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Abstract 

     The dramatic decrease in the cost of genome sequencing over the last two decades 

has led to an abundance of genomic data. This data has been used in research related 

to the discovery of genetic diseases and the production of medicines. At the same 

time, the huge space for storing the genome (2–3 GB) has led to it being considered 

one of the most important sources of big data, which has prompted research centers 

concerned with genetic research to take advantage of the cloud and its services in 

storing and managing this data. The cloud is a shared storage environment, which 

makes data stored in it vulnerable to unwanted tampering or disclosure. This leads to 

serious concerns about securing such data from tampering and unauthorized searches 

by those involved. In addition to securing inquiries, making calculations on this data, 

and generating differential privacy and garbled circuits, cryptography is considered 

one of the important solutions to this problem. This paper introduces most of the 

important challenges related to maintaining privacy and security and classifies each 

problem with appropriate, proposed, or applied solutions that will fuel researchers' 

future interest in developing more effective privacy-preserving methods for genomic 

data. 
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 مراجعة التحديات والحلول السائدة لخصوصية البيانات الجينومية 
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 الخلاصة:

أدى الانخفاض الكبير في تكلفة تسلسل الجينوم خلال العقدين الماضيين إلى وفرة البيانات الجينومية. تم        
هذه البيانات في الأبحاث المتعلقة باكتشاف الأمراض الوراثية وإنتاج الأدوية. في الوقت نفسه ، أدت    استعمال

أحد أهم مصادر البيانات الضخمة ، مما دفع   جيجا بايت( إلى اعتباره  3-2المساحة الضخمة لتخزين الجينوم ) 
مراكز الأبحاث المعنية بالبحوث الجينية إلى الاستفادة من السحابة و خدماتها في تخزين وإدارة هذه البيانات.  
السحابة هي بيئة تخزين مشتركة ، الامر الذي يجعل البيانات المخزنة فيها عرضة للتلاعب أو الكشف غير  

أدى إلى مخاوف جدية بشأن تأمين هذه البيانات من التلاعب وعمليات البحث غير المصرح    المرغوب فيه ، مما
بها من قبل المعنيين. بالإضافة إلى تأمين الاستفسارات وإجراء الحسابات على هذه البيانات. يعتبر التشفير أحد  

مشوشة. تقدم هذه الورقة معظم  الحلول المهمة لهذه المشكلة ، بالإضافة إلى الخصوصية التفاضلية والدوائر ال
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التحديات المهمة المتعلقة بالحفاظ على الخصوصية والأمن وتصنف كل مشكلة بحلول مناسبة أو مقترحة أو  
الخصوصية   على  للحفاظ  فعالية  أكثر  بتطوير طرق  المستقبلي  الباحثين  اهتمام  تغذي  أن  شأنها  من  تطبيقية 

   للبيانات الجينية.
 

1. Introduction  

     The official announcement of the completion of the human genome project in 2003 drew 

attention to the importance and sensitivity of genomic data [1]. The tremendous development 

of gene sequencing technology has resulted in a massive amount of genomic information, which 

is considered the clue to many diseases' comprehension [2]. By using next-generation 

sequencing technologies, the growth of genomic data has become exponential in that the data 

volume is starting to reach petabytes [3]. It is appropriate for this huge amount of data to be 

stored in the cloud, provided that its security and privacy are guaranteed [4]. Cloud services are 

considered a wonderful and distinctive technology that provides dynamic and scalable services 

via the Internet. They are in increasing demand as technology develops [5]. However, it is 

vulnerable to attacks, which lead to data leaking to unwanted parties [6].  

 

     Storing, sharing, managing, and performing analysis on this data should be accomplished by 

insecure means, which ensure that the data is never lost or exposed to misuse [7]. Revealing the 

genome sequence of individuals leads to the possibility of genomic discrimination (even if it is 

prohibited), as well as the undesired revelation of sensitive information (biological family, 

medical history, or sensitive illness status) as a result of these breaches. Because they share 

most of their genetic DNA, the breadth of such injury might extend to offspring or relatives of 

the affected individuals. Furthermore, unlike the accounts of users and passwords (commonly 

hacked by information technology businesses), it is impossible to change the genetic 

information once it has been exposed [8]. However, disclosure of genomic data to an untrusted 

third party has substantial privacy implications [9]. 

In this paper, we present a detailed study on genomic data privacy preserving challenges and 

methods to preserve privacy through various techniques. The main contribution of the review 

can be precisely given as follows:   

• Present an overview of the prominent challenges facing privacy-preserving for genomic data 

and discussed the important research in this area, with classification and a brief discussion of 

these challenges. 

• This paper discusses different methods of solving the genomic data security and privacy 

problems using different perspectives of collaboration among Homomorphic encryption (HE), 

Garbled Circuit (GC), and Differential Privacy (DP).  

