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Abstract

The ground state density distributions and electron scattering Coulomb form
factors of Helium (**®He) and Phosphorate (**'P) isotopes are investigated in the
framework of nuclear shell model. For stable (*He) and (*'P) nuclei, the core and
valence parts are studied through Harmonic-oscillator (HO) and Hulthen potentials.
Correspondingly, for exotic (*°He) and (*'P) nuclei, the HO potential is applied to
the core parts only, while the Hulthen potential is applied to valence parts. The
parameters for HO and Hulthen are chosen to reproduce the available experimental
size radii for all nuclei under study. Finally, the CO component of electron
scattering charge form factors are also investigated. Unfortunately, there is no
analytic solution to the Hulthen potential except for the s states which are harnessed
to the current calculation.

Keywords: exotic nuclei, size radii, density distributions, electron scattering
charge form factors, shell model, Helium isotopes, phosphorate isotopes, Hulthen
potential.
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Introduction

The cornerstone for the correct computation of nuclear bulk properties is the correct
selection of the nuclear mean field leading to satisfied results in comparison with
experimental data [1]. Such radial wave functions (WF) obtained from such improved mean
fields are not easy to handle; the numerical solution is the main drawback [2]. The Harmonic-
oscillator wave functions (HOWFs) do not give satisfactory results since they are mainly
characterized by Gaussian downfall behavior at large r [3,4,5]. Therefore, one has to adopt
modifications to improve such shortcomings. Hamoudi et al.[6] and Radhi et al.[7] applied
two HO size parameters to study some exotic nuclei. The transformed HOWFs (THO) in the
local scale transformation were successfully used to study stable and exotic nuclei [8,9].
Besides, in the studies of Ridha [10] and Noori and Ridha[11], the Woods-Saxon potential
gave very good results for both stable and exotic nuclei.

In the present work, , the use of HO and Hulthen radial WFs were used to study the
density distributions and elastic charge form factors for electron scattering of Helium (**®He)
and Phosphorate (*'P) isotopes.

Theoretical Formulations
The radial differential equation of Schrédinger equation is given by [12]:

1 d 2 d@nlj‘tz(r) Zﬂcmtz l(l‘l‘l)flz _
r_ZE(r dr ) + h2 [EtZ T Tomrz U(T)] ®nlj,tz(r) =0 (1)

Where: u, A, n,l,jand t, (t, = %for proton and t, = —% for neutron) represent reduced

mass (:“cmtz = %), Planck’s constant, principle, orbital, total spin and total isospin for

single nucleon, respectively. Where E, = -5, (E., and S, are the binding energy and

separation energy of single proton or neutron). U(r) represents the nuclear central potential
given for Hulthen of the form [13]:

Vot
U(r)=Ull =——F— 2
(r) cmy, (r) (eBtZT — 1) (2)
B, s related to the range of the potential (ﬁtz = %) and V, represents the depth of the
potential. The solution to Eq. (1) can be expressed analytically for s state only [13,14]:
Sie, ™) .
Oy, (1) = =5 Yoo (F) 3)

S;(r) and Y,o(7) represent the radial form of Weinberg states and spherical harmonics,
respectively. S;(r) is given by [13,14]:
i

Si'tz(r) = e—mzrz a},it)ze_jﬁtzr @
. j=0
a}’?z satisfies the condition and the recurrence relation given by [13,14]:
i
e =0 ©)

j=0
and

O _ O (fwl,tz —wie, +jG— 1) ) ©

Jrttz =0 G+ 1)+ wyy,)
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where
Zﬂcmtz Vort,
Wi, = Ay, Th2g? (7)
ty
The Weinberg state parameters («; ) are given by [13,14]:
2Ky +if:
. — ] z z 8
it <2Ktz + 5tz) ®

For 1s: state the @4, ., (r) in Eqg. (3) can be simplified with the aid of Eq. (4-8) to:
2 2

\/Zktz(Ktz + Btz)(ZKtz + ﬁtz) e Ktz"
® =
15%,tz(7”) B, r

k¢, stands for wave number and it is related to the binding energy of the single proton
(neutron) by the following expression:

[1 —e_ﬁtzr]yoo () €C))

2 Znu'CthStZ
Ki, =2 — (10)
The depth of the potential has a relationship with 8, and k;_ by the following formula:
Vor, = a7 (1 + ZKtZ> (11)
Otz z.ucmtz ﬁtz

The radial WF of HO potential, where U(r) = =V, + %mtzwzrz, the solution to Eq. (1)
is given by [15]:
Rnl(r, btz)
r2 n-1

R I L R R Y A (n— 1)12%(21 + 1)1 r A\
T @UADI[ Vab (- 1)! ](E)e Z;(_l)k(n—k—1)!k!(2l+2k+1)<b_tz) (12)

1
2

Where b, represents the HO size parameter for neutrons or protons.
The density distributions of protons and neutrons for neutron rich isotopes can be written as:

1 2
Pp ) = EZcEcore Nep |Rnclc(r: bp)l (13)

2
1 2 1
pn(r) = E z nc,annclc (r, bn)l + Env,n ®1s%,n (r)

Cecore

(14)

In Egs.(13) and (14), n. ., represents the number of protons(neutrons) in the shell ¢ within
the core (c stands for the quantum numbers, n and [). n,, represents the number of
neutron(s) in the valence part.

