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Abstract

The conjugate coefficient optimal is the very establishment of a variety of
conjugate gradient methods. This paper proposes a new class coefficient of conjugate
gradient (CG) methods for impulse noise removal, which is based on the quadratic
model. Our proposed method ensures descent independent of the accuracy of the line
search and it is globally convergent under some conditions, Numerical experiments
are also presented for the impulse noise removal in images.
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1. Introduction

Optimization algorithms play an important role in the noise removal of images. Images are
often corrupted by impulse noise, the goal of noise removal is to suppress the noise while
preserving image details. The median filter is one of the most popular nonlinear filters for
removing impulse noise due to its computational efficiency and good denoising power [1].
Recently, a two-phase method was proposed in [2]. The first phase is the detection of the noise
pixels by using the adaptive median filter (AMF) [3] for the random-valued noise; it is
accomplished by using the adaptive center-weighted median filter (ACWMF) [4]. Let X be the
original image with M by N pixels, and A={, 2,3, ....M}x{l, 2,3, .....N} be the index set of
X. let N'= A be denote the set of indices of the noise pixels that are detected in the first phase.
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Then, the second phase is the recovery of the noise pixels by minimizing the following
functional:

f,w= > [

(i,j)eN

+§(2><Si1d-

Where £ is the regularization parameter, and:
Sil,j =2 Z (pa(ui,j - ym,n)' Siz,j = Z ¢a(ui,j - ym,n)
(m,n)eP, ;AN° (m,n)eP; ;AN

Let P, ; be the set of four closet neighbours of the pixel at position(i,j)€A , y; ; is the observed

N 351] .......... 0

Uii —VYij

pixel value of the image at position(i,j)e A, ¢, is an edge-preserving functional where
@, =va+x* and U, ; :[uiij

Here C denotes the number of elements of N. In fact, the smooth function is omitted and only
noisy pixels are restored in the minimization. Then, the following smooth functional is obtained,
see [5].

i en is a column vector of length C ordered lexicographically.

L= Xlexsi+sy] e @

(i,i)eN
Due to the simplicity of their iteration and their very low memory requirements, nonlinear
conjugate gradient methods are well suitable to solve the optimization problems:

Min f(u) ,uer™ L ®))

Where f:R" — Rsmooth and its gradient g is available. The line search method usually
takes the following iterative formula:
U,=U+ed,. L (4)
For (4), where u, is the current iterate point, e, > Ois a step length and d, is a search direction.
Different choices of d, and «, will determine different line search methods, see [6], [7]. The
step length o, is very important for the global convergence of conjugate gradient methods. It

can either be exact or inexact. In the case of an exact step size with a quadratic model:
g.d, (5)

a, = T
d,Qd,
For inexact «, number of line search techniques can be used. For instance, the weak Wolfe-
Powell line search conditions seek an ¢, such that:
fu, +ad)< f(u,)+da9,d, (6)

digu, +ed,)>cd/g. (7)
where 0<d<o<1 . or in the case of the strong Wolfe-Powell line search conditions «,
satisfies inequality (6) and
‘g(uk +akdk)Tdk‘£_G‘g:dk‘ .......... 8)
For example, see [8]. The first search direction is usually the negative of the gradient which

is the steepest descent direction, i.e., d, =—0, , while subsequent directions are recursively

defined as follows.
d,=-0.+6S . 9)
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Conjugate gradient methods differ in their way of defining the scalar parameter 3, . In the

literature, authors have proposed several choices for £, which give rise to distinct conjugate

gradient methods. The most well known conjugate gradient methods are the Fletcher and
Reeves (FR) [9] Dai and Yuan (DY) [10] and conjugate descent (CD) by Fletcher [11]. The
update parameters of these methods are respectively specified as follows:

R _ Oria DY _ OraGi D _ _ OraGis e 10)
‘ 99 ‘ dey, ‘ dy g,
Other conjugate gradient methods have also been suggested in the literature, [12]-[14] and
a number of them are either modifications or hybridizations of the previously mentioned
methods.

The global convergence properties are the most well-studied properties of conjugate gradient
methods, The FR method was developed from the Hestenes and Stiefel method, which has a
global convergent under exact and strong Wolfe line search [15]. The CD method has descent
direction under the strong Wolfe line search [16] and fulfils the sufficient descent condition
under the strong Wolfe line search. For good references to studies that have described recent
CG methods with important results, see [17], [18].

This paper is organized as follows. Section 2, we present a new formula of conjugate
gradient and describes the descent property of the new formula. Section 3, the global
convergence properties of the proposed algorithms for impulse noise removal are analyzed
under common assumptions. Numerical test results are reported in Section 4. Some conclusions
are summarized in Section 5.