In the rest of this review, the challenges of preserving the privacy of genomic data are described 

in section 2. Considering the need for more significant solutions is coupled with understanding 

the difficulties that should be addressed accurately. This is followed by reviewing different 

techniques for preserving genomic data privacy in Section 3. Finally, the major conclusions 

realized from this review are clarified. 

 

2. Genomic data privacy-preserving: challenges   

     The processes of digital genomic data make it vulnerable to disclosure. The main operations 

which may violate the privacy of these data are sequence alignment, searching the database of 

genomics, and querying private genomic data. If necessary countermeasures are not taken, it is 

possible to violate the privacy of personal data [1]. The distribution of the related works 

published in various journals from 2014 to 2021 is summarized in Figure 1. Figure 2 shows a 

general taxonomy for different types of genomic data privacy challenges. The taxonomy aims 

to understand the challenges in protecting genetic data that represent different levels of 
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difficulty. The following subsections present how these challenges add different levels of 

difficulties to the genomic data preservation challenge. 

 

 
 

Figure 1: Distribution of the published papers in different journals between 2014–2021. 

 
Figure 2: Genomic data challenges 

 

2.1 Genomic data sharing privacy  

     Genomic data sharing processes can be categorized into public and private, each with its 

own set of access controls and rules. Various data identification attacks have increased the 

security and privacy of genomic data, which is not used for public sharing and has no privacy 

guarantee. These assurances, however, fall short for a variety of reasons (various adversary 

assumptions, different threat models/attacks) [6]. So, data security and privacy have grown to 

be a crucial necessity for many enterprises [10]. Bos et al. [11] discussed the available scenarios 

for the available applications in this field. This research paper sheds light on the issue of 

homomorphic encryption and demonstrates its importance and effectiveness by providing a 

practical application for the prediction service that works in the cloud on encrypted data. The 

application includes a cloud service to execute private predictive analysis jobs on health data 

that is encrypted using Some What Homomorphic Encryption (SWHE). The cloud service 

handles the encrypted data only and predicts without any knowledge of the secret medical data. 
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     Lauter et al.  [12] employed Genome-Wide Association Studies (GWAS) and its basic 

algorithms with HE to work with encrypted data. They discovered a variety of statistical 

algorithms that were evaluated through lower-order polynomials, such as the goodness of fit 

(Pearson) test or the Chi-Square statistical test, which were used to check for divergence from 

Hardy-Weinberg equilibrium. Cheon et al. [13] devised an approach for performing the edit 

distance technique on encrypted genomic sequences. The approach generates an encrypted 

value of their edit distance. They implement their proposed algorithm of edit distance over 

encrypted genomic data with lengths n and m by the SWHE scheme. The optimization in their 

algorithm was reducing the depth of computing edit distance for short sequences. On the other 

hand, Simmons et al. [14] made a discovery for the privacy-preserving technique of aggregate 

sharing of genomic data with low-cost accuracy from the traditional differentially private 

method in a way making the trade-off between accuracy and privacy by varying λ parameter in 

the Laplacian distribution.  

 

     To facilitate the privacy-preserving partnership of genomic data for GWAS, a decentralized 

network using the privacy-preserving sharing protocol (PPS) and the data fragmentation 

algorithm was proposed by Zhang et al. [15], which was restricted to a limited number of 

fragments. We noticed that Yang et al. [16] suggested a scheme to share medical data based on 

attribute cryptosystem and blockchain technology, which involved storing encrypted medical 

data in the cloud while storing the storage address and medical-related information in the 

blockchain, ensuring storage efficiency and removing the opportunity of data amendment 

irreversibly. The suggested technique integrates Attribute-Based Encryption (ABE) with 

Attribute-Based Signature (ABS), allowing medical data to be shared over many-to-many 

communications. Table 1 outlines the prominent methods for the privacy of genomic data 

sharing. 

 

Table 1: The prominent methods for the privacy of genomic data sharing 

Reference Year Technique(s) Advantage(s) Disadvantage(s) Dataset 

[11] 2014 
Fully homomorphic 

encryption (FHE) 

present an 

implementation for a 

cloud service that 

demonstrates an 

application of 

algorithms for 

outsourced prediction  

on encrypted, 

confidential medical 

data 

For a low-degree 

computation, it might 

not be beneficial to 

implement the 

modulus switching 

technique that is 

required for deeper 

circuits 

Polynomial 

function 

[12] 2015 

HE and the basic 

genomic algorithm 

used in GWAS 

Efficient when applied 

to modest data 

-Cannot be applied to 

big data. 

