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Abstract

In this paper we prove that the planar self-assembling micelle system

dx_ —xy? —x(r +a) 2 rxtxy? -
dt _ HTXY ) dt yr-ny,

has no Liouvillian, polynomial and Darboux first integrals. Moreover, we show that
the system

has only one irreducible Darboux polynomial ax + ay — u with the cofactor being
—a if and only if n = a via the weight homogeneous polynomials and only two

irreducible exponential factors e**¥and e@»* with cofactors u—ax—ny and

A
2(x +y)(u — ax —ny) respectively with (x +y —g ) e~ be the unique
Darbox invariant of system.

Keywords: Self-assembling micelle system, Invariant algebraic curves, Darboux first
integrals , Darboux polynomials, Exponential factors, Weight homogeneous
polynomials.
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1. Introduction.

Nonlinear system of ordinary differential equations is appeared in many branches of physics,
mechanics, biology, and economics. Exact answers to those equations are important to better
understand the key features of a wide range of phenomena and processes in natural science.
But, even if there exists a solution, only for a few nonlinear system of ordinary differential
equations it is possible to determine this exact solution. There is no another method for finding
analytical solutions, see for instance [1]. The integrability theory of dynamical systems plays a
quite important role in studying dynamics of many differential systems. Because, differential
systems cannot be solved explicitly in general, the qualitative information provided by the
theory of dynamical systems is the best that one can expect to obtain in general. For a 2-
dimensional polynomial system the existence of a first integral determines completely its phase
portrait. But in general, for a given differential system depending on parameters it is very hard
problem to characterization the existence or nonexistence of first integrals. We recall that the
study of invariant algebraic curves and first integrals are important aspects for studying of
dynamical systems.

In this work we deal with the cubic planar differential systems suggested by Ball and Haymet
[2], which is the self-assembling micelle system with chemical sinks is modeled by the

following dynamical system:

dx
_:#—xyz—x(r+d)=P(x'Y)'

dt
& (1)

S =Tt xyt =y =Q0(xy),

here x and y are dimensionless concetrations of active free amphiphile and micelles
respectively.The rate coefficients a and n represent combined quantities that include a common
flow-rate component as well as separate chemical sink-rates for each species, and » and u are
intrinsic parameters. It is important to note that all of the parameters are real positive constants.
The behaviors of system (1) may change dramatically as the parameters vary. The authors of
[2], investigated limit cycles of system (1) using Hopf bifurcation and qualitative behaviors
they have analyzed by means of pure mathematical methods with numeric simulation and
visualization. In [3] the stability, limit cycles, and bifurcations for system (1) using algebraic
methods. Moreover, bifurcation analysis such as Hopf bifurcation, saddle-node bifurcation, and
Bogdanov—Takens bifurcation are also analyzed. In [4] the stability conditions on the
parameters are obtained for system (1) for some special cases.
In this paper, we want to understand complex dynamics of system (1) by studying its
integrability. The system is defined only for real values of the dependent variables we will
consider it in the real plane and study some types of first integrals.

2. Background.

This part provides a short explation of the Darboux method, the existence of first integral,
and the auxiliary results which are used in this study [5,6,7]. So as to confirm the main results
some essential definitions and theorems are given.

Associated to the polynomial differential system (1) we have the vector field X given by

d

oy’

The zero set of a real polynomial f(x,y) is defined as an invariant algebraic curve for system
Q) if

d
X = (u—xyz—x(r+a))$+(rx+xy2_7]}’)
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of (x,
(k=22 =xC+ ) L2+ (rx +xy? =N LED = k(@ )f (x), ()
in order for a real polynomial k(x, y) which is a cofactor of f(x y) with a degree of at most 2.
According, the cofactor form can be deduced as given below:
k(x,y) = 822%% + 81,%y + 802¥% + 811X + 801 + 80, 3)

where §;; are constants, i = 0,1,2, and j = 0,1,2 . We also say that f(x,y) is Darboux
polynomial of system (1).
An invariant algebraic curve f = 0 is irreducible if it is irreducible in C[x, y]. If f(x,y) is
Darboux polynomial of system (1), then the invariant algebraic curve in R? is f(x,y) = 0.
Note that it is invariant by the dynamics in the sense that if a trajectory starts on the curve it
does not leave it and that the invariant algebraic curves are important because a sufficient
number of then forces the existence of a first integral.

An exponential factor is a function of the form E = exp (g( y)) ¢ Cwith g(x, ), f(x,y) €

C[x,y]. Let g(x,y) and f(x,y) be the co-primes in the ring C[x,y], thus satisfying Eq.(4)
below:

E
(,u—xy —x(r+a))—+(rx+xy —ny) dy LE, 4)

for the polynomial L = L(x,y) with degree at most 2, which is called cofactor of E.

If system (1) has a first integral or an integrating factor of the form
Ry AL I A
where f; and F; are the invariant algebraic curve and exponential factor of system (1)
respectively and 4;,u; € C,then system (1) is said to be Darboux integrable. This kind of
function is said to be a Darbouxian function.

