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Abstract:

In this paper, we introduce the notion of a 2-prime module as a generalization of
prime module E over a ring R, where E is said to be prime module if (0) is a prime
submodule. We introduced the concept of the 2-prime R-module. Module E is said
to be 2-prime if (0) is 2-prime submodule of E. where a proper submodule K of
module E is 2-prime submodule if, whenever reR, X€E, rx €E, Thus xeK or
r? €[K: E].
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1. Introduction:

Let E be a module over a ring R with identity. In [1] we introduced a 2-prime submodule
as a generalization of a 2-prime ideal. A proper submodule of H of module E over a ring R is
said to be 2- prime submodule, if rxeH, where reR, xeE, either xeH or r’€[H: E]. Messirdi
introduced in [2] concept of 2-prime ideals, where a proper ideal | of a ring R is 2-prime ideal
if for all x,yeR such that xyel, so either x?or y? lies in 1. In [3, P.548], the concept of a prime
module was introduced, where module E is called a prime module if anngE = anngK for
every) # K < E.

As a generalization to the primary ring, P.F smith [4] introduced the concept primary R-
module, E is primary R-module if (0) is a primary R-submodule of E.
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As a generalization of prime module, we introduce 2-prime module, where E is 2-prime R-
module if (0) is a 2-prime submodule of module E. Also, we prove many properties for this
kind of module, such as E is a 2-prime module so that annK is a 2-prime ideal for each 0 #
K < E. Let E is multiplication R-module, then E is 2-prime R-module if and only if anngxE is
a 2-prime ideal of R. where module E is called a multiplication module if for every
submodule K of E, there exists an ideal A of R such that AE=K. [5].

2. Basic Properties of 2-prime module
We study a 2-prime module and we shall give some properties and characterization of this
kind of module in this section.

Definition (2.1).

A module E over a ring R said to be 2-prime if (0) is a 2-prime submodule of E. Where
proper submodule K is 2-prime submodule whenever,r € R and X€E,rx € E implies x €
K or r? €[K: E].

Especially, a ring R said to be 2-prime ring if (0) is 2-prime ideal of R.

Examples and Remarks (2.2)
1. Each prime module is 2-prime module.

Proof: Let E be prime, so (0) is the prime submodule. Thus by [[1] Remarks and Examples
(2.2)] (0) is 2-prime submodule hence E is a 2-prime module.
2. Each simple module is 2-prime module.

Proof: Let E be a simple R-module. By (1) every prime module is 2-prime module, and every
simple R-module is prime by [6]

The converse of (2) is not true for example Z as Z-module is a 2-prime module, which is not
simple.

3. Every 2-prime R-module is a primary module, where a module E is primary if (0) is the
primary submodule of E.

Proof: Let E is a 2-prime module, since E is 2-prime module over R, then (0) is a 2-prime
submodule and by [[1, Remarks and examples (2.2), (5)] (0) is a primary submodule. So E is a
primary R-module.

In general, the converse of (3) is false for example; Z-module Zg is primary, but it is not 2-
prime module, because (0) is not a 2-prime submodule because2 -4 = 0 € (0), but22 =4 ¢
[(0)2Zg] = 8Z.

4. The converse of (1) is false, as the given example shows: the Z module Z, is not a prime
module, and Z,, is 2-prime module, since (0) is a 2-prime submodule.

5. The Z-module Zg is not 2-prime module (which does not be primary by [7]) since (0) is not
a 2-prime submodule because 3 - 2 €(0), but 2 €(0) and 32 = 9 ¢ [(0) ;Z¢] = 6Z.

6. Every non zero submodule of 2-prime module is 2-prime module.

Proof: It is clear and easy to omit.

7. Every module over a field is 2-prime R-module.

8. The Z-module Q is a 2-prime module.

9. R is aring which is an integral domain, then R as module is 2-prime module, but converse
is false, as the shown example; The Z-module Z4 is a 2-prime module, but it is not an integral
domain since 2 - 2 ¢ (0), but 2 € [(0)4.Z,]={r€R: rZ4< (0)}=[0, 2] , but Z, is not integral.
10.  The homomorphic image of a 2-prime module is not necessary to be 2-prime module
for example; The Z module Z is a 2-prime module, but Z/6Z~Zs is not a 2-prime Z-module.
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11.  An R-module E is a 2-prime module if it satisfies the following equivalent conditions:
1) Ix = 0 for x € E and | which is an ideal of ring R that implies either x=0 or I2 € annE
2) rx = 0 For x € E and reR implies that either x=0 or r? € anngE.

Proof: It is clear, so it is omitted.