-not practical for 

different keys. 

genotype 

and/or 

phenotype 

count tables 

[13] 2015 
SWHE and edit 

distance 

the proposed algorithm 

performs analysis on 

the encrypted genomic 

sequence  without 

privacy leakage 

implementation over 

large parameters 

cannot be done due to 

large memory 

requirements 

DNA 

sequences 

[14] 2019 

Perturbation, 

Bayesian, Markov 

chain, monte Carlo 

A trade-off between 

accuracy and privacy 

by varying λ parameter 

in Laplacian 

distribution 

The method depends 

on  the addition of 

noise to calculate the 

risk 

GWAS 

dataset 
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[15] 2019 

Decentralized 

secure network and 

privacy-preserving 

protocol 

-provide a protective 

method to solve the 

problem of data re-

distribution that 

satisfies people’s 

fundamental ethical 

interests in their data 

-prevent data re-

identification problems 

by providing a high 

level of privacy, with 

the ability to perform 

GWAS analysis 

-fragmentation 

mechanism used 

provides scalability and 

decentralized analysis 

- efficient when N 

(number of 

fragments) is low. 

when N increase, the 

accuracy of the 

method  decreased 

1000 

Genomes 

Project 

[16] 2020 

Blockchain 

technology and 

attribute 

cryptosystem 

High computational 

performance (lower 

computational 

overhead in encryption, 

signature, and 

decryption 

/ 
Medical 

data 

 

2.2 Access and storage privacy 

     Genomic data must be stored in a secure place, ensuring that there is no exposure, tampering, 

or disclosure from untrusted parties. Huang et al. [17] proposed a method called Selective 

Retrieval on Encryption and Compressing Reference-Oriented Alignment Map (SECRAM) that 

is used for compressing aligned data, storage and retrieval of encrypted data, and efficiency 

improvement during downstream analysis. Despite the high efficiency in saving space and 

preserving privacy provided by this method, when the coverage is low, we notice a decline in 

performance. Meanwhile, Liu et al. [18] suggested including the implementation of VA-Store, 

an approach that uses K-mers (i.e., a subsequence of length k) with various k values to address 

the substantial space required for repeated data in common genomic sequence analysis tasks. 

For one component of the input dataset, the VA-Store maintains a physical store while 

supporting several stores for other portions of the information.  

 

     VA-store has translated a given query on the virtual store into one or more queries on the 

physical store can be executed by utilizing essential linkage among repetitious data. Although 

it saves space and maintains privacy as well, it degrades in performance when a sequence of 

length less than k0 (the first subsequence length) comes along. On the other hand, Chen et al. 

[19] presented a framework for large-scale calculations on genomic data that was outsourced 

to a third-party (public cloud server) for greater scalability and security. Furthermore, the tree 

structure was used by them to exemplify arbitrary genomic data for computational competency 

and integrated homomorphic cryptography with the Garbled Circuit approach to ensure 

security. Although it provides a significant improvement in run time for the execution of 

queries, it requires an additional cost in the event of dishonest researchers and is exposed to 

security leaks during the search operation. Mehmood et al. [20] proposed an indexed-based 

method to answer queries of pathways scattered over various distributed datasets. They offered 

a heuristic-based source selection method for determining which datasets are appropriate for a 

given route query as well as a strategy for federating queries to select sources and 

assembling(merging) the paths obtained from those distant datasets. Table 2 illustrates the 

prominent methods for access and storage privacy. 

Table 2: The prominent methods for access and storage privacy 
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Reference Year Technique(s) Advantage(s) Disadvantage(s) Dataset 

[17] 2016 SECRAM -space saving 

-privacy-preserving 

Compression is 

not efficient 

when the 

coverage is very 

low because of 

the storage 

overhead of 

encryption. 

NA12878 

[18] 2018 Virtual approximation 

store 

mainly designed to 

save storage space 

for repetitive 

genome sequence 

data 

the efficiency 

will suffer, 

when the chosen 

k length for an 

input user k-mer 

query is too far 

from the length 

k0 chosen for 

the physical 

store  k0 of the 

underlying VA-

store, 

Streptomyces 

rapamycinicus 

NRRL 5491 

genome 

 

[19] 2018 HE, GC and, Tree 

indexing 

-significant 

improvement in run 

time for the 

execution the of 

query 

- It requires an 

additional cost 

in the case of 

dishonest 

researchers 

-security 

leakage 

Neo4j 

[20] 2019 Indexed based 

approach 

- provide a 

heuristic-based 

source selection 

mechanism to select 

the relevant datasets 

- assembles the 

paths retrieved from 

those remote 

datasets 

Datasets must be 

interconnected 

and contain a 

recourses that 

are relevant to 

each other 

-Disease 

-hpoClass 

-doClass 

- phenotype 

- Protein 

-Variant 

-Gene 

-panther 

 

2.3 Query privacy  

     Researchers querying on genomic data preferred to be secure and not to be disclosed to 

others (attackers/curious), in that the query and the output of it hold sensitive information about 

the individuals. It is a challenge to ensure the privacy of the query and the result [21]. Alaziz et 

al. [22] adopted the Paillier cryptosystem and order-preserving encryption to execute the count 

query and the ranked query securely. Despite the advantage of this method that the time of 

performing calculations on encrypted data is close to the time taken by the same operations on 

unencrypted data, it is expensive when decrypting. On the other hand, Sousa et al. [5] employed 

Private Information Retrieval (PIR) with HE to invent a hash-based solution. Some changes 

have been made to the standard PIR protocol to access specific variants while its identification 

parameters such as chromosome, position, and reference allele can be used instead of the usage 

of its relative position in the Variant Call Format (VCF) file.  