Exponential factors of the form E = exp( )W|th f # 1 appear when the multiplicity of the

invariant algebraic curve f =0 is a multiple of one, and with f = 0 appear when the
multiplicity of the invariant straight line at infinity is a multiple of one, see [10] for more
information exponential factors.

Let U is an open subset R?. Here a non-constant analytic function H: U — R is said to be a first
integral (F.1.) of system (1) on U if it is constant on all solutions curves (x(t),y(t)) of the
vector field X associated to system (1) on U; i.e. H (x(t), y(t)) = constant for every values of
t for which the solution (x(t), y(t)) is defined in U. Clearly H is a F.I. of the vector field X on
U if and only if

0H 0H
X(H) = P(sy) 3 + Q) 5= 0, (5)
on U.

A polynomial first integral is a F.I. H which is a polynomial. Liouvillian integrable of
system (1) is a F.1. given by integrals of elementary functions or by elementary functions. Here,
a function is elementary if it is the expressed of trigonometric, logarithmic, exponential and
polynomial functions, for more information of a Liouvillean F.I. see [8]. We say that system
(1) is Liouvillian integrable if it has a Liouville F.1. .
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A non-constant function V: U — R is an integrating factor of the polynomial vector field
X on U if the condition hold;

APy awQ)
ax  dy '
onU.

If Vis an integrating factor of system (1), then H = [V (x, y)P(x,y)dy + h(x) is a first
integral of system (1), where the function h(x) can be determined by g—: =-V(x,y)Q(x,y).
A polynomial f(x, y) is called a weight-homogeneous polynomial if there exist 1 = (14,4,) €
N2 and m € N such that for all € R\{0},

fQhx, A2y) = 2" f (x, y),
where R denotes the set of real numbers, and N the set of positive integers. We shall
specifically refer to | = (14,1,) as the weight of f,m as the weight degree, and (x,y) -
(Ahrx, Al2y) as the weight change of variables.

Proposition 1. [9] System (1) has a rational F.I. if it has two Darboux polynomials with the
same cofactor.

Theorem 2. [10] The two statements below are applicable.

g
1) If E = ef for the polynomial differential system (1), is an exponential factor and f is nota
polynomial with a constant value, then f = 0 is an algebraic curve that is invariant.
2) E = e9 can eventually be obtained from the multiplicity of the infinity invariant plane as
an exponential factor.

The results found in [11] characterization under suitable assumptions of the algebraic
multiplicity of an invariant algebraic curve using the number of exponential factors of system
(1) like with the invariant algebraic curve.

Theorem 3. Given Darboux polynomial f = 0 of degree n of system (1), has algebraic
multiplicity m if and only if the system (1) has m — 1 exponential factors of the kind exp (% :

where g; is a polynomial of degree at most i, where g; and f are relatively primes for i =
1. m—1.

Proposition 4. [12] Assume that f € C[x,y] and let f = f™_ ... f™_the factoring of its into

irreducible factors over C[x, y]. Then there’s the case of a polynomial system (1), f(x,y) =0
is an invariant algebraic curve with cofactor k, if and only f; = 0 is an invariant algebraic curve
foreach i = 1,...,r with cofactor kg, Moreover, ky = nikg, + -+ n k..

Proposition 5. [12] Assume that a polynomial system (1) admits p irreducible invariant
algebraic curves f; =0 with cofactors k; for i =1,..,p and g exponential factors
exp (g;j/h;) with cofactors L; for j =1, ...,q. Then,

1- There exist A; and p; € Cnotall zero in the sense that
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p q
i=1 j=1

if and only if the (multivalued) function
A £ (exp (91/h))H .. exp (gp/hp))* (6)

is a first integral of system (1).
2- There exist A; and u; € C notall zero such that

14 q
i=1 j=1

if and only if function (6) is an integrating factor of system (1).
3- If there exist A; and p; € Cnot all zero such that

14 q
Z/‘{lkl-l_zﬂjll] =-S5,
i=1 j=1

for some s € C\{0}, then the (multivalued) function

1 Ha
fl’ll ...fp’11‘7 (exp (i—l)) ..exp (gp/hp))H exp (st) ,
is an invariant of system (1).
Note that the function of the form (6) is said to be a Darboux function.

We use the following result from [8] to establish the findings relating to the Liouville first
integral.

Theorem 6. The polynomial system (1) has a Liouville F.I. if and only if it has on integrating
factor which is a Darboux function.

A considerable impact in the study of Liouvillian and Darboux integrability of polynomial
dynamical systems has been made by Llibre and Valls, see for example [13,14].

3. Main results and their Proving.

In this section, the existence of Darboux F.I. (see Theorem 8) which is the primary outcome
of the system (1) is described. Moreover, some other results relative to this topic is studied
during this work such as a polynomial first integrals, invariant algebraic curves and exponential
factors of system (1).

