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Abstract

In this paper, the necessary optimality conditions are studied and derived for a
new class of the sum of two Caputo—Katugampola fractional derivatives of orders
(o, p) and( B,p) with fixed the final boundary conditions. In the second study, the
approximation of the left Caputo-Katugampola fractional derivative was obtained by
using the shifted Chebyshev polynomials. We also use the Clenshaw and Curtis
formula to approximate the integral from -1 to 1. Further, we find the critical points
using the Rayleigh—Ritz method. The obtained approximation of the left fractional
Caputo-Katugampola derivatives was added to the algorithm applied to the
illustrative example so that we obtained the approximate results for the state variable
X(t) and the control variable u(t) by assumed o, § € (0,1) with different values for
two periods of p > 0 (p€ (0,1) , p€ (1,2)). In both cases, the algorithm steps show the
accuracy and efficiency of the approximate results of the proposed system.

Keywords:  Riemann—Katugampola and Caputo-Katugampola fractional
derivatives, Sum two Caputo—Katugampola derivatives, Fractional optimal control
problems, Chebyshev pseudo-spectral method.
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1. Introduction

Fractional calculus deals with derivatives and integrals of arbitrary order real or complex
order [1-3]. Recently, it has many applications in the fields of science and engineering such as
bioengineering [4], viscoelasticity [5, 6] and the fractional logistic model with feedback
control has been suggested and analyzed in [7].

Fractional optimal control (FOC) problems are the generalization of the optimal control
problems with fractional dynamical systems, the solution of these problems for many natural
systems is more accurate than the classical optimal control ones, so it has great importance.
Several fractional derivatives have been introduced: Riemann-Liouville, Hadamard,
Grunwald-Letnikov, Riesz and Caputo fractional derivatives [8, 9].

Caputo—Katugampola fractional derivative with two orders (a,p) is a generalization of the
Caputo fractional derivative which means if we consider p=1,then we obtain the Caputo
fractional derivative.

Katugampola [10,11] introduced a new approach to a generalized fractional integral
proposed by Riemann-Liouville and Hadamard. In [11], the author presented a new approach
to generalized fractional derivatives which generalizes the Riemann-Liouville and the
Hadamard fractional derivatives.

In [12], Ricardo Almeida et al. solved the fractional differential equations with dependence
on the Caputo—Katugampola derivatives.

Authors in [13] have obtained approximate results that entitled solution of some types for
composition FODE corresponding to OCPs by Qasim Hasan, S., and Abbas Holel, M. This
work was later developed for the same authors but using the Caputo—Katugampola derivative.

Numerical solutions of fractional optimal control with Caputo—Katugampola derivative
are presented in N.H.Sweilam et al. [14].

The main object of this work is to find a new relation (integration by parts) between
Riemann—Katugampola and Caputo—Katugampola fractional derivatives of order a, 8 € (0,1)
and p > 0. The generalized fractional integrals and derivatives are defined in[10,11].The
nonlinear fractional differential equation in [12] have been developed to propose a new class
of sum two Caputo—Katugampola FOCPs, which is as follows:

P1EDIPx(t) + 9,°KDFPx(1) = G(¢, x (1), u(®)), with(py, 93) # (0,0).

In order to obtain the necessary conditions mentioned in [13] with fractional Caputo
derivatives, it is replaced by fractional Caputo-Katugampola derivatives, the numerical results
are approximated for both cases the previous in [14] and the proposed for the sum of two
Caputo—Katugampola fractional derivatives in a class of FOCPs.

This paper contains six sections: In section 2, some basic preliminaries, namely
definitions and some important properties of Riemann—Katugampola and Caputo-
Katugampola fractional derivatives. In section 3, the first study presented necessary
optimality conditions for a class of sum two Caputo—Katugampola FOCPs. The second study
presented an approximation of the left Caputo—Katugampola fractional derivatives using
Chebyshev polynomials and writing an efficient algorithm in section 4.We give an illustrative
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example to describe the method proposed accurately in section 5. Lastly, conclusions are
shown in section 6.
2. Preliminaries

In this section, we present definitions and properties of fractional derivatives and
integrals. We give some important theorems that are needed throughout this work:

Definition 1 [11, 12]. Let 0 <a <b < oo, f: [a,b] = R be an integrable function and
a € (0,1), p > 0. The left and right Riemann-Katugampola fractional integral are defined by

p_rp\a—1 T
D O = s (55) f@ES (D)

p

RKD—a pf(t) - fb (rP—tP)“_l

p

. (Q2)