Moreover, they used symmetric encryption to protect genomic data on the server side. The 

aforementioned method is characterized by an error rate associated with its hashing scheme and 

is slow if the database is large and multiple variants or files are queried. while Xu et al. [23] 

resorted to guaranteeing the integrity of the query result and preserving the confidentiality of 

the data through the proposed authenticated aggregate queries over a set of valued data. They 

suggested a privacy-preserving authentication framework for overall queries. Mahboubi et al. 
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[24] suggested a system called Secure Distributed TOPK (SD-TOP-K) in which the user data 

is encrypted and stored in a distributed system and can be evaluated by a top-k query processing 

algorithm which finds a set of encrypted data that is proven to contain top-k data items. This is 

done without having to decrypt the data in the nodes where they are stored. Moreover, they 

suggested a robust filter in the algorithm that strips the false positives as much as possible 

without decrypting the data. Meanwhile, Quan et al. [25] suggested a method to reduce top-k 

query privacy leakage when compared to order-preserving encryption (OPE). Top Order 

Preserving Encryption (TOPE), which allows top-k searches on encrypted data using partially 

ordered heap characteristics for balancing privacy and search capabilities, is the essential 

method. Table 3 summarizes the prominent methods for query privacy.  

 

Table 3: The prominent methods for query privacy 

Reference Year Technique(s) Advantage(s) Disadvantage(s) Dataset 

[22] 2016 

Paillier and order-

preserving 

encryption 

The computation 

time of the secure 

computations is closer 

to the time of 

the corresponding 

regular computations 

over the plaintext 

Decryption 

overhead 

IDASH 2015 

SNP 

[6] 2017 PIR and HE 

-optimal privacy 

-confidentiality 

-low storage 

complexity 

-low querying time 

-minimization of 

delivered data 

-generality 

-error rate 

associated with a 

hashing scheme 

-slow down if the 

database is 

relatively large 

- suffer from 

scalability issues 

iDash 2016 

[23] 2017 
Merkle Grid Tree 

(MG-tree) 

-provide integrity and 

confidentiality for 

aggregate queries 

over set-valued data. 

- formal security 

analysis and cost 

models were provided 

for the proposed 

authentication 

protocols and 

algorithms 

in max, top-k ,and 

FFQ queries, the 

performance 

breakdown 

severely due to 

dimensionality 

curse 

-Personal 

Genome Project 

at Harvard 

Medical School 

- Foodmarket 

from Microsoft 

(FoodMarket) 

- TPC 

Benchmark H 

(TPC-H) 

[24] 2018 Top k- query 

-evaluate top k-

queries over 

encrypted distributed 

data without 

decrypting 

-propose a new 

filtering algorithm 

Need a lot of 

communications 

between cloud 

nodes 

Gowalla 

database 

[25] 2018 
Order preserving 

encryption 

- enable top-k queries 

on encrypted data 

with minimized 

privacy leakage 

- reduce the running 

time of generating a 

massive ciphertext 

significantly by 

supporting a dynamic 

dataset and supporting 

Encryption time 

and generating 

hash table 

increasing 

linearly 

Diabetes dataset 
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batch encryption in 

the setup phase 

 

2.4 Outsourcing  

     The growing interest in outsourcing to manage data is due to faster implementation, flexible 

scalability, reduction of costs, and improved latency and connectivity. Although consumers 

must trust cloud service providers, this raises privacy and security concerns when it is related 

to research data from patients or volunteers. Several solutions have been proposed to address 

the security challenges, particularly in the area of data processing in the cloud. [22]. Zhang et 

al. [26] introduced the Fully Outsourced secuRe gEnome Study basEd on homomorphic 

Encryption (FORESEE) architecture for computing Chi-square statistics on the public cloud in 

a safe and completely outsourced manner. The so-called semi-honest opponent model assumes 

that the cloud properly follows the protocol but is interested in information from the received 

data. 

  

     Secure division operations can be provided by the suggested FORESEE framework with 

homomorphically encrypted data and immediate release of research findings from the cloud. 

Although the cost is very high and the efficiency is reduced due to the large value of G, it is 

still efficient in supporting full cloud outsourcing while maintaining final result encryption. 

Meanwhile, Wang et al. [27] suggested a new HEALER framework for evaluating the P-value 

of accurate logistic regression parameters applied to homomorphically encrypted data. Secure 

outsourcing was facilitated and the danger of sensitive data analysis was reduced in 

untrustworthy cloud environments (e.g., Amazon EC2, or Microsoft Azure). A new rejection 

sampling technique, secure integer comparison method, and parallelizable mechanism were 

introduced to speed up the execution of this algorithm, making homomorphic encrypted precise 

logistic regression computing feasible. Furthermore, a compression strategy was used to lower 

the cost of storing and communicating homomorphically encrypted data. The cost of 

computation and storage is still significant with some limitations in the proposal and 

distribution availability in the encrypted domain, which might lead to a low acceptance rate. 

