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Abstract 

     In this paper we prove that the planar self-assembling micelle system 

 
𝑑𝑥

𝑑𝑡
= 𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼),

𝑑𝑦

𝑑𝑡
= 𝑟𝑥 + 𝑥𝑦2 − 𝜂𝑦 , 

 has no Liouvillian, polynomial and Darboux first integrals. Moreover, we show that 

the system 

has only one irreducible Darboux polynomial 𝛼𝑥 +  𝛼𝑦 − 𝜇 with the cofactor being  

−𝛼  if and only if 𝜂 = 𝛼 via  the weight homogeneous polynomials and  only two 

irreducible exponential factors  𝑒𝑥+𝑦and 𝑒(𝑥+𝑦)
2
 with  cofactors  𝜇 − 𝛼𝑥 − 𝜂𝑦  and  

2(𝑥 + 𝑦)(𝜇 − 𝛼𝑥 − 𝜂𝑦) respectively with  (𝑥 + 𝑦 −
𝜇

𝛼
  )
𝜆

𝑒−𝛼𝜆𝑡  , be the unique 

Darbox invariant of system. 

 

Keywords: Self-assembling micelle system, Invariant algebraic curves, Darboux first 

integrals , Darboux polynomials, Exponential factors, Weight homogeneous 

polynomials. 
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التشاركين  𝑒(𝑥+𝑦)العاملين 
.  𝑒𝑥+𝑦  و   2 هما  للأختزال  قابلين  غير  أسيين  عاملين  مع  الحدود 

 (𝑥 + 𝑦 −
𝜇

𝛼
  )
𝜆

𝑒−𝛼𝜆𝑡 على التوالي ولها متغير داربوكس وحيد وهو    
 

1. Introduction.  

     Nonlinear system of ordinary differential equations is appeared in many branches of physics, 

mechanics, biology, and economics. Exact answers to those equations are important to better 

understand the key features of a wide range of phenomena and processes in natural science. 

But, even if there exists a solution, only for a few nonlinear system of ordinary differential 

equations it is possible to determine this exact solution. There is no another method for finding 

analytical solutions, see for instance [1]. The integrability theory of dynamical systems plays a 

quite important role in studying dynamics of many differential systems. Because, differential 

systems cannot be solved explicitly in general, the qualitative information provided by the 

theory of dynamical systems is the best that one can expect to obtain in general. For a 2-

dimensional polynomial system the existence of a first integral determines completely its phase 

portrait. But in general, for a given differential system depending on parameters it is very hard 

problem to characterization the existence or nonexistence of first integrals. We recall that the 

study of invariant algebraic curves and first integrals are important aspects for studying of 

dynamical systems. 

In this work we deal with the cubic planar differential systems suggested by Ball and  Haymet 

[2], which is the self-assembling micelle system with chemical sinks is modeled by the 

following  dynamical system: 

                
             

𝑑𝑥

𝑑𝑡
= 𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼) = 𝑃(𝑥, 𝑦),

    
𝑑𝑦

𝑑𝑡
= 𝑟𝑥 + 𝑥𝑦2 − 𝜂𝑦 = 𝑄(𝑥, 𝑦),

                                                      (1) 

      here 𝑥 and 𝑦 are dimensionless concetrations of active free amphiphile and micelles 

respectively.The rate coefficients 𝛼 and 𝜂 represent combined quantities that include a common 

flow-rate component as well as separate chemical sink-rates for each species, and 𝑟 and  𝜇 are 

intrinsic parameters. It is important to note that all of the parameters are real positive constants. 

The behaviors of system (1) may change dramatically as the parameters vary. The authors of 

[2], investigated limit cycles of system (1) using Hopf bifurcation and qualitative behaviors 

they have analyzed by means of pure mathematical methods with numeric simulation and 

visualization. In [3] the stability, limit cycles, and bifurcations for system (1) using algebraic 

methods. Moreover, bifurcation analysis such as Hopf bifurcation, saddle-node bifurcation, and 

Bogdanov–Takens bifurcation are also analyzed. In [4] the stability conditions on the 

parameters are obtained for system (1) for some special cases. 

In this paper, we want to understand complex dynamics of system (1) by studying its 

integrability. The system is defined only for real values of the dependent variables we will 

consider it in the real plane and study some types of first integrals. 

 

2. Background. 

     This part provides a short explation of the Darboux method, the existence of first integral, 

and the auxiliary results which are used in this study [5,6,7]. So as to confirm the main results 

some essential definitions and theorems are given. 