Theorem 7. System (1) does not admit polynomial F.1. .
Proof. Let H(x,y) be a polynomial F.I. of degree n of the system (1). We can write H(x,y) =

Hy(x,y) + Hi(x,y) + -+ H,(x,y), where each H; is a homogeneous polynomial in its
variables of degree i and we assume that H,, # 0. Thus, equation writes as

2 a C 2 a o —
(- xy —x<r+a))a;m (6,y) + (rx +xy —ny)@;m k) =0. (7

Since H,(x,y) isahomogeneous polynomial of variables x,y of degree n, so calculating
the terms of degree n + 2 in Eq. (7), we can obtain
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O0H,(x,y) 0H, (x,y)
2 n 2 n —
“ox + xy —ay 0,
as a solution of the above partial differential equation for H,,(x, y), we gain that
Hn(x» y) = Gn(x + }/),
where G,is an arbitrary polynomial.
Since H,,(x, y) is a homogeneous polynomial of degree n, then it must be in the following form
Hn(x» y) = Cn(x + y)n’
where C,, is an arbitrary constant.
Computing the terms of degree n + 1 in Eq. (7), we obtain
2 aH‘n—l(xry) 2 aHn—1(x;3’) _
— Xy =
0x dy
as a solution of the above partial differential equation for H,_;(x,y), we can obtain

—xy 0,

Hy_1(x,y) = Gy (x + ),

where G,,_ Is an arbitrary polynomial function of x + y.
Since H,_;(x,y) is a homogeneous polynomial of degree n — 1, then it must be in the
following form

Hy_1(x,y) = Cp1(x + y)n—l )

where C,_; is an arbitrary constant.
Since H;(x,y) is a homogeneous polynomial of variables x,y of degree i, then
computing the terms of degree n in Eq. (7), we obtain

OHp_5(x,y) 0H,(x,y) 0H,(x,y) OH,_,(x,y)
_ 2 n-2 _ n n 2 n-2
Xy (r+a)x—ax +rx—ay + xy —ay
_ M Gey)
oy '

by using Maple as a solution of the above partial differential equation for H,_,(x,y), we
can obtain

Hy—5(x, ) = —=nnCy (x + y)"?(In(x) — In(=y)) — nac, % + G2 (x +),

where G,,_, is a polynomial function of variables x + y.
Since H,_,(x, y) is a homogeneous polynomial of degree n — 2, H,(x,y) # 0 and a,nn >
0 must be nC, = 0.

If nC,, = 0, then we obtain that H, (x, y) becomes constant function which is a trivial first
integral. Then there is no a polynomial first integral of system (1). o

Theorem 8. System (1) has only one irreducible Darboux polynomial expressed as ax + ay —
u with the cofactor being —a ifand only if n = a.

First, we begin with the following three lemmas to prove Theorem 8.

Lemma 9: The cofactor k = &;,x% + 8, ,xy + 8022 + 811X + 801y + 8¢ Of the invariant
is algebraic curve of system (1) satisfy the 6,, = 811 = g1 = 0, §g9 =169, —an — %61,2
and &, , € N U {0}, with §; , even number, where §; ; are constants, { = 0,1,2 and j = 0,1,2.
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Proof. We write the Darboux polynomial of the form f = ¥, f; (y)x*, where each f; is a

polynomial in the variable y. Then must be satisfy the equation,

- d i i n d : i
(“_xyz—x(r+a))2%+(rx+xy2—ny)2 fc(g’})x

n
= (85202 + 812xy + 8029 + 811% + 80,1Y + 800 )Z fi )« 8
i=0
Compute the terms of x™*2 in Eq. (8), we have

52,2fn(3’) == 0 ,then f‘l’l(y) == 0 or 62‘2 = 0

Casel: If f,(y) =0;hence, f = f(y).
Then from Eq. (8), we can derive

df (y)
(rx + xyz - ny) W = (52,2952 + 81 ,xy + 50,2)’2 + 81 1% + 601y + 50,0)f()’); 9)
as a solution of the above differential equation, we gain that

f)
= Co((y* +1)x

2

5 o 2 _ 80,2yx |4rx%—n2
—2((—x452,2-x351.1+(r50,2 7721,2 So,o)xz 1 L h zo'z)tan_1< 2xy-n ) )

4rx2-n2x2

81,2 Mm6o,2 6o,
—ny)z 2% e \/4Tx2_n2x2
where C, is a constant.

Since f(y) is a polynomial of y must be &,, = 8, = 611 =0p1 =0 and &, = _7260,0 :
hence;

—80,0

fO) =Co(*+r)x—ny) 7 .

Since f(y) is a polynomial of y must be §,, = 0, hence f(y) = C, and its cofactor is k =
0, where C, is a constant, this is a trivial first integral.
Case2: If §,, =0and f,(y) # 0.
Compute the terms of x™*1in Eq.(8) we have,
(r+y) 2D = (81,7 + 814) fu). (10)
This gives
61‘1tan_1(\/l?)