Lemma (2.3) [1] Let E be an R-module. Then the following statements are equivalents:-
1) (0) is 2-prime submodule of E.

2) a® € annkE, a€ Rif and only if a? € ann(c), for each c#0, ¢ € E.

3) a? € annE, a € R if and only if a? € annk, for each non-zero submodule K of E.
By using Lemma (2.3) and Definition (2.1); we can give the following result.

Proposition (2.4) Let E be an R-module. Then the following statements are equivalent:-
1) E is 2-prime module.

2) a? € annE, a € R if and only if a? € annc, for each c#0, c € E.

3) a? € annE, a € R if and only if a2 € annK, for each non-zero submodule K of E.
By using the previous theorem, we have:

Note (2.5): (1) The Z-module E = Z&®Z,, not 2-prime Z-module [since it is not primary by [3,
(2.1.4), p22] where n is any positive integer. By theorem (2.4) we need to show that E is not a
2-prime module; let K= (0) @Z,, notice thatanny;K = Z NnnZ =nZ and annzE = (0).
Therefore, if a? € ann,E and a€Z, this is not necessary to implies that a? € annK. Thus, E
IS not a 2-prime module.

(2) Consider the Z-moduleZ,,,, then any proper submodule U of Z,., has the form(pin + Z),

where n is a non-negative integer, so ann,U = P"Z,but annyZp,, = 0. Thus, if a’€
annzU = p"Z, this does not imply that a’€ ann;Z,, = 0. SO Zp, is not a 2-prime Z-
module; that is (0) is not a 2-prime submodule of Z,,, hence. Z, is not 2-prime R-module.
The next result is immediate action from theorem (2.4).

Corollary (2.6). If E is 2-prime R module, then annzK is 2-prime ideal in R, for every non-
zero submodule K of E.

Proof: Letab € anngzK, where a,b € R. Suppose b? & anngK, hence b%x # 0 for some
XeK, and ab € anngyK implies abx = 0. On the other hand, E is 2-prime R-module, so (0) is
a 2-prime submodule of E and therefore a? € annE and by theorem (2.4) then a? € annyK.
Thus anngK is a 2-prime ideal in R

Note (2.7). The converse of corollary (2.6) is false as the following example; Z module Zg is
not a 2-prime module since 2-4 =0 € (0), 4 ¢ (0) but 22 = 4 ¢annZg =8Z. On the other
hand for every non zero submodule K of Zg, ann;K is a 2-prime ideal.

Corollary (2.8). If E is 2-prime R-module, then annyE is the 2-prime ideal of R.

Remark (2.9). We will give the converse of corollary (2.8) which is false, for example: Let E
be the Z-module Z&®Zy, ann,zE = (0) is prime ideal, then it is 2-prime ideal in Z however,
by [7, (2.1.7), P24] Z&®Zs is not primary, hence is not a 2-prime Z-module.

The upcoming result will show the converse of corollary (2.8) which is true in the class
multiplication module.
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Proposition (2.10). Let E be multiplication R-module, then E is 2-prime R-module if and
only if anngE is 2-prime ideal of R.

Proof: We get the result from definition (2.1) and [1].
We know that every cyclic R-module is multiplication [8]. So that the following result comes
from proposition (2.10).

Corollary (2.11): Let E will be cyclic R-module and then anngE is 2-prime ideal if and only
if E is 2-prime R-module.
Proof: Easy to omit.

Remark (2.12) [7]. Z,, as Z-module is primary module if and only if w = P™ for some prime
numberPandn € Z,.

This result doesn’t satisfy for 2-prime module, for example the Z-module Zg is not 2-prime
module see (example (2.2) (3)).

Note (2.13)

1. It is not necessary E is a 2-prime module over ring R, which R is 2-prime ring, for
instance, the Z,-module Z; is 2-prime, but the ring Z is not 2-prime ring.

2. If R is 2-prime ring, then is not necessary that E is 2-prime R-module, as the following
example; the Z-module Zg is not 2-prime Z-module, but Z is a 2-prime ring.

" A module E over a ring R is called faithful if anngE = 0 [9]. By using this notion, we
have the following remark.

Remark (2.14): If E is a faithful 2-prime R-module, then R is 2-prime Ring.

Proof: since E is 2-prime R-module, anngE is 2-prime ideal of R by corollary (2.6). But E is
faithful R-module, hence anngE = (0). This implies (0) is the 2-prime ideal of R. Therefore,
R is the 2-prime ring.
Now, we will give enough conditions for 2-prime ring R to be 2-prime R-module in the
following proposition.