Associated to the polynomial differential system (1) we have the vector field 𝑋 given by  

𝑋 = (𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))
𝜕

𝜕𝑥
+ (𝑟𝑥 + 𝑥𝑦2 − 𝜂𝑦)

𝜕

𝜕𝑦
 . 

The zero set of a real polynomial 𝑓(𝑥, 𝑦) is defined as an invariant algebraic curve for system 

(1) if 
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        (𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
+ (𝑟𝑥 + 𝑥𝑦2 − 𝜂𝑦)

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
= 𝑘(𝑥, 𝑦)𝑓(𝑥, 𝑦),          (2) 

in order for a real polynomial 𝑘(𝑥, 𝑦) which is a cofactor of 𝑓(𝑥, 𝑦) with a degree of at most 2. 

According, the cofactor form can be deduced as given below: 

                           𝑘(𝑥, 𝑦) = 𝛿2,2𝑥
2 + 𝛿1,2𝑥𝑦 + 𝛿0,2𝑦

2 + 𝛿1,1𝑥 + 𝛿0,1𝑦 + 𝛿0,0 ,                    (3) 

 

     where 𝛿𝑗,𝑖 are constants, 𝑖 = 0,1,2, and 𝑗 = 0,1,2 . We also say that 𝑓(𝑥, 𝑦) is Darboux 

polynomial of system (1). 

An invariant algebraic curve 𝑓 = 0 is irreducible if it is irreducible in ℂ[𝑥, 𝑦]. If 𝑓(𝑥, 𝑦) is  

Darboux polynomial of system (1), then the invariant algebraic curve in ℝ2 is 𝑓(𝑥, 𝑦) = 0. 

Note that it is invariant by the dynamics in the sense that if a trajectory starts on the curve it 

does not leave it and that the invariant algebraic curves are important because a sufficient 

number of then forces the existence of a first integral. 

  

      An exponential factor is a function of the form 𝐸 = exp (
𝑔(𝑥,𝑦)

𝑓(𝑥,𝑦)
) ∉ ℂ with 𝑔(𝑥, 𝑦), 𝑓(𝑥, 𝑦) ∈

ℂ[𝑥, 𝑦]. Let 𝑔(𝑥, 𝑦) and 𝑓(𝑥, 𝑦) be the co-primes in the ring ℂ[𝑥, 𝑦], thus satisfying Eq.(4) 

below: 

          (𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))
𝜕𝐸

𝜕𝑥
+ (𝑟𝑥 + 𝑥𝑦2 − 𝜂𝑦)

𝜕𝐸

𝜕𝑦
= 𝐿𝐸,                                 (4) 

 

for the polynomial 𝐿 = 𝐿(𝑥, 𝑦) with degree at most 2, which is called cofactor of 𝐸. 

 

     If system (1) has a first integral or an integrating factor of the form  

                                          𝑓1
𝜆1 …𝑓𝑝

𝜆𝑝𝐹1
𝜇1 …𝐹𝑞

𝜇𝑞  ,                                                                 

where 𝑓𝑖 and 𝐹𝑗 are the invariant algebraic curve and exponential factor of system (1) 

respectively and 𝜆𝑖  , 𝜇𝑗  ∈ ℂ, then system (1) is said to be Darboux integrable. This kind of 

function is said to be a Darbouxian function.  

 

Exponential factors of the form 𝐸 = exp (
𝑔

𝑓
) with 𝑓 ≠ 1 appear when the multiplicity of the 

invariant algebraic curve 𝑓 = 0 is a multiple of one, and with 𝑓 = 0 appear when the 

multiplicity of the invariant straight line at infinity is a multiple of one, see [10] for more 

information exponential factors. 

  

Let 𝕌 is an open subset ℝ2. Here a non-constant analytic function 𝐻: 𝕌 → ℝ is said to be a first 

integral (F.I.) of system (1) on 𝕌 if it is constant on all solutions curves (𝑥(𝑡), 𝑦(𝑡)) of the 

vector field 𝑋 associated to system (1) on 𝕌; i.e. 𝐻(𝑥(𝑡), 𝑦(𝑡)) = constant for every values of 

𝑡 for which the solution (𝑥(𝑡), 𝑦(𝑡)) is defined in 𝕌. Clearly 𝐻 is a F.I. of the vector field 𝑋 on 

𝕌 if and only if   

                    𝑋(𝐻) = 𝑃(𝑥, 𝑦)
𝜕𝐻

𝜕𝑥
+ 𝑄(𝑥, 𝑦)

𝜕𝐻

𝜕𝑦
≡ 0,                         (5) 

on 𝕌. 