Respectively, where I'(a) is the Gamma function defined by TI'(a) = foooe‘t t*1dt,
0 € C, (Re(a) > 0) . Some basic properties of Gamma function are given as follows [16]
Na+1) =al(a) (Re(a) > 0), ...(3

B(a,p) = [}t 1 (1 - t)f~dt = % (Re(a), Re(B) > 0). (4

Definition 2 [11, 12]. Let 0 <a <b < oo, f: [a,b] = R be an integrable function and
a € (0,1), p > 0. The left and right Riemann—Katugampola fractional derivatives are defined

by

RKDapf(t) - r(1aa) (tl_p %) fa (tP- rp)“ f@dr, 0

RKDEP £ (1) = m(tl_p 2 )ft e S ... (6)
Respectively.

Definition 3 [11, 12]. Let 0 <a <b < oo, f: [a,b] = R is an integrable function and
a € (0,1), p > 0. The left and right Caputo—Katugampola fractional derivatives are defined

by
KDEPF(@) = *EDPIf (1) — f(a)]

- F(f‘—xa) (tl_P %) f: (tP—TP)™ [f(T) f(a)] eee (7)
Dy P f(8) = RED,PIf (1) — f(B)] B
- r(_fia) (tl_p %) ftb (T:_tp)a [f(x) — f(b)]d. .. (8)

Respectively.

Theorem 1. Let a € (0,1) and p > 0, then left and right Caputo—Katugampola fractional
derivatives of a function f € C'[a, b] is given by

CEDPI () = 70 ok (P = 7°) 7 f (D). - 9)
KDyPF(E) = f (P — tP)~% f (v)dx. ... (10)

r(1
Proof

We prove the left Caputo—Katugampola fractional derivatives by using Definition 3 from
Eq. (7), let
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P-1

u=f(t)—f(a) dv = rr— dt
du = f (t)dr V= f;rp_l (tP — tP)~%dr = ( i ( tP — gP)1- “)
CKDapf(t)—m(tl L) [udv, (11

Now, we integrate Eq.(11), we obtain
fat udv = [uv]} — fat vdu

= [f () - f@] (-= (tP —TP)1 f (r)dr

=t
tp — 7P)1l-a
prems GRS )|Ta Jo

= [f© ~ f@] (5= a)< 2 = t)'7) = [f(@) ~ f@] (5525 (¢ = a")*™)
Ja 5 & =)' “f (@
= Jy i (¢ = ) f (. - (12)

We substitute the result of Eq. (12) into Eq. (11), we obtain

= s (1 D) e @~ F @]

= F(f—fa) ¢1- P%[fatp(l —(t° _gp)taf (‘L’)d‘[]

=t ”[(1—“)@“’ ) fy i (O =~ )7 f (@,
e [P —7P)~* f (D)dr.

Where a € (0,1), p > 0 are two fixed real and f € L'([a, b]).

KDIPF(0) =

Theorem 2. If the Riemann-Katugampola fractional integral of order(1 — «, p), then

RKDEP £ () = (t1 p )RKD—(l ap) £(0), .. (13)
RDE F(e) = (—0 >RKD—<1 @0 f(p), . (14)
CKDEP f(£) = RKD—(l ap) (t1 p L f) ®), ... (15)
CKDEP £ (£) = REp~(1- ap)( t1-p & f) (®). ... (16)

Proof:
In order to prove Eq (13), we use Eq. (1), then we get the following:

(o) 0 = (0 2) [ () 025

p

= [ (0 &) e 0]

= RaD. " f (0.
To prove Eq.(14), we use Eq. (2), then we get the following:

(—erp L) mp, P (0) = (—e o S [ ) ("’;“’)_“ fo-=,
=[5 (0 ) I e f @],

= RED/PF ().
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Now, for proving Eq. (15), we also use Eq. (1), then
RKkp—(1-ap) (L 1- t(tP—P\"% (4 _,d dt
aDy (t g f)()_ru a)f ( ) (T pEf)(T)Tl_—p'

p
- r(f a)f (P —1P)™ (if) (1)dr,
T ra- a)f t? — ")~ f (D ()dr,

= KD f(1).

Finally, by using Eq. (2), we can prove Eq.(16) as follows:
—(1- b pP_tP\— A
() O = () () 0

p
[{@P =97 (£ f) (D,
r(1 a)f (xf —th)” “f(r)dr

= KD, P £ (0).