S10 M1 T
fn(Y) = Cn(yz +r)z e v ) (11)
where C,, is a constant.

Taking into account that f,, (y) be a polynomial, this implies that §; ; = 0 and 6, , = 0 and
84, is even number, then equation (11) becomes,

512
fn(y) = Cn(yz +7)z. (12)
Compute the terms of x™ in Eq. (8), we have

dfp_ dfy
n(-y? = O+ D)) + O+ y) LDy D — 5 yf () + (92802 + Y01 +
50,0)fn(3’),

as a solution of the above differential equation, we gain that
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1
fo-1(y) = (C ny + C 50 2y t+ —Cn50,1 In(y* + 1) + an + 8, ,n — 218,
y ) Canbioy
\/— Vr/ o 20y + 1)
where C,_; Is a constants.

Sincer > 0and f,(y) # 0, then f,,_;(y) must be polynomial, hence, J,, = 0 and
2an + 61’277 - 27‘60[2 + 260'0 = 0, henCe, 60'0 = 7‘50‘2 —an — %61‘27]. O

51,2
+ 2849) —=Cytan™! ( + Cn—l) i+r)z,

Lemma 10. The coefficients 6,, = 0 and 6y = —an — %61,277 in cofactor k.
Proof. From Lemma (9), the coefficients of cofactor &,, = 6,7 =301 = 0,800 =780 —
an — %51,277 and &, , € N U {0}, with §, , even number, then we can derive the cofactor k is

k = 61,23631 + 60'2}]2 + 7‘50'2 —an — %61'277, 61’2 E N U {0} (13)

To show that §,, = 0, put simplicity, the variables weight change can be converted to this
computation x = X,y = A71Y,t = 22T, with 1 € R \{0}. After that, system (1) is changed
to

X' =22u—XY?-22X(r + a),

Y' = 237X + AXY? — A%y,
the derivatives of the variables connected to T are denoted by the primes.
Taking in to account that f is a Darboux polynomial of system (1) with cofactor k specified in
Eq. (13), by the transformation (14) and setting, F(X,Y) = A"f (X, 171Y), where n defines the

extent to which £ and K = A2k(X,A71Y ) = 6, ,XYA + 80,Y? + A% (16, — an — 36, 51).

(14)

Hence F = Y1, A'F; , where F; is a weight homogeneous polynomial in the variables X
and Y with weight degree n — i for i = 0,1, ...n, we get

f=Fla=1-
From the definition of invariant algebraic curve we have

(A%u—XY? — )IZX(r+a))Z/11 +(A3TX+/1XY2—/1277Y)Z/11—'

i=0 l—0
1 .
= (8,,XYA + 842 + 22 (nso,z _an— 551,277)) Z AiF,. (15)
i=0
The calculation of the coefficients of A°in Eq. (15) can generate
—XY? aF" 80,2V 2F,. (16)
The equation (16) has the general solution
Fo(X,Y) = G, (Y)X %02, (17)

where G, is an arbitrary function of Y.
Since Fy(X,Y) must be a homogenous of degree n, we get that
Fy(X,Y) = C,Y"* 02002
where C,, is an arbitrary constant.
By the weight change of since F,(X,Y) must be weight homogenous of degree n, we must be
8oz = 0.0

Lemma 11. The coefficient §;, = 0 in cofactor k andn = a.
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Proof . From Lemmas (9) and (10), the coefficients of cofactor §,, = 6,1 = 8p1 = 8o, =
0,800 = —an — %61,217 and 6,, € N U {0}, with §;, even number, then we can derive the
cofactor k is

k =61 ,xy — an—lc?lzn,where 01, ENU{0}.

We write the Darboux polynomial of the form f = Y, f; (y)x*, where each f; is a polynomial
in the variable y. Then must be satisfy the equation,

- df; i n df; i
(”_xyz—x(r+a))2%+(rx+xy2—ny)2 fc(li/])x

n
1 .
= (Brp2y —an=58,,m) ) fi (18)
Compute the terms of x™*1in Eq.(18) we have,
dfn

(r+y) B2 = (5,)/0). (19)

To solve this differential equatlon we obtain

81,2

fn(y) = Cn(yz + r)T ) (20)

where C,, is a constant. Compute the terms of x™ in Eq. (18), we have
n— d n
n(=y? =+ ) ) + 4+ yH) LDy DD = 5,y () + (—an -

dy
551,277) fn),
by solving the differential equation above, we deduce that

81,2

fa-1(y) = (Cnny ——(Cnn61z N2 +1)7H+ Con 1) *+r)z,
where C,_ is a constant. Compute the terms of x™1 in Eq. (18), we have
dfn- ( ) Afn-1(y)
nufa ) + (0= D(=y? = (r + @) fruoa () + (r + y?) L2 py Pna)

dy
812V fn—2(y) + (—an -3 51,277> fa-1(),
by solving the differential equation above, we deduce that