 

      A polynomial first integral is a F.I.  𝐻 which is a polynomial. Liouvillian integrable of 

system (1) is a F.I. given by integrals of elementary functions or by elementary functions. Here, 

a function is elementary if it is the expressed of trigonometric, logarithmic, exponential and 

polynomial functions, for more information of a Liouvillean F.I. see [8]. We say that system 

(1) is Liouvillian integrable if it has a Liouville F.I. . 
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       A non-constant function 𝑉:𝑈 ⟶ ℝ is an integrating factor of the polynomial vector field 

𝑋 on 𝑈 if the condition hold; 
𝜕(𝑉𝑃)

𝜕𝑥
= −

𝜕(𝑉𝑄)

𝜕𝑦
 , 

on 𝑈.  

 

      If  𝑉 is an integrating factor of system (1), then 𝐻 = ∫𝑉(𝑥, 𝑦)𝑃(𝑥, 𝑦)𝑑𝑦 + ℎ(𝑥) is a first 

integral of system (1), where the function ℎ(𝑥) can be determined by  
𝜕𝐻

𝜕𝑥
= −𝑉(𝑥, 𝑦)𝑄(𝑥, 𝑦). 

A polynomial 𝑓(𝑥, 𝑦) is called a weight-homogeneous polynomial if there exist  𝜆 = (𝜆1, 𝜆2) ∈
ℕ2 and 𝑚 ∈ ℕ such that for all ∈ ℝ\{0} ,  

𝑓(𝜆𝑙1𝑥, 𝜆𝑙2𝑦) = 𝜆𝑚𝑓(𝑥, 𝑦), 
      where ℝ denotes the set of real numbers, and ℕ the set of positive integers. We shall 

specifically refer to 𝑙 = (𝑙1, 𝑙2) as the weight of 𝑓,𝑚 as the weight degree, and (𝑥, 𝑦) ↦
(𝜆𝑙1𝑥, 𝜆𝑙2𝑦) as the weight change of variables. 

 

Proposition 1. [9] System (1) has a rational F.I. if it has two Darboux polynomials with the 

same cofactor. 

 

Theorem 2. [10] The two statements below are applicable. 

1)  If 𝐸 = 𝑒
𝑔

𝑓 for the polynomial differential system (1), is an exponential factor and  𝑓 is not a 

polynomial with a constant value, then 𝑓 = 0 is an algebraic curve that is invariant. 

2)   𝐸 = 𝑒𝑔 can eventually be obtained from the multiplicity of the infinity invariant plane as 

an exponential factor. 

 

     The results found in [11] characterization under suitable assumptions of the algebraic 

multiplicity of an invariant algebraic curve using the number of exponential factors of system 

(1) like with the invariant algebraic curve. 

 

Theorem 3. Given Darboux polynomial 𝑓 = 0 of degree 𝑛 of system (1),  has algebraic 

multiplicity 𝑚 if and only if the system (1)  has 𝑚 − 1 exponential factors of the kind exp (
𝑔𝑖

𝑓
), 

where 𝑔𝑖 is a polynomial of degree at most 𝑖, where  𝑔𝑖 and 𝑓 are relatively primes for 𝑖 =
1, … ,𝑚 − 1.  

 

Proposition 4. [12] Assume that 𝑓 ∈ ℂ[𝑥, 𝑦] and let 𝑓 = 𝑓𝑛1
1
…𝑓𝑛𝑟

𝑟
 the factoring of its into 

irreducible factors over ℂ[𝑥, 𝑦]. Then there’s the case of a polynomial system (1), 𝑓(𝑥, 𝑦) = 0 

is an invariant algebraic curve with cofactor 𝑘𝑓 if and only 𝑓𝑖 = 0 is an invariant algebraic curve 

for each 𝑖 = 1,… , 𝑟 with cofactor  𝑘𝑓𝑖. Moreover, 𝑘𝑓 = 𝑛1𝑘𝑓1 +⋯+ 𝑛𝑟𝑘𝑓𝑟. 