F(l a)

3. Studying the necessary optimality conditions for a class of sum two Caputo—
Katugampola FOCPs:

We first prove a very important relation between Riemann—Katugampola and Caputo—
Katugampola fractional derivatives to derive the necessary optimality conditions, this is given
in the next theorem as follows:

Theorem 3. Let £(t) € C[a, b] and g(t) € C'[a, b] be two functions and o € (0, 1) and
p > 0. Then,

b
[ r@ - wpeegwar =
. t=b

b

j (gt~ HREDIP (1P F(©))de + | g()FKD, “= P (8P £ (1))
a t=a

Proof:

By using the definition of the left Caputo—Katugampola fractional derivatives of f(t) of
order (a, p) and Theorem 1, we have:

[, F®) - KDF* g(D)dt = [} F(0) [ fo (e —1P) " - g(m)r ], - (17)
By usmg the D1r1chlet s formula for Eq. (17), we get

= [, 290 [fE5 I, P — ) f(ar] at,

b

=[%yg ()[F(1 a)f(p—tp)“T 9 e at, .. (18)
By using the definition of the right Riemann—Katugampola fractional integral of (¢177f(t))
of order (1 — a, p ) in Eq. (18), we have:

bd —(1- _
= J, 59D, P (P f (),
Let h(t) = REp-(=@P)(11-p £(t)), we obtain:

= f 2 g(Oh)dt ... (19)

a dt
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Now, we integrate the Eq. (19) by parts, let u = h(t) and du = %h(t)dt, then we get
dv = ig(t)dt and v = g(t). Therefore,

fa Eg(t)h(t)dt = fbudv = [uv] - f: vdu.

= [hOgO1L - [ g(t) -h(t)dt,

= [90, (s )],

_ffg( ilz:t[[‘(l a)f(p—tp) af() f(f)d]dt

= [g(t)RKD (1- ap)(t1 pf(t))]

005 (0 ) [ e - o 0 S

— [g(t)RKD_(l—a,P)(tl—pf(t))]t=b
~ @) [ (e 2) [P p - o) f (0 L2 . (20)

By using the definition of the right Rlemann—KatugampoIa fractional derivative of
(t*Pf(t)) of order (1 —a,p) in Eq. (20), we have:

= MO MDE (B0 f(D)de + gDy 4P (20 f )]
Thus,

[PF@© - KDEP g(t)de =
[2(g(O)tP=DREDIP (1P £(6))dt + | g(£) KD, =P (e1r f (t))]:b

Now, we study and derive the necessary optimality conditions for a class of sum two Caputo—
Katugampola FOCPs, as follows:

Minimize J(x,u, t;) = [* F(t,x(6), u(t))dt, .. (21)
subject to sum of two (C-K) fractional dynamical system
P1EDEPx(t) + 9, EDFPx () = G(t, x (), u(®)), .. (22)
and the boundary conditions
x(a) = xg, x(tf) = Xp. ... (23)

Let F,G: [a, [ X R? - R be two differentiable functions, where x(t) is the state variable and
u(t) is the control variable with (¢4, ¢,) # (0,0) and t¢, x,, x; are fixed real numbers.

G(t,x(t), u(t)) ” N

Pl ) = [F(t'x(t)'u(t)) Ao [—{w kDI x(t) + 9, KDFPx(6)}
F(t x(®),u(t)) + A®)G(t, x(0), u(®))
—A(O{01 DI Px(6) + 9,°4DF" px(t)}]

Now, we define the Hamiltonian function H(t, x,u, 1) by:

H(t, x(£), u(t), A(t)) = F(t, x(®),u(®)) + A(OG(t, x(0), u(t)), ... (25)
Substitution Eqg. (25) into Eq. (24), we get:

.. (24)

a

847



Holel and Hasan Iraqi Journal of Science, 2023, Vol. 64, No. 2, pp: 842-854

H(t, x(0), u(t), A(1))
—A(0){p1 KD () + ,5DLPx (1))
where A(t) is a Lagrange multiplier.

*(xuty,d) = [ dt, .. (26)

Let U be the admissible control region, there are small variation du € U such that u +
du € U, so the variations are as follows: x+6x, u+du, A+ 61
with 6x(a) = 6x(t;) = 0, by the assumed boundary conditions in Eg. (23).