There is the challenge of a homomorphic division operation. 

 

     Then Ghasaemi et al. [28] suggested a model for outsourcing data by employing a paillier 

cryptosystem with permutation. The method provides count query and top-k operations with an 

outperformance technique, but there is vulnerability to Homer attack and de-identification 

attack. Ziegeldorf et al. [29] employed Fully and Partially Homomorphic Encryption with a 

bloom filter (FHE and PHE–BLOOM). These approaches are efficient in genetic disease tests, 

which securely outsource the storage that has been allowed by the data owner and computed to 

the untrusted cloud. FHE–BLOOM provided full security in the semi-honest model, while PHE-

BLOOM provided little qualification in guarantees of security in a trade-off for enhancing 

performance improvement. It provides flexible and efficient management supporting the 

outsourced data and may be extended to support further query types, but still suffers from 

overhead in the setup of the patient’s database. 

  

     Hassan et al. [30] introduced a new approach for outsourcing genome data that is both safe 

and efficient from the aggregate genome data. The suggested approach created an index tree, 

which was subsequently outsourced to a third-party cloud server. The nodes of the tree have 

been scanned by the cloud server and perform count query operations using a secure interactive 

interface during the data processing phase as well as the query execution phase. This approach 

does not expose any crucial genomic data, does not provide privacy against inference attacks, 

nor data access privacy as it reveals the tree traversal pattern. Raisaro et al. [31] suggested and 



Yousif and Hameed                       Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4729- 4746 
 

4737 

implemented a safe and efficient privacy-preserving approach in a real-world setting for 

investigating genomic cohorts by employing HE and DF at Lausanne University Hospital. It 

enables the exploration of large genomic datasets. 

 

     Kim et al. [32] demonstrated a safe outsourced method for evaluating logistic regression 

models for quantitative characteristics and testing their genetic connections. They use a semi-

parallel training strategy to create a logistic regression model for variables, then run a one-step 

parallelizable regression on all single nucleotide polymorphisms (SNRs). They increase the 

performance of the underlying approximation homomorphic encryption algorithm.  

 

Table 4: The prominent methods in the privacy of outsourcing 

Reference Year Technique(s) Advantage Disadvantage Dataset 

[26] 2015 FORSEE based 

on HE 

support complete 

outsourcing to the cloud 

and outputting the final 

encrypted result 

-a large value for G 

to ensure accuracy in 

computation led to 

degradation in 

efficiency of the 

- suggested 

framework 

cost of storage and 

computation is still 

very high 

2015 iDASH 

[27] 2015 HE and logistic 

regression 

-supports secure 

outsourcing and 

alleviates analyzing 

sensitive data in the 

cloud 

-provide a new 

approach for rejection 

sampling and secure 

methods for integer 

comparison 

if suitable proposal 

distribution is not 

available in the 

encrypted domain, 

the acceptance rate 

would be low, the 

computational and 

storage cost over 

encrypted data is still 

significant, need to 

improve in storage 

efficiency, and still a 

challenge to handle 

homomorphic 

division operation 

Kawasaki 

Disease 

datasets. 

[28] 2016 Paillier on 

permutation 

provide count query 

and top-k operation 

with outperformance 

technique in terms of 

execution time 

vulnerability to 

Homer attack and de-

identification attack 

1000 genomes 

[29] 2017 FHE, PHE and 

BLOOM filter 

provide flexible and 

efficient  management 

supporting of the 

outsourced data , and 

may be extended to 

support further query 

types 

overhead in the setup 

of patients database 

iDASH 

[30] 2018 Paillier 

cryptosystem and 

BLOOM filter 

-Secure and efficient in 

outsource genomic data 

-scalable for large data 

set 

-Venerable to 

inference attack 

-does not provide 

data access privacy 

Single 

Nucleotide 

Polymorphism 

SNP 

sequences 

[31] 2018 HE and DF -preserve privacy the added noise by 

i2b2 server to new 

queries of given user 

real genomic 

data coming 

from the 
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-enable outsourcing and 

exploration of large 

genomic data 

linearly grows with 

number of queries 

already answered to 

the same user. 

this can degrade the 

utility of the system 

in mater that the later 

queries would be 

useless 

exome 

sequencing of 

392 samples 

giving a 

genotyping 

for 472,845 

variants each 

[32] 2020 HE and logistic 

regression 

- achieved a very high 

level of accuracy in the 

final output 

-cannot compute 

matrix inverse if the 

dimension is high 

iDASH 

 

3. Privacy-preserving techniques  

     There are several solutions to preserve privacy and security challenges for genomic data. 