 

Proposition 5. [12] Assume that a polynomial system (1) admits  𝑝 irreducible invariant 

algebraic curves 𝑓𝑖 = 0 with cofactors 𝑘𝑖 for 𝑖 = 1,… , 𝑝 and 𝑞 exponential factors      

exp (𝑔𝑗/ℎ𝑗)  with cofactors 𝐿𝑗   for 𝑗 = 1, … , 𝑞. Then, 

 

 

 

1-  There exist 𝜆𝑖   𝑎𝑛𝑑 𝜇𝑗  ∈ ℂ not all zero in the sense that  
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∑𝜆𝑖

𝑝

𝑖=1

𝑘𝑖 +∑𝜇𝑗𝐿𝑗

𝑞

𝑗=1

= 0 ,                                                                                                            

if and only if the (multivalued) function 

                                𝑓1
𝜆1 …𝑓𝑝

𝜆𝑝(exp (𝑔1/ℎ1))
𝜇1…exp (𝑔𝑝/ℎ𝑝))

𝜇𝑝                                     (6)             

 

is a first integral of system (1). 

2-  There exist 𝜆𝑖   𝑎𝑛𝑑 𝜇𝑗  ∈ ℂ not all zero such that 

∑𝜆𝑖

𝑝

𝑖=1

𝑘𝑖 +∑𝜇𝑗𝐿𝑗

𝑞

𝑗=1

= −𝑑𝑖𝑣(𝑃, 𝑄) ,                                                       

if and only if function (6) is an integrating factor of system (1). 

3- If  there exist 𝜆𝑖  𝑎𝑛𝑑 𝜇𝑗  ∈ ℂ not all zero such that 

 

∑𝜆𝑖

𝑝

𝑖=1

𝑘𝑖 +∑𝜇𝑗𝐿𝑗

𝑞

𝑗=1

= −𝑠 ,                                                                            

for some 𝑠 ∈ ℂ\{0}, then the (multivalued) function 

                       𝑓1
𝜆1 …𝑓𝑝

𝜆𝑝 (exp (
𝑔1

ℎ1
))
𝜇1
…exp (𝑔𝑝/ℎ𝑝))

𝜇𝑝  exp (𝑠𝑡) ,            

is an invariant of system (1).  

Note that the function of the form (6) is said to be a Darboux function.       

                           

     We use the following result from [8] to establish the findings relating to the Liouville first 

integral. 

 

Theorem 6. The polynomial system (1) has a Liouville F.I. if and only if it has on integrating 

factor which is a Darboux function. 

 

      A considerable impact in the study of Liouvillian and Darboux integrability of polynomial 

dynamical systems has been made by Llibre and Valls, see for example [13,14]. 

 

3.  Main results and their Proving. 

     In this section, the existence of Darboux F.I. (see Theorem 8) which is the primary outcome 

of the system (1) is described. Moreover, some other results relative to this topic is studied 

during this work such as a polynomial first integrals, invariant algebraic curves and exponential 

factors of system (1). 

 

Theorem 7. System (1) does not admit polynomial F.I. . 

Proof. Let  𝐻(𝑥, 𝑦) be a polynomial F.I. of degree 𝑛 of the system (1). We can write 𝐻(𝑥, 𝑦) =
𝐻0(𝑥, 𝑦) + 𝐻1(𝑥, 𝑦) + ⋯+ 𝐻𝑛(𝑥, 𝑦), where each 𝐻𝑖 is a homogeneous polynomial in its 

variables of degree  𝑖 and we assume that 𝐻𝑛 ≠ 0. Thus, equation writes as  

 

      (𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))
𝜕

𝜕𝑥
∑𝐻𝑖

𝑛

𝑖=0

(𝑥, 𝑦) + (𝑟𝑥 + 𝑥𝑦2 − 𝜂𝑦)
𝜕

𝜕𝑦
∑𝐻𝑖

𝑛

𝑖=0

(𝑥, 𝑦) = 0.        (7) 

 

     Since  𝐻𝑛(𝑥, 𝑦)  is a homogeneous polynomial of variables  𝑥, 𝑦 of degree  𝑛, so calculating 

the terms of degree 𝑛 + 2 in Eq. (7), we can obtain  
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−𝑥𝑦2
𝜕𝐻𝑛(𝑥, 𝑦)

𝜕𝑥
+ 𝑥𝑦2

𝜕𝐻𝑛(𝑥, 𝑦)

𝜕𝑦
= 0, 

as a solution of the above partial differential equation for 𝐻𝑛(𝑥, 𝑦), we gain that 

                                                    𝐻𝑛(𝑥, 𝑦) = 𝐺𝑛(𝑥 + 𝑦), 
where 𝐺𝑛is an arbitrary polynomial. 