Proposition (2.15). Let E be multiplication faithful R-module. If R is a 2-prime ring then E is
2-prime R-module.

Proof: Since R is a 2-prime ring then (0) is the 2-prime ideal of R, but E is a faithful R-
module, hence anngxE = (0). Therefore, anngzE is 2-prime ideal. On the other hand, E is
multiplication R-module. Then by proposition (2.10). E is 2-prime R-module.

We know, that if E is an R-module and A is ideal of R that contains in anngzE, then E is
R/A-module, by taking (r + A) x = rx, forevery x € E,r € R.

We can give the upcoming result.

Theorem (2.16). Let E be module over a ring R and A be ideal of R, which is contained
in anngE. Then E is 2-prime R-module if and only if E is 2-prime R/A-module.

Proof: If E is 2-prime R-module, to show that E is 2-prime R/A-module; that is to prove (0)
IS 2-prime R/A-submodule. Let (r+ A)x =0 forr + A € R/A, x € E and suppose x # 0,
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then (r + A) x = rx = 0. But (0) is a 2-prime R-submodule and x # 0, this implies r? €
anngyE. Hence,

r’x = (r*+A)x = (r + A)*> x = 0 For all x € E. Therefore, (r + A)* € anng/5E. Thus, (0)
is 2-prime R/A-submodule and E is a 2prime R/A-module.

The converse, let rx € (0), where r € R, andx € E, and assume that x # 0. Thus, rx = (R +
A)x =0, so(r + A)x € (0). But (0) is a 2-prime R/A-submodule and x # 0, this implies
(r+A)? € anngE. But (r + A)> =r>+ A=7?ie. r? € anngE. Hence, E is 2prime R-
module.

The next result follows from theorem (2.16).

Corollary (2.17). Let E be over aring R, then E is a 2-prime R-module if and only if E is a 2-
prime R/annzE-module.

Proposition (2.18). Let E; and E; be two R-modules of E and Let E=E1®E;. If E is 2-prime
R-module, then E; and E; are 2-prime R-modules.

Proof: Since E=E1DE; is 2-prime R module so that (0, 0) is 2-prime submodules of module
E, but (0, 0) = (0) &(0) by [1] (0)g, is 2-prime submodule of E; and (0)g, is 2-prime
submodule of E; therefore, E; and E; are 2-prime R-modules by definition (2.1).

The converse of proposition (2.18) is false, for example, the Z-module E=Z,@Z3;=Z;
(since E is not a primary Z-module, then it is not a 2-prime R-module by [7] while Z; and Z3
are 2-prime Z-module.

Remark (2.19). A direct summand of 2-prime R modules is also a 2-prime R module.

Proof: Let N be direct summand of 2-prime module E, E=EN®K Let rx € (0), reR, xeN then
x € E since E is 2-prime R-module so that either x € (0) orr? € [(0): E] = annE. Since
annE € annN then r? € annN, therefore N is 2-prime R-module.

Definition (2.20) [10]. We can call the subset W of ring R a multiplicatively closed if1 € W,
and abe W Vva,b € W. It is known that a proper ideal J in R is 2-prime if and only if R\J is
multiplicatively closed.

Now, let E be R-module and W is a multiplicatively closed subset of R, and let R be the
set of all fractional + / m where ¥ € R and meW and E; is the set of all fractional x/m where
X€E and meW. For x;,x, € W andm,,m, € W, x,/m, = x, / m, if and only if there exist
te W such that t(m;x, — myx;) = 0. Now we make Es into R&-module by setting x/m +
y/t = (tx + my)/mt andr/t. x/m = 7x/tm For every x,y € E,andm,t € W, 7 € R. And
E; is the module of fractions [11].

We see the upcoming proposition:

Proposition (2.21). Let E be finitely generated 2-prime R-module, and W be multiplicatively
closed subset of R, then E,, is 2-prime R,, module provided E,, # (g) :

w

Proof: Let% : 3 =0, where% € Ry, § € E,, and suppose§ + 0, then for each weW, wx # 0.

On the other hand ax/bx = 0, so 3t € W suchthat tax = 0, and that is a(tx) = 0. Buttx #
2

0, and (0) is 2-prime R-submodule, then a2 € anngxE, therefore (%)2 = % € (anngE),,. And

since E is finitely generated, so (anngixE), = annkE,, by [[10] prop. 3.14. P.43]
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2
hence. (%) € anngxkE,, therefore, O, is a 2-prime R,-submodule and E,, is a 2-prime R,,-
module.