Faez ) = s (02 47 F (=207 + 12 + i tan™ (L) + (€02 +
r)? ((—a +n)n+ %n61,2> In(y?+1) + (nC,(n— Dy? + 2C,_;(n — Dy + nnC, 81, +
2C-3)r? + (2nCa(n = Dy* + 4Cy(n = 1)Y® + (1€ 5 + 4C0—3)Y? = 11812y —
%mlcn&,z) r+ (nCn(n —Dy*+2C,1(n = 1)y* + 2y*Cpp — NCp-1612y +

i Cn ((51,2 - 2)77 - 2‘1’) 7751,2) 3’2)\/7>):

where C,,_, Is a constant.
Since f,_,(y) is a polynomial must be nuC, + aC,_; =0 and (—a +n)n+ %nal,z =0,

hence C,_, = =2 §,, = Zn(z_") and
@ oo - \ L ;
fa—2(¥) = m(()’ +r) m ((()’ a—2y>u+2ry*a—4(r+on —;a)uy +

a(r—n+ a)?y? = 2ru(r —n+ @)y — 2r?a(—a + n)) n—y%a+2y°u—2ry*a +

ary3u—a(a? —n? +r2)y? + 2riyu + ra®(—a + n))nC, + 2aC,_,(y% + 1)?)).
Compute the terms of x™~2 in Eq. (18), we have

3476



Ramadhan and Amin Iragi Journal of Science, 2023, Vol. 64, No. 7, pp: 3468-3484

(= Ditfas () + (0= (=32 = (4 @) foa () + (o y?) L2 — gy s
DYy fos ) + (—an = 12 (1) fr2 ),
as the solution of this differential equation, we get the following

fa-s(¥) = %((67’(}/2 +7)3 (naCn(n —a)r?+ (C,(—2a3 + 2a?*n + u*)n* —

6rza(y?+r)3

1 1 1 1
Cn (51720( +ona’ —a® + ,uz) n—2a*(Cp-z + 5 C))r — 3 Cuna® (n + 2a)(n —
5
a)) tan™! (\/17) + <3nr5uCn(y2 +7r)3(m—a)In(y? +1r) — %nySQZCn(n +2a)(n —
3 5
a)rz +rz ((y3a = 3uy? —6a(n — )y + 6u(n — @))Cyn® — 3C,(y3a — 3uy? — 4a(n —

a)y + 2u(n — a))nz + 2 <(y2a —3yu—3a (77 —a— %)) C, + SCn_2a> yn +

6a(=2yCn —¥Cp + Cn—3)> rd+ (3(*a - 3uy® — Sa(n — )y? + 4u (1 — @)y —

2a(n — @)?)Con®y — 9(y°a = 3y*u — S a(n — @)y® +7uM — @)y —sa?(n — @)y +
~ua(n — @))Can? + ((6y%a — 18y*u — 18a(n — a —)y* + 3(n + Daly — a)y -
3pa(n — @))Cp + 18a Cuy (¥? + 211 = T@)y)n + 18y2a(=2yCooy — YCp + Cuog))r® +

3((y°a — 3y*u — 4a(n — @) y* + 2u(n — @) y* — 3a(n - a)2y> — u(mn — a)?)Coyn® —
3(ySa —3y5u — 2 a(n — )y* + 2 pu(n — )y —a(n + 20)(n — )y? +;pln +
20)(n — @)y +za?(n — @)*)Cyn? + ((Zyﬁa — 6y°n— 6a (77 —a- %) vy +2(m+

1 2 2
Dal) - @)y? - 2ua() - @)y +1a®( - 0 - 20)) G, + 6ay? + 25 = 2a)y?In +

6y3a(—2yCh_y — yCp + Cu3))r + y3(Cr(y®a — 3y°u — 3a(n — a)y* — 3a(n — a)?y* —
3u(n — )’y + a(n — a)*)n® = 3(y®a — 3y°u — 3a(n — A)y* + (a® — an®)y* +

(—a’u+n*wy —a@m + ) — a)*)Cyn? + ((Zyﬁa —6y*u—6a(n—a—2)y*+
3(n + Da(n — a)y? = 3ua(n — a)y + 2a(n — a)(=3a* + nz)) Cn + 6Cy_py?a(y* —a+
N + 6y°a(—2yCp_y — yCn + Crs)))) 2 + 1)1 ).

Since f,_3(y) is a polynomial, must be the coefficient of logarithm removed, we have
5

nrzuC,(n — a) = 0, but the parameters a,r, u and n are positive real numbers and nC,, # 0
(C, # 0 by Lemma 9, f,,(y) # 0 and n # 0 otherwise f,,(y) be constant) then must be n —

a=0,buts;, = %‘7’) hence §;, = 0. O

Proof of Theorem 8. From Lemmas 9, 10 and 11, the cofactor of system (1) is k = —an,
wheren = a. Let F =Y, f; (x,y), where f; isahomogeneous polynomial in the variables
x and y with degree i for i =0,1,..n and k = —na is a cofactor. Without missing the
generality, it is supposed that f,,(x,y) # 0 and n > 0 in each variables x and y .