The density distributions of protons and neutrons for proton rich isotopes can be written
as:

1 2
Pn(T') = E Z nc,annClC(r' bn)l (15)

Cecore

1 2 1
,Op(T') = E Z nc,lenClc(r' bp)l + Env,p

Cecore

2

(16)

O, p(r)

Where n,, ,, represents the number of neutron (s) in the valence part.
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The density distributions of protons and neutrons for stable “He and *'P nuclei can be written

as:
2

1 2 1
P =1 D e R, (be)|” + g,

Cecore

(17)

®151,1'2 (T)

The CDD (charge density distribution) can be accounted by folding the point proton and
neutron density distribution to the CDD of single proton and neutron[16]:

Per(r) = Pchp )+ pch,n(r) (18)
where

penn ) = [ £y Ty =) (19)
and

penn(r) = f D) on(P)Preur — 1)dr” 20)

the CDD of single proton (p,,(¥')) and neutron(pye, (#)) in Egs.(19) and (20) are given by
[17,18]:

@)
) = 5 (21)
and 1 , -
) = Z 6, e~/ (22)

the parameters a,,, 8; and r; are chosen so as to regenerate the experimental rms charge
radii of the single proton and neutron, where a,, = 0.65 fm.
The values of 6; and r; are given in Table 1.

Table 1: The parameters of 8; and r; [18]

0.469
0.546

The size radii (rms proton, neutron, charge and matter) are evaluated [17]:

00
1

2\2 _ 4_”
(ro)g = 7 ijg(r)r“dr (23)

In Eq. (23) g stands for the proton, neutron, charge and matter.
Finally, the charge form factors in the plane-wave Born approximation is given by [17]:

4 o0
Fana) = = j Pen () sin(qr) rdr 24)
0
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where g and Z represent the momentum transferred to the nucleus from incident electrons
and the atomic number of the target nucleus, respectively.

Results and Discussion

The calculations in the present work are based on the nuclear shell model in the
independent particle motion; the core parts for all nuclei under study, (*®®He) and (*"*'P), are
investigated using harmonic-oscillator potential, while the valance parts are studied through
Hulthen potential. Since there is no analytic solution for such mean field except for the s-
states, the 1s state is chosen for the valence parts. Such treatment is symbolized by HO+H and
used to investigate the root mean square proton, neutron, charge and matter radii,
corresponding to density distributions and charge form factors.

In Table 1, the J™(total spin and parity), the t, , (half-life time), b, (HO size parameters
for protons and neutrons in the core), the «, (attenuation parameter for proton and neutron)
and the experimental binding energy for single protons and neutrons on Fermi’s level are
presented. The attenuation parameter for proton and neutron (k. ) were calculated from Eq.
(10) using experimental binding energies for single proton (S,) and neutron (S,). The
parameters b ,and b, were adjusted so as to regenerate the experimental size radii for the
nuclei under study.

The calculated rms charge (r2)}2, proton (r2)}/%, neutron (r?);/* and matter (r?)y’

radii for (**®He) and (*"*'P) are shown in Table 2. It is obvious that the calculations, in
general, are in very good agreement with experimental data (**®He) and (*"*'P).
The calculated charge density distributions for stable “He and *'P nuclei are portrayed in
Figures 1 (a) and (b). It is clear from the figures that there is an overestimation in the central
region in the calculations for “He and an underestimation for *'P. The computed charge form
factors for electron scattering for “He and *'P are depicted in Figures 1 (c) and (d). It is worth
noting that there is a very good prediction for the first diffraction minimum for *He and the
first and second diffraction minima for 3'P. The calculations, in general, are in very good
agreement with the data.

The calculated MDDs (matter density distributions) for °He, ®He and ?’P are drawn in
Figure 2 (a), (b) and (c) correspondingly. The solid curves show the theoretical calculations
using the radial wave functions of HO and Hulthen potentials and this is represented by
HO+Hulthen. The Shaded areas denote the empirical data taken from Ref [30] for °He, Ref.
[31] for ®He and Ref. [26] for *’P. Unlike °He and °He, the k;, for *’p using S, = 0.807 +
0.009 MeV is overestimates the calculation, therefore an adjustable parameter is used,
S, = 2.4 to predict the experimental data. It is obvious from the calculations that there is a
very good agreement with experimental data were the long tail characteristic which is the
remarkable feature of halo nuclei are well produced.