Homomorphic encryption, Garbled Circuit, and Differential Privacy (DP) are considered the 

most significant privacy-preserving techniques [22]. For all works presented in this review, the 

distribution of the three existing privacy-preserving techniques is depicted in Figure 2.  

 

 
Figure 2: Distribution of preserving privacy for genomic during the period 2016-2021 using 

HE (blue), GC (brown), and DP (gray) techniques. 

 

3.1 Homomorphic encryption  

     The performance of computation over encrypted data is allowed by homomorphic 

encryption with no need to decrypt it. HE can be classified into fully, partially, and somewhat 

homomorphic encryption. To preserve privacy during the computation of genomic data, 

different schemes were applied [33]. K. Shimizu et al. [34] suggested a method that combined 

efficient string data structures with cryptographic techniques constructed by additive HE. They 

produced an implementation of an efficient algorithm to search for sequences of SNPs in a large 

genome database. The server can not reveal the queried sequence.  

 

     On the other hand, Lain et al. [35] attempt to develop an Efficient Private Circular Query 

Protocol (EPCQP) with excellent accuracy, minimal computing, and transmission costs. The 

Moore curve was employed to transform two-dimensional spatial data to one-dimensional 

sequence and use Brakerski-Gentry Vaikuntanathan’s (BGV) HE approach to protect the 

information about a point of interest (POIs). In order to reinforce the storage efficiency of the 

genome data sets, computation, and communication costs, Singh et al. [36] proposed a secure 

55%
27%

18%

HE GC Df
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and efficient method for privacy-preserving personalized medicine by illustrating stream 

cipher-based homomorphic trans-ciphering on a cloud server.  

 

     Meanwhile, Wang et al. [37] proposed a novel scheme for healthcare queries on outsourced 

data called HeOC. Encrypted data is uploaded by trusted users into the cloud, and a perfect 

query is done on encrypted data about a particular disease. The operation is done by using a 

large number of sensors, which makes it expensive despite its efficiency. Then, Zheng et al. 

[38] employed an efficient k-NN query method to outsource encrypted data from e-healthcare. 

The encryption is done by the Paillier cryptosystem. This method provides efficient storing of 

encrypted data in the cloud and privacy-preserving k-NN query over encrypted data. This 

method is efficient in terms of privacy preservation and computational complexity. 

  

     Yan et al. [39] used edge computing based on the blockchain to construct a key solution that 

ensures the efficiency of the blockchain and reduces the computational overhead to clients by 

employing the paillier cryptosystem. They presented the advantages of blockchain and edge 

computing and constructed the key technological solutions of edge computing based on 

blockchain. They achieve the security protection and integrity check of cloud data and realize 

more extensive, secure multiparty computation. Blatt et al. [40] proposed a solution for GWAS 

security using (HE) to keep the encryption of all individual data during the association study. 

They presented a new Residue-Number-System(RNS) variant of the Cheon-Kim-Kim-Song 

(CKKS) HE scheme, new methods to switch between data encodings, and more than a dozen 

crypto-engineering optimizations. The solution can implement the full GWAS computation for 

1000 individuals, 131,071 SNPs, and 3 covariates in about 10 minutes on a modern server 

computing node.  

 

     A novel encryption strategy based on HE was presented by Vizitiu et al. [41]. MORE (Matrix 

Operation for Randomization or Encryption) is proposed, which allows calculations within a 

neural network model to be directly conducted on floating-point data with reasonably little 

computational cost. At the same time, Blatt et al. [42] proposed statistical toolbox techniques 

that use HE to implement large-scale GWASs on encrypted genetic/phenotype data in an 

interactive manner where no decryption is required. The method presented a reformulation of 

GWAS tests to make use of packing of encrypted data and parallel processing, highly efficient 

statistical computation integration, and the development of a dozen crypto engineering 

optimizations.  

 

     Kuo et al. [43] invented three tracks for competition, which included genomic dataset access 

logging based on blockchain, securing HE in GWAS, and securing DNA segment searching. 

Kim et al. (2021) [44] utilized HE to introduce mathematical results and a warranty for security 

to protect genotype data at the time of imputation, which was implemented in a semi-trusted 

environment. Table 5 summarizes privacy preserving techniques for genomic data using 

homomorphic encryption. 

 

Table 5: Privacy preserving techniques via homomorphic encryption 

References Year Technique(s) Advantage disadvantage dataset 

[34] 2016 Homomorphic 

encryption and 

oblivious transfer 

High advantage and 

powerful security 

-the improvements in 

parallelization led to 

server run time may 

be reduced 

1000 genome 

project 

[35] 2017 Brakerski-Gentry- 

Vaikuntanathan 

homomorphic 

-provides high 

accuracy query results 

while maintaining low 

-the quality of results 

get worse if number 

base stations 

datasets 

in China. 
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encryption and 

Moore Curve 

computation and 

communication costs. 

of sub table gets 

large 

[36] 2018 FLIP scheme and 

BGV with FV 

comparison 

Reinforcement 

efficiency of storage 

to the genome datasets, 

costs of communication 

and computation 

-data exchange 

issues 

 

Blood Group 

Antigen 

Gene 

Mutation 

Database 

(BGMUT) 

[37] 2018 Health query 

scheme over the 

outsourced cloud 

(HeOC) 

-Low overhead in 

computation and 

communication. 