From the definition of Darboux polynomial, we can have
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(1 — xy? —x(r+a))z o, y)+(rx+xy —ay)zafl(x 2

= (- na)Zﬁ(x ». 21)
Using the terms of degree n + 2 in Eq (21), we get
2 0fn(xy)

—Xy Fw + xy
by solving the partial differential equation above, we deduce that
fn(,y) = Ga(x +y),

2 afn(le) — 01
ay

where G, is an arbitrary polynomial function of x + y.

Since f,,(x,y) is the homogeneous polynomial of degree n it should be in this form
fn(x,y) = Cu(x + )",

where C,, is an arbitrary constant.
Similarly, by using the terms of degree n + 1 in Eq. (21), we get

fro1(,Y) = G (x + ),
where G,_; is an arbitrary polynomial of x + y.

Since, f,,_1(x,y) is the homogeneous polynomial of degree n — 1. Then it must be in the
following form

fo-1(6y) = Crog(x + y)n—I,
where C,,_; is an arbitrary constant.

Using the terms of degree n in Eq.(21), we get
afn(xry) —x 2 afn—Z(x'y) + (rx —a ) afn(x' y) +x 2 afn—Z(x'y)
d0x Y 0x Y dy y dy
= (—na) fn(x, y).
To solve this partial differential equation, we can obtain
fr—2(x,¥) = Gpa(x +y),
where G,,_, is an arbitrary polynomial of x + y.
Since, f,_,(x,y) is the homogeneous polynomial of degree n — 2. Then it must be in the
following form
fn2(6,y) = Cha(x+y
where C,,_, is an arbitrary constant.
The terms of degree n — 1 in Eq. (21), we obtain that

—x(r+ a)

)n—21

a n ) n-—1 a n— ) a n—1 )
y f(giy) X+ @) of, ,(ny) xy? f ;ixy)“rx_“y) f a;xy)
+xy? af;—;”) = —naf,;(x,y).

To solve this differential equation, we can obtain

fr-3(x,y) = (In(x) — In(=y))(unC, + aCp_1)(x + y)" 3 + (unC, + aCp_,) Gt )™

+ Gn—3(x + Y)

3478



Ramadhan and Amin Iragi Journal of Science, 2023, Vol. 64, No. 7, pp: 3468-3484

where G,,_5 is an arbitrary polynomial of x + y.
Since f,,_3(x, y) is a homogeneous polynomial of degree n — 3, should be

nCpp + aCp,_, = 0 then C,,_ 1=_—"”Cn, hence
fn 3= n3(x+y)n3and fn 1= ﬂC (x+y)n1

where C,_; Is an arbitrary constant.
Using the terms of degree n — 2 in Eq. (21), we get

heat) ., gy e Y0 4<x )
o ) ya )
+(rx - ay) ohe S I Sy = ().

To solve this differential equation, we can obtain

fa-a(,y) = QaCn_y + p(n — 1Cp_)(In(x) = In(=y)) (x + )" * + 2aCy_ + u(n -
1Cry) (Xﬂ;)n_s + Groa(x +y),

where G,,_, is an arbitrary polynomial of x + y.

Since f,,_4(x, y) is a homogeneous polynomial of degree n — 4, must be

20Cy_y + p(n — 1)Cyy = 0, hence C,_, = Fo2¢,

since C,_y = —& —=Cp, We get Cn_p —"(n 1)“ C,, then

fn_4<x,y> = Cp_s(x +y)"™* and fH(x,y) ROV € (x + 9)™ 2,

where C,_, is an arbitrary constant.
Using the terms of degree n — 3 in Eq. (21), we get

0 fn—2(xy)

dx
2 0fn-s(xy) _
dy -

0fn—3(xy) 2 0fn- 5(x,y)

3 fns(x,
—x(r+ )— Xy - ay)—f 3(xy)

+ (rx — %

+

xy —Nafr_3(X,y).

To solve this differential equation, we can obtain

fa-s () = BaCn_s + pu(n — 2)Cr_p) (In(x) — In(=y))(x + y)"° + BaCp_s + u(n -
n—4

2)Cp2) EE— + G5 (x + ),

where G,,_s is an arbitrary polynomial of x + y.
Since f,,_s(x, y) is a homogeneous polynomial of degree n — 5, must be

3aC,_s + pu(n —2)C,_, = 0, hence; C,_5 = ”(:az) Cn_y ,Since Cp_y = % we get
—n(n-1)(n-2)
C,_, = D=2 = =F Cp, then
i s _ —n-D@m-2)p’ n—3
n—s(x,y) = Ch_s(x + and f,_3(x,y) =—————C,(x+y :
y y 3

6a

where C,_ Is an arbitrary constant.
Similarly, by computing f; (x, y) and f,(x, y) , we can obtains
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file,y) = Ci(x +y),
where C; is an arbitrary constant.
C = n(n-1)(n-2)..2u""1
1= (n-D!an1 n

and
fo(X, y) _ nn-1)(n-2)..u Cn,

n! am

Thus, F = f,(,y) + fuo1(y) + -+ fo(x, 3).