Remark (2.22): We will see that converse for proposition (2.21) is false, in the previous
Example ((2.2), (5)), we saw Zgas Z-module is not a 2-prime module. But if W =7 —
{0},1 € W then R, =Q. Hence, (Z,),, as Q-module is a 2-prime module by example (7).

3. MORE RESULTS ABOUT 2-PRIME MODULES AND 2-PRIME SUBMODULES.
We will study in this section the relation between 2-prime modules and 2-prime

submodules.

Note if E is 2-prime R-module and K is a proper submodule of E, it is not necessary that K is

2-prime submodule of E, for the example; Q as Z-module is 2-prime module, but Z is not 2-

prime submodule since 2- % =1€Z, but% ¢ Z,and 22 ¢ [Z;Q] = 0.

Definition (3.1) [12]. E is module over ring R and K is submodule of E is said to be pure if
IE N K = IK for every ideal | of R.

In case R is principal ideal domain (PID) or E is cyclic, we said that K is pure submodule if
andonly if rE N K = rK, foreveryr € R. [12]

The following proposition give the required condition for the submodule of a 2-prime module
is 2-prime submodule.

Proposition (3.2). Let K is proper submodule of 2-prime R-module E. If K is a pure
submodule of E, then K will be 2-prime submodule of E.

Proof: Let reR, and X€E such that rx € K and assume that x¢K. Thus,rx € rE N K, but K is
pure R submodule of E, implies that rx € rK we mean that rx = r# for some x €K. Then
rx—%x)=0 andx—%X# 0 (since x ¢ K and x # x). Since E is a 2-prime R-module,
therefore r? € anngE. This means that r? € [0g E]. But[0: E] € [Kg E].

Hence, 2 € [K 5 E] therefore, K is a 2-prime R submodule of E.

The condition E is 2-prime R module cannot be dropped from proposition (3.2). The
module E=Z@®Z¢ as Z module is not 2-prime module. The submodule K=Z &(0) of E is pure,
but K is notn2-prime submodule of E, since 3(1, 2) = (3, 0) €K, but (1,2) ¢K and
3°€[Z2®(0) ;ZDZs]=6Z.

The converse of proposition (3.2) is false as the following example shows:
Let E=Z as Z-module and K=4Z which is 2-prime submodule of Z, so it is clear Z is 2-prime
Z-module. But K is not a pure submodule, since I = (2), then (2)E N K=2Z N 4Z = 47Z.
But (2)K = (2)4Z = 23Z = 8Z. Thus IE N K # IK.
Recall that the submodule K is divisible submodule if rK = K for every 0 # r € R. [13]

Corollary (3.3). R is (PID), E is a 2-prime R-module. If K is divisible submodule of E, then
K is 2-prime submodule of E.

Proof: It is enough to prove that K is pure in E. Since K is a divisible submodule of E, then
rK = K for every0 # r € R, and so rENK = rENrK = rK. Thus, K is pure, therefore, K is a 2-
prime R-submodule by proposition (3.2).

" module E over a ring R said to be F-regular if every submodule of E is pure " [12].
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The upcoming result comes from proposition (3.2)

Corollary (3.4). If E is an F-regular 2-prime R-module, then each submodule of E is a 2-
prime submodule.

Proposition (3.5). Let K be proper submodule of module E, then K is a 2-prime submodule
of E if and only if E/K is 2-prime R-module.

Proof: Let K is 2-prime submodule, we want to prove E/K is 2-prime module over a ring R.
Letr e R and X =x+ K€ E/K.

Ifrx = GE/K, and suppose X+ GE/K thenrx € K, and x ¢ K. Since K is 2-prime submodule of
E, sor? € [Kg E]. On the other hand, [K g E] = anng(E/K), hence r’e anng(E/K). Thus,
E /K is 2-prime module.

Now, if E/K is 2-prime R-module, to prove K is 2-prime submodule of E. Letr e R, x € E
such that rx € K and suppose x¢K, thenrx + K=r(x + K) = GE/K, but on the other hand,
Og/k is 2-prime submodule, so either x + K = Og/k or r? € anng(E/K) = [Kg E]. Therefore,
x€K is a contradiction thus r? € [Kg E]. Hence, K is a 2-prime submodule of E.

Proposition (3.6). Let K be a pure submodule of 2-prime module over ring R. Then E/K is a
2-prime module.

Proof: Since E is a 2-prime module and K is pure submodule of E, then K is 2-prime
submodule by proposition (3.2). Therefore, E/K is a 2-prime module, by (3.5).

Definition (3.7). A non-trivial R-module E is simple module if E has no proper submodule.
The converse of proposition (3.6) is true in the class of simple submodules.