§3%(x,u, tp, 1) = 6fatf [H(t,x(t),u(t),l(t)) — A(t){cplc’ng"px(t) + <p2C’§Df"’x(t)}] dt
0 = [ [sH(tx(0), u(@®), A®) — 8 (ADO]p: EDEPx(D) + 04D x(0)})] dt,

I[ SH(t,x(£), u(t), A(t)) ]I
0 = [7|=6A(O{0: KD x(0) + 05D x(O} | at,
—A(£)8{1 5D x(t) + 9, KDFPx(6)}

i jf 8H (8, x(0),u(6), A(®)) — SAO{ 01 EDIx(6) + 9, KDL Px(0)) y
) ~{@ 2O KD 5x(8) + 9, A(0) 6D P 5x(1)} '
(27)
SH(t, x(£), u(t), A(£)) =~ 5x(£) + 2 su(t) + —2 SA(t) ... (28)

ax(t) ou(t) OA(t)

By substituting Eq. (28) in Eq. (31) and using theorem (3), we get:

0=

[ 8(8) + 5o Bu(8) + 520 SA(E) — 1 (D) KD (1)
— 0,8A(t)EDFPx(t) — g016x(t)tp‘1R’§Df;p (tr-Pa@®) |dt -

l —(p26x(t)tp_1R’§fo'p(tl_pl(t))

0:5x(t;) :ngDt—f(l—a',P)(tl—pﬂ(t))]tztf — @,6x(t;) [RIgD;(l—ﬁ,p)(t1—p,1(t))] '
oH oH
+ou(®) (5 + 820 (— ~ 9, KD 2(0) - qof’éDf'”x(t))

t
I

[ oH
x(t) (—ax(t) —q)ltp‘lR’iDt“f'p(tl‘PA(t))—<p2tP‘1R’§ij;p (tl‘p/l(t)))

t=tf
tf “
j |dt
a
du(t) AA(L) J
—6x(ty) [0, 7P (1P A()) + <pzR’iD{f“"ﬁ"’)(tl‘f’/l(t))]tztf - 0.

Since 6x(t;) =0, and the variation functions were chosen arbitrarily, we deduce the
necessary optimality conditions for a class of sum two Caputo—Katugampola FOCPs as
follows:

I.The Hamiltonian system is given by

A (010, A0) = a0 (A0 gt DL (003(0)
ail(_lt) (t,X(t),u(t),A(t)) = (plcléDta’px(t) + @, CléDf'px(t).
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11.The stationary condition is given by

20 (30, u(D),2(0) = 0 forall ¢ € fa.t; ]

4. Numerical approximations

In the second study of this paper, an approximation of the left Caputo—Katugampola
fractional derivative will be proven by finding the “XD;"*x(t), where x(t) is the power
function using Chebyshev polynomials.

4.1 The shifted Chebyshev polynomials
The Chebyshev polynomials are defined with degreen,n > 0, as follows: [15,16]
T, (t) = cos(nf), cos(8) =t, te[-11].
To(t) =1,
Ti(t) =t
The recurrence relation
T, (t) = 2tT,_1(t) — Tp_,(t), n=23..
T,(t) = 2t%2 — 1,
T5(t) = 4t3 — 3¢,
The Chebyshev polynomials can be expanded in power series as
To(0) = 3EN (17 e ey,
where |n/2] denotes the biggest integral that is less than or equal to n/2.
with orthogonally condition:

0 if r #* 8,
1TOT® , ) m _ _ 1
f_lﬁdt— > if r=8%0, r,8=012.., W(t)_\/l—_tz'
m if r=s8=0.
and properties of Chebyshev polynomials T, ()] <1, -1<t<1],
T,(+1) = (D"
T2 ()| < n?, —-1<t<1,
the shifted Chebyshev polynomials on the interval[0, £] are defined by:
Ti(t) =T, (%— 1), 0<t<1, where  Tg() =1, T;(H)=2-1. ..(29)
when n = 1,2 ..., then the analytic form is given by
2k _
TH(t) = n Y (—1)n-k 2kl i n=12, .., ... (30)

QK (n-k)1ek ™’
where, T, (0) = (D", T, () =1
The orthogonally condition of these polynomials is:
0 if 8 Fk,
[T:@Tmw®de={ > if  s=k=*0,
m if 8=k=0.

and the weight function is w*(t) = 1/V£t — t2.