2 _ 3 B B
Hence, F = C(x + y)" = 7 CalGr )"+ #5058 G )" 7 = Bt (o
- ~Iin(n-1)..2 "n(n-1)..1
Dk 3 4.4 #(n_q)?lan—l Co(x +y) + %Crr

By Binomial Theorem, then F = C,(x +y — g)“, where C,, is an arbitrary constant, with

the cofactor —na. Then system (1) has a unique irreducible Darboux polynomial ax + ay — u
with the cofactor -a ifand only if n = a. O

Proposition 12. System (1) has only two irreducible exponential factors e**Yand e +* with
cofactors u —ax —ny and 2(x + y)(u — ax — ny) respectively.
Proof. By Theorem 8, system (1) has the irreducible Darboux polynomial a x + ay — u when

n = a. Then in view of Theorem 2, system (1) can have an exponential factor of the form:
gxy)

either E = exp (g) with g € C[x, ], or only when n = a, E = e®*-@° with s > 1 and such
that g € C[x, y] is co-prime with x + y — g and the degree of g no more than s .

We first prove that system(1) with n = @ has no exponential factors of the form E =
g9xy)
e(x+y—§)5_
y(x.yﬁ
Suppose that system (1) with n = a has an exponential factor of the form E = e**’=a”

with s > 1 such that x + y —% is co-prime with g € C[x, y]. In view of Theorem 3, we can

assume that s = 1 and that g has degree at most one (note thathere g, = x +y —g has degree

one). We write g has a polynomial of degree one in the variables x and y as follows:
g(x,y) = a1x + ay + as,

where a;,a, and a5 are constant.
Clearly g satisfies

X(E) = (u—xy? —X(T+C¥))z—i+ (rx + xy? —ay)g—5= LE,
then

g(x,y)

0 0 ,
(,u—xyz_x(r+a))a (x+y_ﬁ) o0 gy

\eer-9)

+ (rx + xy? — ay)

where L is a cofactor of exponential factor E.

As a simply version of the above equation, it can be converted to;

ag(x, dag(x,
(b —xy? —x(r+ a))% + (rx + xy? — ay)% —aglx,y)=L(x+y— g). (22)

The cofactor L must be a polynomial of degree 2 and so
L = byx? + byxy + b,y? + byx + b,y + b, (23)
where by, by, by, b3, b, and bs are constant.
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From Eq. (22)and using an algebraic manipulator ,
(p—xy? —x(r+ a))a; + (rx + xy? — ay)a, + a(ayx + ayy + az) = (box? + byxy +
byy? + bsx + byy + bs)(x +y = 5. (24)

Comparing the coefficients of Eq. (24), we obtain
b0=b1=b2=b3=b4=b5=0 and a1=a2,a3=
L = 0. However this is not possible since g is co-prime with x + y —% . Hence this case is
not possible.

= al(x+y—%) and

In summary, system (1) has an exponential factor it should be of the form E = exp (g) with
g € C[x, y]\C. In this case, g satisfies

(p—xy? —x(r+ a)) ag(x 25 (rx + xy? — ay) —= ag(xy) =1, (25)

where L = L(x,y) is polynomial of degree two in the variable x and y and that we can take
asin Eq. (23).

Let g can be written in the homogeneous form g(x,y) = Yi-, g:(x,y), where each g; isa
homogeneous polynomial in the variables x and y of degree i and n > 0.

Using the terms of degree n + 2 withn = 3 in Eq. (25), we get

a2 9gn(x.y) 20gn(x,y) _
xy? LEE 4y 2R = .

We may obtain by solving the partial differential equation given above

In(x,y) = Gn(x +y),
where G,, is an arbitrary polynomial of x + y.

Since g, (x,y) is a homogeneous polynomial of degree n, then it should be in the following
form

In(x,y) = Cu(x + )™,

where C,, is an arbitrary constant.

Calculating the terms of degree n + 1 withn > 3 in Eq. (25) we obtain

2 99n-1(XY) 209n-1(xy) _
Xy o + xy 3y =0.

By solving the above-mentioned partial differential equation, we can obtain
In-1(x,y) = Gn1(x + ),
where G,,_ Is an arbitrary polynomial of x + y.
Since g,-1(x,y) is a homogeneous polynomial of degree n — 1, then it should be in the
following form
Gn-1(x,y) = Cpog(x + )",
where C,_; is an arbitrary constant.

Calculating the terms of degree n withn > 3 in Eq. (25) we obtain

0gn—2(x, y) gn( ,Y) 0gn(x,y) 0gn—2(x,y)
g2 N2V ) _ gInt V) 2 99n—2W V)
Xy 9% x(r+a)——+ (rx — ay) 2y + xy 3y =0.