-health service’s 

provider model 

conditionality 

Using large number 

of sensors 

Personal and 

physiological 

Data 

[38] 2019 Paillier and k d 

(dimension) tree 

efficient data storage 

in the cloud and 

preserving the privacy 

of k NN queries on 

encrypted data 

If the degree of the 

function f increased, 

the computational 

efficiency of the 

function 

will decrease 

 

Synthetic 

dataset 

 

 

[39] 2020 Paillier, 

Blockchain and  

edge computing 

Enhance the 

performance 

of secure storage and 

computation 

the negative value of 

the hash 

Simulated 

data 

[40] 2020 Cheon Kim Song 

(CKKS) based on 

Homomorphic 

scheme 

Implement the full 

GWAS computation 

needs to know the 

computation and 

parameter of semi-

parallel procedure in 

advance and hand-

tuned nature of many 

optimization applied 

on the solution 

-iDash 2018 

-Harvard 

Personal 

Genome 

Project 

 

[41] 2020 Fully 

Homomorphic 

Encryption and 

MORE (Matrix 

Operation for 

Randomization or 

Encryption) 

Ensured data security 

and perform data 

efficiently 

 

Computational 

overhead 

MNIST 

[42] 2020 Ring Learning 

With Error 

(RLWE) 

High efficiency -The model assumed 

that encrypted data 

fully processed 

-GWAS can decrypt 

the encrypted data 

AMD dataset 

[43] 2020 Block chain, 

secure parallel 

GWAS by HE 

and secure search 

of DNA in large 

database 

Enhance genomic 

security and privacy 

High computation 

overhead 

Simulated 

genomic 

dataset 

[44] 2021 Fast Fully 

Homomorphic 

Encryption over 

Tours library 

Effective privacy -  

preservin finger 

print authentication 

system 

Suboptimal accuracy 1000 genome 

project 
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3.2 Garbled Circuit  

     Garbled is a two-party secure computation protocol that can be used for any general purpose. 

The usage of this protocol allows two parties to calculate the outcome of a function jointly 

without knowing anything concerning the inputs or intermediate results of the other party [45]. 

Yao’s garbled circuit protocol is the most renowned of the Multi Parity Computation MPC 

techniques. It is commonly seen as the best-performing, and numerous of the protocols we cover 

build on Yao’s GC [46]. The security of GC can be guaranteed by the equal participation of 

both parties communicating through the calculated functions. 

  

     Another benefit of GC is the secrecy of both parties’ inputs, as the query frequently demands 

the same level of anonymity as the data. As a result, GC is typically utilized in sequence 

similarity situations when one party (researcher) has a data set of genomic sequences and the 

other party (data set) has a sensitive query sequence. The researcher wishes to locate sequences 

that are comparable to that specific query using any similarity metrics, such as Hamming and 

Levenshtein distances [33]. Al Aziz et al. [47] suggested approximation techniques for editing 

distance computation securely through genomic sequences and utilizing shingling specific set 

methods that include the algorithm of banded alignment intersected with garbled circuits to 

implement these methods. The method is considered to be accurate and time-efficient. On the 

other hand, the suggestion for a paradigm based on the basis of an indexed prefix tree for 

identical queries of patients by Mahdi et al. (2018) [48]. It ensures the privacy of data query 

requests and query responses. By employing the AES algorithm for preserving privacy, the 

encrypted and compressed tree is delivered to the cloud server to carry out query operations.  

 

     Researchers use GC to execute queries on accumulated data for semi-trusted models of 

opponents. Hasan et al. [30] proposed using distinct third parties to ensure secure exchange and 

execution of counter-question procedures on outsourced genomic data. The recommended 

method for creating an index tree from genetic data and then outsourcing it. The tree’s nodes 

will be traversed by the cloud server and perform the count query using a secure interactive 

protocol. The checking will be done using Yao’s GC over an interactive interface. Cheng et al. 

[2] proposed protocols to outsource the Similar Sequence Queries (SSQs) using an 

approximation of Edit Distance (ED), which depends on homomorphic encryption, and 

proposed a group of different security protocols to attain security efficiency and scalability 

depending on secret sharing, garbled circuit, and partial homomorphic encryption. 

 

     Mahdi et al. [49] suggested a technique to execute the count queries in a secure manner 

composed of genotype, phenotype, and numeric data by employing encryption and garbled 

circuits. Sotiraki et al. [50] developed a novel depth-optimized technique for computing set-

maximal coincide between a database of aligned genetic sequences and an individual’s DNA 

while preserving the database owner’s individual privacy. Table 6 summarizes the privacy-

preserving technique for genomic data via a garbled circuit. 