Proposition (3.8). Let K be simple submodule of module E over ring R. If E/K is 2-prime
module, then E is 2-prime module.

Proof: Letr € R, x € E such that rx = 0, thenrx = 0 € K. But E/K is 2-prime module, so K
is 2-prime submodule of E by proposition (3.5). Thus, either xeK or r? € [Kg E] and so either
(x) € K or r?E € K. But K is a simple R-submodule of E, then either x=0 or r?E = 0. Thus,
either x=0 or r? € anngxE, which means that (0) is 2-prime submodule of E, hence E is 2-
prime module.

The condition K is a simple R-submodule of E in proposition (3.8) is necessary, for example:
Let E be Z-module, Z,®Z; D7 = Z5, and let K be the submoduleZ;®Zs = Z,<, then E/K=Z,
is 2-prime Z module. Notice that K is not simple submodule of E, also E = Z3, is not a 2-
prime Z-module.

4. SOME RELATIONS OF 2-PRIME MODULES WITH OTHER MODULES
At this section we want to study the relation between 2-prime modules and prime
modules, faithful modules.

Definition (4.1). The proper submodule K < E is semi-prime submodule if for all r € R,
X€E, such that r*x €K, and V k € Z, then rx € K [14].

Proposition (4.2). If E is 2-prime R module and anngxE is semi-prime ideal of ring R, then E
is prime R-module.
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Proof: Since E is 2-prime module, then (0) is 2-prime submodule of E. But annE = [0 E] is
the semi-prime ideal of R, by [1, Remarks (2.2) (1) and (3)] (0) is prime submodule of E
therefore, E is prime R module [15].

By using this concept, we have the following corollary to show the converse of Examples
(2.2), (1) is true.

Corollary (4.3). If E is 2-prime module over ring R and (0) is a semi-prime submodule, then
E is a prime R-module.

Proof: Since (0) is semi-prime submodule of E, so anngE is semi-prime ideal by [16,
proposition (1-5), chapter2]. The result follows by proposition (4.2)

Proposition (4.4). R is an Integral Domain if E is faithful multiplication R module, then E is
2-prime module.

Proof: Since E is faithful R-module, then anngzE = (0) is prime ideal of R, hence it is 2-
prime ideal. But E is multiplication and by proposition (2.10) E is 2-prime module.
In the fact every divisible R-module is faithful.

Corollary (4.5). R is integral domain and E be divisible multiplication R module, then E is 2-
prime.
We shall study the relation between the 2-prime modules and Quasi-Dedekined modules.

Definition (4.6) [17]. Let E be an R-module and submodule K of E is called quasi-invertible
if Homg (E/K,E) = (0), and E is a Quasi-Dedekined module if for every submodule K of E
is quasi-invertible.

Remark (4.7). Every Quasi-Dedekind module over a ring R is a 2-prime R-module.
Proof: By [16] every Quasi-Dedekined is prime and hence it is 2-prime.

On the other hand, converse of remark is false, for example; Z, as Z module is 2-prime. But
it is not prime (since annZ, = 4Z and ann,(2) = 2Z) then it is not Quasi-Dedekined. By
definition (4.6).

Conclusions

e Let E be an R-module. Then the following statements are equivalent:-

1) E is 2-prime module.

2) a? € annE, a € R ifand only if a? € annC, for each ¢#0, ¢ € E.

3) a? € annE, a € R if and only if a? € annk, for each non-zero submodule k of E.

e Let E be multiplication R-module, then E is 2-prime R-module if and only if anngxE is 2-
prime ideal of R.

o Let E will be cyclic R-module and then anngiE is 2-prime ideal if and only if E is 2-prime
R-module.

e Let E be multiplication faithful R-module. If R is a 2-prime ring then E is 2-prime R-
module.

e Let E be module over aring R and A be ideal of R, which is contained in anngzE. Then E
is 2-prime R-module if and only if E is 2-prime R\ A-module.

e Let E be finitely generated 2-prime R-module, and W be multiplicatively closed subset of

R, then E,, is 2-prime R,, module provided E,, # (g) .

w
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e Let K be proper submodule of 2-prime R-module E. If K is a pure submodule of E, then K
will be 2-prime submodule of E.

eR is (PID), E is a 2-prime R-module. If K is divisible submodule of E, then K is 2-prime
submodule of E.

o If E is an E-regular 2-prime R-module, then each submodule of E is a 2-prime submodule.

o If E is 2-prime module over ring R and (0) is a semi-prime submodule, then E is a prime R-
module.

e Every Quasi-Dedekind module over ring R is a 2prime R-module
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