A function x(t) € L?([0,#]) can be defined in terms of shifted Chebyshev polynomials as
follows:

x() = T2 gT7 (1), with ¢ == [x(OT;(Ow (D) dt, n=0]1,.. .. (31)
noj

§o=2 and §,.=1 foral» > 1.
The Chebyshev—Gauss—Lobatto (CGL) interpolation of x(t) on [0, #] is given by
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n * 2 144 *
xn(t) = Xa=o" an Tn (1), an =5 2r=0" X(tm)Ta (t). .. (32)
and the (CGL) points are given as follows:
ty =>—2cos("2), r=0,1,... N. .. (33)

where the (") on the summation means that the first and the last terms are taken with a
factor (1/2).
Let f: [-1,1] = R be a given continuous function. The integral approximation is called
Clenshaw-Curtis formula is defined as follows [17], [18] and [19]

1
J_ f@®)dt =X wif(t), ... (34)
where t;,j = 0,1,..,N are the roots of (1 — tz)% Ty(t), and w;,j = 0,1,..,N are

the weights.
If N is even, then the weights are

N
_ _ 1 _ Ao 1 2Tjs _ N
Wog = Wy = NI 7 Wg = Wn_s = v &j=0 1-42 COS( N ), s=1, >y
If N is odd, then the weights are
-1
_ 1 _ _4 ! 21mjs _ N-1
Wo =Wy = 3 and Wwg = Wwy_g = N2j=0  Tap? cos(—N ), s=1, R

4.2 The approximation of the left Caputo—Katugampola fractional derivative of order

(ap)

We study the approximation of the left Caputo—Katugampola fractional derivative in the
following theorem, and depending on finding “XD;“’of power function using Chebyshev
polynomial.

Theorem 4. The left Caputo—Katugampola fractional derivative of order (a, p) of the
function x (t) is given by

ar(k
CK y®.p _ VN n (_q\yn—k 22mtk-1)! P F(F+1) k—ap
aDt xN (t) - 271:1 nan 2]{:1( 1) (Zk)l(n_k)'{;k F(%+1—0{) t Y s (35)

where, the (") on the summation means that the last term is (1/2).

Proof:
By using the approximation formula of the function x(¢t) in Eq. (32) and Eq. (30), we obtain
CEDP xy (1) = 2= ay “ED T (D),
= S04 nay Shoo(-)rR S Dl ke (36)

@Kk)!(n-k)Iek @

Using Theorem 1 to apply the definition of left Caputo—Katugampola fractional derivative
onf (t) = t* then we obtain

CKDaP k — f (tp Tp)—ai(,[k)d,[

F(l a)
f(p—rp) ark=1dr

F(l )
_ L t t—ap _r k-1
- F(l—a)f 1(1 ) T dr
Tp —_ tp
Let Y= ,T=yrt dt = s dy
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_kP kapf ,y)p (1_,%) ad,y)

ri-a)
If we compare with the beta function by using Eq. (4), we get
a—1l=-asothat a=1—a and b—1=§—1 ,thisgivesbz%
k
_ kp® k—ap _ kp* ™' k—ap F(l—a)[‘(;)
T r-a) 508 (1 p) o r(5+1-a)
) o () r(e)pe
— p — P \p k—ap — _\P k—ap H
F( 1) r(§+1—a)t r(§+1—a)t (Using Eq. (3)) ... (37)

Substituting Eq. (37) in Eq. (36), we get
an(k
CK P _ VN n  (_1\n—-k 2%k (n+k-1)! P F(FH)

Remark 1. Leta,B8,p €R, a,p > 0,(y —ap) > 0and x(t) = t”.

th-ar m

Taking the limita — 0, we get
r&+1)
D
F(%—a+1)
CKpFPty =0, a>0, (a— %) eN
Particularly, if f(t) = c, where c is constant, then we get “KD**f(t) = KD,"?f(t) = 0,

For example, f(t) = 5,— KD;"?(5) = “KD,"*(5) = 0.
—(1— . d _
CKDFPF(6) = FED; T (170 £[51) (6) = RED; TP [s](0) = o

Clé[)f"pty = prtY—apP, a>0, (ax — %) N

The approximation of the error bound of the Caputo—Katugampola fractional derivative is
given in the following theorem and Lemma 1.

Lemma 1 [14]. Let x(¢), x (1), ..., x™W(¢) € AC[0,1] and |x™*V(t)| < W, < oo,

forall t € [0,1],for somen > 0,then foreachm >n+1, |a,| < P .
2" m(m-1)...(m—-n)

Theorem 5 [14]. If x(t) satisfies the conditions of Lemmal n > 2,thenforN >n + 1,

Wy (N+ 1)1“(%+ 1)p“t1‘“ﬂ

CHaP _Cpp <
|0Dt x(8) = oD xN(t)l_F(%+1—a)2”‘2N(n—2)(N—2)(N—3)...(N—n+1)'

Remark 2. The error bound in Theorem 4 converges to zeroas N — oo forallt > 0.