For helium and phosphorate isotopes, the computed MDDs are depicted in Figures 3 (a)
and (b). It is clear from Figure 3 (a) that the long tail behavior for ®He and ®He is greatly
distinguished from that of “He due to the low binding energies for the last neutron leading to
such a long tail and indicating the halo formation for both isotope ®He and ®He. In Figure 3
(b), the low binding energy for the last proton resulted in a long tail in the MDD for 2P,
confirming the halo characteristic in such isotope.
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In Figures 4 (a) and (b), the calculated Coulomb form factors for (“°®He) and (*"*'P)
nuclei are shown. For (“*®®He), it is worth noting that with increasing neutron number, the
charge form factors shifted downwards and backwards, leading to the reduction in the
electromagnetic interaction during the scattering process due to the screening effect. For
(®"3p), it is clear that with increasing proton number, the calculated charge form factor
shifted forwards and upwards, indicating the enhancement in the scattering process due to the
excess Coulomb interaction.

Table 2: J™T, t; /3, ben, bep, ¥n Kp, Sp and S, for Helium (**®He) and Phosphorate (*"*'P)
isotopes
2XnJ™T) t1(ms) , Exp. Neutron Exp. Proton
[19] - 19 binding energy binding energy
[19] (MeV) [20] (MeV) [20]
2He (070) IS S, = 19.8138661(2)

Sn

bcjp = 1.055 K, =0.311 = 20.5776211(5)
SHe (071) 806.92 b, =179 Ky S, = 1.7104569 S, = 22.589323
+0.00024 b., = 1.607 = 0.332 +0.0200001 +0.0894427
SHe (012) 119.5 ben = 1.83 Ky S, = 2.5347627 S, = 24.814
+0.0015 b., = 1.513 =0.327 4+0.00756 +1.004
260 ben = 1.688 K, = 0.334 S, = 19.703 S, = 0.8070001
+0.08 b, =1.775 +0.196 +0.009
stable ben = 1.9 K, =0.758 S, =123110066 S, =7.2965531
b, = 1.85 K, =0.708 4+0.0000652 +0.0000216

Table 3: Computed and empirical rms charge, proton, neutron and matter radii for Helium
(“*®He) and Phosphorate (*"*'P)

Calculate Calculate Calculate Calculate
A 14 1
ZXnv(J"T)

T R e () S e I S S e T v
B e S G e T do
e T R L
e 1853 ) 2.601 0?652?2151 o 0_162?[;—;] 2.807 0?(-)%1[2%]
R N
31p 3.106 - 3.146 N 3.187 0.36?17[;2] 3184 )
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Figure 1: (a), (b), (c) and (d) represent the calculated CDDs and charge form factors for “He
and 3'P nuclei, respectively. The theoretical calculation indicated by solid curves. The dotted
curves represent experimental data. The experimental data for CDDs for both nuclei are taken
from Ref. [22] while the experimental charge form factor are taken from Ref. [27, 28] for *He
and Ref. [29] for *'P.
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Figure 2: Calculated MDDs for ®He (a), ®He (b) and 2P (c). The solid curves represent
theoretical calculation. The shaded area represent experimental data taken from Ref [30] for

®He,

pm(r)(fm3)

8 27
Ref. [31] for "He and Ref. [26] for “'P.
10° T T T T T T T T T T 10° T T T T T T T T T T T T 7
10* Matter Density Distribution Matter Density Distribution
‘He 10™ 77p
10-2 \\\ - --6He -_— . Slp
3 — f%He
10 107
10"
. ~ 10°
10° 5
6 4
10 - é 10
107 R —_—
. ~. E 10°
10° ~. g
~ =%
10° b 10°
10
ot 107
1 N
10-12 1 1 1 1 10-8 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 4 8 12 16 20 0 2 4 6 8 10 12 14
r(fm) r(fm)

Figure 3: Computed MDDs for (“*®®He) (a) and (*"*'P) (b) are offered for compared.
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Figure 4: Calculated charge form factors for (*°®He) (a) and (*"*'P) (b) are clarified.

Conclusions

It is concluded that the adoption of the radial WF of Hulthen potential are acceptable and
gives very good results for the computation of size radii, density distributions and elastic
charge form factors for Helium (*®®He) and Phosphorate (*"'P) isotopes. It was found that
the increase in the core radius (matching point between HO and Hulthen) leads to increase in
the calculated rms radii. The calculated CDD for *He overestimated the empirical data at
central region, while there was an underestimation in the calculations for *P nucleus. At
medium and large r, the agreement with experimental data were very good for both “He and
31p nuclei. For the calculated matter density distributions, it is worth noting that the decrease
in the binding energy for the valence nucleon(s) led to the remarkable upwards shift in the
tail; this is ascribed to the excess in the tunneling effect. Finally, there was a backwards and
downwards shifts for the calculated ground state charge form factors. This is attributed to the
excess in the screening effect due to the increase in the neutron number leading to reduction
in the scattering.
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