2. The new formula and the algorithm
It is known that all conjugate direction algorithms generate conjugate directions at least
theoretically and hence the key element for the derivation of the new algorithms is Perry’s
conjugacy condition:
d1€+1J’k = _(Hk+1gk+1)Tyk = —91€+1(Hk+13’k) = 91€+15k """"" 1D

Also in the derivation of all conjugate direction algorithms, it is assumed that the objective
function is a quadratic model. Therefore, we begin with the following definition:

1
foa= for SEG+5sQUIse (12)

where Q(u,) is the Hessian of the objective function. It is obvious that the derivative of (12)
fors, , we obtain:

Via=09+Qu)s, @3)
Putting (5) and (13) in (12), we get:
1
s, Qu,)s, = f, — fk+l+ESI Yo (14)
So, it follows from (11), (9) and (13) that:
BKY _(fk+1_ fk)_llzslyk +9I+1Yk _S:gk (15)
= T T T s
Sk Yk S Yo o Sk Yk
kBKS :(fk+l_ fk?r+l/28;—gk +gl:r+lyk _S-Iflr_gk .......... (16)
S Yx Sk Y o Sk Y

and
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BKG _(fk+1_ fk)_llzakg:gk g:ﬂyk S:gk
= - + == - e @7
sk yk Sk yk Sk yk
We call our new conjugate gradient method by BKY, BKS and BKG.
Based on the previous information, our algorithm framework will be explained as follows.

New algorithms (BKY, BKS and BKG algorithms)
Input a given constante> 0. then choose x, e R" and setk =0, d, =—g..

Step 1: If ||g, | <e, then stop.

Step 2: Compute d, by (9) and (15, 16 and 17).

Step 3: Determine the step length ¢, by using (6) and (7).
Step 4: Set X, ., =X, +,d,.

Step 5: Set k =k +1 and go to step 1.

3. Convergence Analysis

For any effective and robust considered method, it must satisfy the descent condition and
the convergence criteria. To study the convergence analysis of the proposed CG method, the
following assumptions are often needed on the objective function.

Assumptions:

1. The level set Q= {x eR"/f(x)< f(xc)} is bounded.

2. In some neighbourhoods N ofQ, f (x) is continuously differentiable and its gradient g(x)
Is Lipschitz continuous, namely, there exists a constant L > 0 such that:

lg)—ag(y)|<L|x-y|, V x, yeN
Now, we recall the definition of the strongly convex function that there exists a constant x>0
such that:

(VE)-VE(Y)) (x—y)> gfx—y[ ,forany x,yeS . (19)
or equivalently:

Visc = als” and s ] < yis, <Ls [

For more details, see [19].

Theorem 1:
If the assumption holds and ¢, satisfies the Wolfe conditions then the search directions

generated by the proposed algorithm of CG are descent directions for allk .
Proof:

If k =0 thengld, =—|g,|, suppose that d} g, <0 forall k.
Multiplying (9) by 9,.,, we have:

dl-<I-+lgk+l = _gz+lgk+l +ﬂksz O e (21)
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So that our descent proof will be easier, we need to simplify our new g, by using (13) and
(15) with some algebraic operations. Therefore, we get:

I Fawer\ T 22
dir19k+1 = =G ll* + (g:’ir;zk - S’;g;:) Sk k+1 (22)
This Yields the following:
T T T 2
2 Oi1YiSk Tia  (Sk Giua)
078 =g + Pt B T8 G 23

T Ty, e
Sk Yk Sk Yk

Applying the inequalitwavg%("w"z+||v||2, where w=(y,s,)9,., and v=(s{g,.,)y, we have:

1 200 Ta \2 T 2 2
0LVl 0, <2h9k+1 (Vi S)™ +(8k 9kan) Hka ] .......... (24)

SI Yk ) (S; yk)2
Using (24) in (23) we get:
g, 07 + 0L | (619,

A7 0. <o+
k+1gk+1 Hgk+1H (SI yk)z S; yk ....... (25)
Using vy, y, < Ls;y, inequation (25), then we get:
T 1 2 1 (SI gk+1)2
gwsglonf gl @9)

Therefore, if 0 < L <1the search direction satisfies the descent condition. In a similar way,
a descent property of a BKS and BKG method is proven.
In order to ensure the global convergence of our algorithms, we need to find o, satisfying (6)
and (7). The following lemma is often used to prove the global convergence of conjugate
gradient algorithms.