5. llustrative Example
Consider the following sum of two Caputo—Katugampola FOCPs:

Minimize J(x, w) = J; (u(t) — x(t))"dt, ... (38)
2
CK P CKB.p _ _ 6F(a+[>’+;+1) path+2 thUcp+2
oDy "x(O) + "ol x(t) = u(t) —x(6) + I(ap+Bp+3) F(ﬁ+%+1) + F(a+%+1) ’ - (39)
The exact solution for « = § = p = 1 is given by:
_ = _ 6tap+Bp+2
(0 =) = gy
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The steps of the efficient algorithm are written to solve a class of two Caputo—
Katugampola FOCPs. These steps are only applied to the second study through illustrative
examples as follows:

Step 1: Rewriting the object functional to find the control variable u(t) from Eq. (39) and
substitute it into Eq. (38).

Step 2: Approximate the sum of two Caputo—Katugampola fractional derivatives
CKDEPx(t) + KDPPx(t) using Eq. (35).
Step 3: Using t = %(n + 1) in step 2, since the integration is on the interval [-1, 1].

2
KDLy () + CEDEP ey (1,)
+2

Stepd: let g(n) =| er(a+p+i+1) p“(%(n+1)) pﬁ(%(n+1))ap | and apply the
" T(ap+Bp+3) F(ﬁ+%+1) F(a+%+1)

Bp+2

Clenshaw and Curtis formula in Eq. (34), to get
2
KD ey (1) + KDL 0y, (1) \
Bp+2 ap+2
6F(a+[§’+%+1) p“(%(n+1)) pﬁ(%(r)+1)) |
Map+hp+3) | r(pr2r1) r(arZ1) /

ATS (2) = Té (2i42)]

m CI>5|

- - - 1
Minimize J (x,u) = — Xt X057

where ®g = ®,,, =2, ®,=1foralls =12,..,m—1, n; = cos[=2|forall i <m

and n; =—1foralli >m,

Step 5: Determine the critical points of the objective functional in Eqg. (38) using the
Rayleigh—Ritz method as follows:
]
ax(t;)
Step 6: Solve the system of nonlinear algebraic equations from step 5 by the Newton’s
method to obtain x(t;),x(ty),...,x(ty—;) and wuse the boundary conditions to
obtainx(ty), x(ty)-

=0, i=1,.... ,N—1.

Step 7: Compute the state and control variables as follows:
2 n n * *
x(t) = 5 X020 Xrlo x (&) Tn (6T (0),

6F(a+,8+%+1) patﬁp+2 thcxp+2
I'(ap+Bp+3) F(ﬁ+%+1) F(a+%+ 1)

u(t) = €pFPx(t) + EDFPx(t) + x(t) —

Now, Figures 1 and 2 show the computation of the approximate state x(t) and
approximate control u(t) at N =2, a =0.9and g = 0.5 with different values of p > 0
and p-values are chosen in two cases to calculate the state x(t) and the controlu(t). If
p € (0,1) such that p = 0.3,0.5 and 0.8, and if p € (1,2) such that p = 1.3 and1.5, we have
observed that the approximate state x(t) value and approximate control u(t) value are
converging to the exact value of p, that means p = 1.
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u(t)

Figure 1: This figure shows the approximate Figure 2: This figure shows the approximate

solution of state variable x(t). solution of control variableu(t).

6. Conclusions

In this paper, two studies are presented for a new class that includes the sum of two

Caputo—Katugampola derivatives for FOCPs. In the first study, the necessary optimality
conditions have been obtained, namely the Hamiltonian system and the stationary condition.
The second study of this paper deals with numerical results by building an algorithm that is
characterized by accuracy and efficiency which depends on finding the control variable from
the constraint and replacing it with the objective functional. we obtain the approximation of
the integral from -1 to 1 and approximation of the sum of two Caputo—Katugampola
fractional derivatives when a, 8 € (0,1) with different values for two periods of p > 0. In
the first case, p € (0,1) is taken and we deduced that the larger value of p is closer to the
exact solution ( p = 1). In the second case, p € (1,2) is taken and we deduced that the
smaller value ofp is the closest to the exact solution (p = 1). In both cases, we got the
approximate results for the state variable x(t) and the control variable u(t). These results
showed the accuracy of the algorithm and the method for the proposed system.
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