Since 𝐻𝑛(𝑥, 𝑦) is a homogeneous polynomial of degree 𝑛, then it must be in the following form 
                                             𝐻𝑛(𝑥, 𝑦) = 𝐶𝑛(𝑥 + 𝑦)

𝑛,  

where 𝐶𝑛 is an arbitrary constant.  

Computing the terms of degree 𝑛 + 1 in Eq. (7), we obtain 

−𝑥𝑦2
𝜕𝐻𝑛−1(𝑥, 𝑦)

𝜕𝑥
+ 𝑥𝑦2

𝜕𝐻𝑛−1(𝑥, 𝑦)

𝜕𝑦
= 0, 

as a solution of the above partial differential equation for  𝐻𝑛−1(𝑥, 𝑦), we can obtain  

 
                                          𝐻𝑛−1(𝑥, 𝑦) = 𝐺𝑛−1(𝑥 + 𝑦),  
 

     where 𝐺𝑛−1 is an arbitrary polynomial function of 𝑥 + 𝑦. 

     Since 𝐻𝑛−1(𝑥, 𝑦) is a homogeneous polynomial of degree  𝑛 − 1, then it must be in the 

following form 
                                       𝐻𝑛−1(𝑥, 𝑦) = 𝐶𝑛−1(𝑥 + 𝑦)

𝑛−1 ,  

 

     where 𝐶𝑛−1 is an arbitrary constant. 

      Since  𝐻𝑖(𝑥, 𝑦)  is a homogeneous polynomial of variables   𝑥, 𝑦  of degree  𝑖, then 

computing the terms of degree 𝑛 in Eq. (7), we obtain 

  

−𝑥𝑦2
𝜕𝐻𝑛−2(𝑥, 𝑦)

𝜕𝑥
− (𝑟 + 𝛼)𝑥

𝜕𝐻𝑛(𝑥, 𝑦)

𝜕𝑥
+ 𝑟𝑥

𝜕𝐻𝑛(𝑥, 𝑦)

𝜕𝑦
+ 𝑥𝑦2

𝜕𝐻𝑛−2(𝑥, 𝑦)

𝜕𝑦

− 𝜂𝑦
𝜕𝐻𝑛(𝑥, 𝑦)

𝜕𝑦
= 0, 

     by using Maple as a solution of the above partial differential equation for  𝐻𝑛−2(𝑥, 𝑦), we 

can obtain  

 𝐻𝑛−2(𝑥, 𝑦) = −𝑛𝜂𝐶𝑛(𝑥 + 𝑦)
𝑛−2(𝑙𝑛(𝑥) − 𝑙𝑛(−𝑦)) − nα𝐶𝑛

(𝑥 + 𝑦)𝑛−1

𝑦
+ 𝐺𝑛−2(𝑥 + 𝑦), 

      where 𝐺𝑛−2 is a polynomial function of variables 𝑥 + 𝑦. 

     Since 𝐻𝑛−2(𝑥, 𝑦) is a homogeneous polynomial of degree  𝑛 − 2, 𝐻𝑛(𝑥, 𝑦) ≠ 0  and 𝛼, 𝜂 >
0 must be  𝑛𝐶𝑛 = 0. 

 

     If  𝑛𝐶𝑛 = 0, then we obtain that 𝐻𝑛(𝑥, 𝑦) becomes constant function which is a trivial first 

integral. Then there is no a polynomial first integral of system (1).  □ 

 

Theorem 8. System (1) has only one irreducible Darboux polynomial expressed as 𝛼𝑥 +  𝛼𝑦 −
𝜇 with the cofactor being  −𝛼  if and only if  𝜂 = 𝛼. 

 

First, we begin with the following three lemmas to prove Theorem 8.  