Lemma:
Suppose that the assumptions hold and consider any conjugate gradient method (4) and (9),

where d, a descent direction and k is obtained by the strong Wolfe line search (6) and (8).
If

1
> =0, @7)
k>0 ||dk+l||2
then:
Iirkn inf |l9,,/=0. (28)
Theorem 2:
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Consider any conjugate gradient method in the form (4) and (9), where «, is obtained by
the Wolfe line search. Suppose that the assumption holds, then:

!Ln;inf lof =0 . (29)
Proof:
From the search direction given by (9), we have:

ldeall = |=gras + B8 (30)

So that our convergence proof will be easier, we need to simplify our new g, by using (13) and
(15) with some algebraic operations. Therefore, we get:

T T
d _ Ik+1Vk Sk9k+1
” k+1” =7 9k+1 + dT Sk — dT Sk
kYK kYK
< lgrssll + lgieallLlisil® | Ngraalllsel* L (31)
= Tk ullsgll2 allsell?

pu+L+1
u

< (1424 2) lgeaall < [ llgis

This relation implies:

y 1 >[ A j%leoo .......... (32)

Qldwz_ u+L+1)Tis

Therefore, we have Eiminf||gk|| =0. Similarly idea we can test BKS and BKG methods.

4. Numerical results

In this section, we present some numerical results to demonstrate the performance of new
methods for salt-and-pepper impulse noise removal. In our experiments, we compare new
methods with FR-method. Here, we apply it to impulse noise denoising. Some noted papers can
be seen [12], [18], [20], [21] and [22].

We present some numerical results to demonstrate the performance of the proposed
algorithm for impulse noise removal. We compare the performance of the BKY algorithm to
those of the classical FR method for salt-and-pepper impulse noise. To assess the restoration
performance qualitatively, we use the PSNR (peak signal to noise ratio, see [23]) is defined as:

255
1 , N2 (33)
2 ~Ui)

where u;; and u;j denote the pixel values of the restored image and the original image,
respectively. The stopping criterion of both methods are:
g 110 U)
[ (uy)
The comparisons of algorithms are given in the following table context, which their details:
number of iterates (NI), : number of function (NOF) and PSNR (peak signal to noise ratio).

PSNR=10 log,,

<10*and [fu)]<10*@+fE)) 0 e (34)

Tablel: Performance of FR and BKY, BKS and BKG algorithms.
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FR-Method BKY-Method BKS-Method BKG-Method

Noise

levelr
(%)

PSNR
(dB)

PSNR PSNR PSNR

NI NF (dB) NI NF (dB) NI NF (dB)

NI NF

50 82 153 30.5529 40 90 30.625 27 56 30.4555 24 52 30.6305
70 81 155 27.4824 50 107 27.4787 34 70 274395 36 72 27.4022
90 108 211 22.8583 52 109 228216 43 89 227782 44 89 22.8706

50 52 53 346845 26 53 349748 17 33 34.8052 18 36 35.1982
70 63 116 31.2564 35 72 31.2583 29 58 313206 30 60 30.8457
90 111 214 25287 42 88 253597 37 75 25.0252 34 89 25.0335

50 35 36 339129 17 30 339586 20 40 33.9627 17 32  33.89

B 70 38 39 31864 18 33 318693 29 57 319309 24 46 31.9023
90 65 114 282019 38 78 283492 30 59 28.1625 32 64 28.4308
512 50 59 87 355359 32 68 355978 22 45 354302 25 52 35.3042

70 78 142 30.6259 33 70 30.854 30 62 30.6738 26 54 30.6344
90 121 236 249362 47 100 249935 44 91 249258 40 82 24.8845

From the results above and the following images, we show the effectiveness of the new
algorithms, in Figure-1 restoration results of different algorithms compared with the Fletcher
algorithm by corrupted images with 50, 70 and 90%. Figures 1,2,3 and 4 show the restoration
results obtained by the BKY, BKS, and BKG methods, respectively. These results showed that
the proposed methods can restore corrupted images quite well and in an efficient manner.
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Figure 1: From left to right: 50,70 and 90% noise, FR method, BKY,BKS and BKG methods
for 256 * 256 Lena image
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Figure 2: From left to right: 50,70 and 90% noise, FR method, BKY,BKS and BKG methods
for 256 * House image.
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Figure 3: From left to right:

for 256 * 256 Elaine image

50,70 and 90% noise, FR method, BKY,BKS and BKG methods
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Figure 4: From left to right: 50,70 and 90% noise, FR method, BKY,BKS and BKG methods
for 512 * 512 Cameraman image.

5. Conclusions

The direction that is generated by the new algorithms satisfies both the descent condition
and the Perry-condition, independently of the line search. Under standard Wolfe line search
conditions, we proved the global convergence of the algorithm. The computational evidence
showed that the performance of our algorithm is better than those of the FR conjugate gradient
algorithm so, the numerical performance of the proposed method is fine.
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