is (PID), E is a 2-prime R -module. If K is divisible submodule of E , then K is 2-prime submodule of E .
- If E is an E-regular 2-prime R -module, then each submodule of E is a 2-prime submodule.
- If E is 2-prime module over ring R and (0) is a semi-prime submodule, then E is a prime R module.
- Every Quasi-Dedekind module over ring R is a 2 prime R -module

REFERENCES

[1] Fatima Dhiyaa jasem and Alaa A.Elewi, "2-prime submodules of modules", Iraqi Journal of Science, to appear.
[2] W. Messirdi and C.Beddani, "2-prime ideals and their multiplications", Journal of Algebra Taibah Univ. Dep. of Math. Madinah, Kingdom of Saudi Arabia (2015), No. (6806/1436)
[3] G. Desale and W.K.Nicholson, "Endomprimtive Rings", J.Algebra, vol. 70, pp. 548-560, 1981.
[4] P. F. Smith, "primary modules over commutative rings", Glasgow Math. J., vol. 43, pp. 103-111, 2001.
[5] A. Barnard, "Multiplication modules", J. Algebra, vol. 71, no. 1, pp. 174-178, 1981.
[6] Abdul-Razak, M. H., "Quasi-Prime Modules and Quasi-prime submodules"M.Sc. Thesis, Univ. of Baghdad (1999).
[7] Adwia J.Abdul-Al-Kalik and M. A. Hadi "Primary modules " Thesis submitted to the college of education Ibn Al-Haitham of Baghdad university (2005).
[8] Elbast, Z.A. and Smith, P.F. " Multiplication Modules ", Comm. In Algebra, vol.10, no. 4, pp. 755-779, 1988.
[9] Wisbaur R."Foundation of module and Ring theory", Gordon and Breach, Philadelphia, 1991.
[10] M.D. Larsen and P. J. Mccarlthy, Multiplicative theory of ideals, Academic Press, New York, 1971.
[11] Atiyah M.F. and Macdonald I.G., Introduction to commutative Algebra, Univ. of Oxford, 1969.
[12] Fieldhouse D.J., " pure Theories " , Math. Ann., vol. 184, pp. 1-18, 1969.
[13] C.P.Lu, "spectra of modules", Comm in Algebra, vol. 23, no.10, pp. 3741-3752, 1995.
[14] Dauns J., prime modules and one-sided ideals in "Ring theory and Algebra III", (proceeding of Third Oklahoma Conference), B.R.McDonald (editor), Dekker, NewYork, pp.301-433, 1980.
[15] Al-Bahrany. B," A Note on prime Modules and pure submodules", J. Science, vol.37, pp.14311441, 1996.
[16] Eman Ali Athab, Prime and Semi-Prime Submodules, M.sc Thesis, College of Science, University of Baghdad, Iraq (1996).
[17] Mijbas A. S., "semi-primary submodules", Science Journal, University of Tikrit, vol. 6, no.1, 2000.

[^0]: *Email: alqaisyfatima@gmail.com