We may obtain by solving the partial differential equation given above
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n—-1
In—2(x,y) = —naCy(In(x) — In(—y))(x + y)n—z - nacn% + Gz (x + ),

where G,_, is an arbitrary polynomial of x + y.
Since g,,_»(x,y) is a polynomial of degree n—2,n> 1 and a > 0 then C,, = 0, hence

gn(x,y) = 0.

In contrast to the fact that n > 3, this results in g being a constant. Then n < 2 is required.
In this situation, g is a polynomial of degree two in variables x and y that we write it as
glx,y) = Ax? + Ayxy + A3y? + Ayx + Agy + A,

where A,,A,, A3, A, As and A, are constant. Then, by equation (25), we obtain that
(b —xy? —x(r + @) 2Ayx + Azy + Ay) + (rx + xy? — ay) (Azx + 243y + 4s) =
box? + byxy + byy? + bsx + b,y + bs.

Comparing the coefficients, we obtain
Al = A3,A2 = 2A3,A4 = A5, bo = bl = —2A2a ' bz = —Aza, b3 = b4 = Azﬂ _A4,a and
bs = Aqu.

Thatis g(x,y) = Ag + As(x + y) + A3(x + y)2.

This implies that e43+)*+4s5(x+y)+4s s the exponential factor with cofactor A, (—2x(x +
y)—a+ulx+ y)) —Ay(a(x+y)—p). Then exp(x +y)and exp(x+y)? are only

exponential factors of system (1) with cofactors u —ax —ny and 2(x + y)(u — ax —ny)
respectively. o

We now prove the result related with Darboux F.I. of system (1).

Theorem 13. System (1) has not Darboux F.1. .
Proof. By Theorem 8 and Proposition 12, if n = a then x + y —% is the unique invariant

algebraic curve of system (1) with the cofactor k = a with e**Yand e (x+y)?
are the unique exponential factors of system (1) with cofactors L; =y —ax —ay and L, =
2(x + y)(u — ax — ay) respectively. From Proposition 5, system (1) has Darboux first integral
if and only if
Ak +pq Ly +pyL, =0, A, pq, 1, € C.
Then
Ada +py(p —ax —ay) + p,2(x + y)(u — ax — ay)) = 0.

Comparing the coefficients, we obtain the following equations,
Ao+ pp =0,
—apy + 2ppn =0,
—ia+ 2ppp =0,

—20(#2 = 0,
—2au; — 2ap, =0,
—20(#2 = 0,

since the parameter « is positive real constant, then A = u; = u, = 0, by Proposition 5, the
system (1) has no Darboux F.I. . o

3482



Ramadhan and Amin Iragi Journal of Science, 2023, Vol. 64, No. 7, pp: 3468-3484

Let us now prove that system (1) does not have an integrating factor of Darboux type as a
consequence of Theorems 6, 8 and Proposition 5.

Corollary 14. System (1) has no integrating factors of Darboux type.
Proof. By Theorem 8, system (1) has only one Darboux polynomial if and only if n = «, in

which case itis x +y — g with the cofactor k = —a, and by Proposition 12, System (1) has

only two exponential factors e**Y with cofactor L, = u — ax — ny and e@+"* with cofactor
L, = 2(x + y)(u — ax — ny) respectively. In order that system (1) has a Liouvillian F.I., by
Theorem 6, system (1) must have an integrating factor of Darboux type. From Proposition 5,
system (1) has an integrating factor of Darboux-type if and only if

Ak + pqy Ly + ppL, = —div(P, Q),
—ad +u(p—ax—ny)+p,2x +y)(w—ax —ny)) =2xy —y* —r — 2a,

where 4, uq, u, € C. Since a,n,r > 0, then above equation has no solution. Hence system
(1) has no integrating factor of Darboux type, then the result follows directly by Proposition 5.
O

As a consequence of Corollary 14 and Theorem 6, we obtain directly the main result.
Theorem 15. System (1) has no Liovillian F.I. .

Proposition 16. System (1) has a unique irreducible Darbox invariant.
Proof. By Theorem 8, ifn = athex + y — % is the unique invariant algebraic curve of system

(1), with the cofactor k = a and by Proposition 12, e**Y and e@+"* are the unique
exponential factors of system (1) with cofactors L; = y —ax —ay and L, =2(x + y)(u —
ax — ay) respectively. From Proposition 5, system (1) has Darboux invariant if and only if
Ak + pqy Ly + pply = —s, A pq, pp € Cs € C\{0},
then
Aa+u(u —ax —ay) +u, Qx +y)(u—ax —ay)) = —s.
Comparing the coefficients, we obtain

Aa + pp = —s,
—apy + 2pp =0,
—ia+ 2ppp =0,

—2au; =0,
—2au; — 2ap, =0,
—2au, =0,

since the parameter « is positive real constant, then A = _75 and u, = u, = 0, by Proposition

2
5, then (x +y —g ) e~ % be the unique Darboux invariant of system (1). o
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