 

 

 

 

 

 

 

 

 

Table 6: Privacy-preserving techniques for genomic data using a garbled circuit 
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Reference Year Technique(s) Advantage(s) Disadvantage(s) Dataset 

[47] 2017 

Shingling private 

set intersection, 

banded alignment 

algorithm, and 

garbled circuit 

Fast and achieve 

similar accuracy as 

traditional methods 

-information leakage 

-weakness in case of 

brute force attack 

 

 

1000 genome 

[48] 2018 
AES and garbled 

circuit 

Preserve data, query 

and output privacy 

-the sequences must 

be the same length 

-Query execution 

time depends on the 

dataset size 

iDash 2016 

[30] 2018 
Indexed Tree and 

garbled circuit 

Efficient and secure 

method for 

outsourcing data 

It does not provide 

any privacy against 

heuristics attacks nor 

data access privacy 

because it exposes 

the tree traversal 

pattern. 

Genomic dataset 

[2] 2018 

Partially 

homomorphic 

encryption,  and 

Garbled Circuit 

provide security, 

efficiency, and 

scalability under the 

semi-honest 

adversary model for 

small dataset 

 

Not suitable for large 

dataset 

Homo 

Sapiens 

Mitochondrion 

Complete 

Genome 

[49] 2020 
Encryption and 

garbled circuit 

-provide data, query, 

and output privacy 

Storage overhead 

cost 
PGP 

[50] 2020 

Goldreich Micali 

Wigderson 

(GMW) 

and garbled circuit 

Secure computing 

set maximal 

approach on semi- 

honest model 

If n (length of 

sequence) is small, 

resulted in no 

improvement 

Genomic 

database 

 

3.3 Differential Privacy 

     Differential privacy is a model of privacy preservation that provides summary statistics 

about the dataset and ensures no one can learn anything about any record in the dataset [51]. It 

is considered widely accepted as a rigorous model for privacy protection. The present privacy-

preserving algorithms are still problematic, such as k-anonymity. Before the appearance of 

differential privacy [52], it employed extra strict constraints and definitions by adding 

interference noise, as it conserves the potential privacy of users’ information in the published 

data. 

  

     The attacker cannot conclude any information even if he has mastered specific information. 

Therefore, this completely excludes the possibility of disclosure of private information from 

the data source [53]. He et al. [54] suggested a differential privacy method that ensured genomic 

data release during belief propagation execution on a factor graph. This method is capable of 

factorizing the distribution of genomic data into a group of local distributions. Wei et al. [55] 

suggested differential privacy based on the genetic matching (DPGM) schema to attain efficient 

agreement and secure privacy in genetics. Park et al. [56] suggested a secure system for genomic 

data management by combining blockchain and local differential privacy. The suggested 

system uses two types of storage: private and semi-private, where genes are irreversibly 

modified by LDP in semi-private storage. While the data is stored in private storage accessible 

by internal employees only. Table 7 summarizes the privacy-preserving method using 

differential privacy. 
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Table 7: Privacy-preserving techniques using differential privacy 

Reference 

 

Year Technique(s) Advantage(s) Disadvantage(s) Dataset 

[54] 2018 Differential 

privacy 

guarantee the 

privacy 

degrade the data 

utility 

Genomic data 

[55] 2019 Differential 

privacy based 

on genetic 

matching 

-effective genetic 

matching 

 

May cause privacy 

issues 

 

-Simulated 

dataset 

-Real diabetic 

dataset 

-real diabetic 

DNA 

sequences 

[56] 2021 Blockchain and 

differential 

privacy 

-Develop access 

control and integrity 

verification 

-employed tow type 

of storage: private 

and semi-private 

-data’s owner can be 

traced from the 

operation of the 

blockchain 

-the operation cost is 

expensive 

- genome 

sequence 

   

3. Conclusions  

     During the past two decades, the importance of genomic sequencing and vital information 

has been demonstrated with the increase in genetic testing, analyses, and diagnostics and the 

spread of treatment based on individual genome sequencing. Because the cost of genomic 

sequencing has been dramatically reduced, people are being sequenced for a variety of reasons. 

Because it is important and sensitive information, unauthorized and undesirable access leads to 

a violation of the privacy of individuals. 

  

     Despite the benefits, the lack of protection and privacy-preserving methods creates risks and 

problems that outweigh the benefits. In this review paper, we present a clarification of the most 

important challenges facing maintaining the privacy of genomic data and a classification of the 

most important solutions used to meet these challenges. The use of the HE technique has 

produced remarkable results in terms of providing protection, privacy, and the ability to conduct 

operations without the use of data decryption. Furthermore, several forms of hybridization 

among HE, CG, and DP can be used to preserve genomic data privacy. It is hoped that in 

subsequent years, with the increase in genomic sequencing operations, the process of protecting 

this important and sensitive data generated will be essential in a manner appropriate to its rapid 

growth and will encourage researchers to focus on collaboration among HE, CG, and DP.  
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