 

Lemma 9: The cofactor  𝑘 = 𝛿2,2𝑥
2 + 𝛿1,2𝑥𝑦 + 𝛿0,2𝑦

2 + 𝛿1,1𝑥 + 𝛿0,1𝑦 + 𝛿0,0  of the invariant 

is algebraic curve of system (1) satisfy the 𝛿2,2 = 𝛿1,1 = 𝛿0,1 = 0,  𝛿0,0 = 𝑟𝛿0,2 − 𝛼𝑛 −
1

2
𝛿1,2 

and  𝛿1,2 ∈ Ν ∪ {0}, with 𝛿1,2 even number, where 𝛿𝑖,𝑗 are constants, 𝑖 = 0,1,2 and 𝑗 = 0,1,2. 
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Proof. We write the Darboux polynomial of the form  𝑓 = ∑ 𝑓𝑖
𝑛
𝑖=0 (𝑦)𝑥𝑖, where each 𝑓𝑖 is a 

polynomial in the variable 𝑦. Then must be satisfy the equation, 

(𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))∑
𝑑𝑓𝑖(𝑦)𝑥

𝑖

𝑑𝑥

𝑛

𝑖=0

+ (𝑟𝑥 + 𝑥𝑦2 − 𝜂𝑦)∑
𝑑𝑓𝑖(𝑦)𝑥

𝑖

𝑑𝑦

𝑛

𝑖=0

= (𝛿2,2𝑥
2 + 𝛿1,2𝑥𝑦 + 𝛿0,2𝑦

2 + 𝛿1,1𝑥 + 𝛿0,1𝑦 + 𝛿0,0 )∑𝑓𝑖

𝑛

𝑖=0

(𝑦)𝑥𝑖.              (8)   

Compute the terms of 𝑥𝑛+2  in Eq. (8), we have  

                          𝛿2,2𝑓𝑛(𝑦) = 0 , then  𝑓𝑛(𝑦) = 0  or 𝛿2,2 = 0. 

Case1: If   𝑓𝑛(𝑦) = 0 ; hence, 𝑓 = 𝑓(𝑦). 
Then from Eq. (8), we can derive 

(𝑟𝑥 + 𝑥𝑦2 − 𝜂𝑦)
𝑑𝑓(𝑦)

𝑑𝑦
= (𝛿2,2𝑥

2 + 𝛿1,2𝑥𝑦 + 𝛿0,2𝑦
2 + 𝛿1,1𝑥 + 𝛿0,1𝑦 + 𝛿0,0)𝑓(𝑦),       (9) 

as a solution of the above differential equation, we gain that 

𝑓(𝑦)
= 𝐶0((𝑦

2 + 𝑟)𝑥

− 𝜂𝑦)
𝛿1,2
2
+
𝜂𝛿0,2

2𝑥2
+
𝛿0,1
2𝑥   𝑒

−2((−𝑥4𝛿2,2−𝑥
3𝛿1,1+(𝑟𝛿0,2−

𝜂𝛿1,2
2

−𝛿0,0)𝑥
2−
𝜂𝑥𝛿0,1
2

−
𝜂2𝛿0,2
2

)𝑡𝑎𝑛−1

(

 2𝑥𝑦−𝜂

√4𝑟𝑥2−𝜂2𝑥2
)

 −
𝛿0,2𝑦𝑥√4𝑟𝑥

2−𝜂2

2
)

√4𝑟𝑥2−𝜂2𝑥2
, 

where  𝐶0 is a constant. 

Since 𝑓(𝑦) is a polynomial of 𝑦  must be  𝛿2,2 = 𝛿0,2 = 𝛿1,1 = 𝛿0,1 = 0  and  𝛿1,2 =
−2

𝜂
𝛿0,0 , 

hence; 

                                            𝑓(𝑦) = 𝐶0((𝑦
2 + 𝑟)𝑥 − 𝜂𝑦)

−𝛿0,0
𝜂   . 

 

     Since 𝑓(𝑦) is a polynomial of 𝑦  must be 𝛿0,0 = 0, hence 𝑓(𝑦) = 𝐶0 and its cofactor is 𝑘 =
0, where  𝐶0  is a constant, this is a trivial first integral. 

Case2: If  𝛿2,2 = 0 and  𝑓𝑛(𝑦) ≠ 0. 

Compute the terms of  𝑥𝑛+1 in  Eq. (8) we have,   

                         (𝑟 + 𝑦2)
𝑑𝑓𝑛(𝑦)

𝑑𝑦
= (𝛿1,2𝑦 + 𝛿1,1)𝑓𝑛(𝑦).                                            (10) 

This gives 

                         𝑓𝑛(𝑦) = 𝐶𝑛(𝑦
2 + 𝑟)

𝛿1,2
2  𝑒

𝛿1,1𝑡𝑎𝑛
−1(

𝑦

√𝑟
)

√𝑟  ,                                                 (11) 

where 𝐶𝑛 is a constant. 

 

     Taking into account that  𝑓𝑛(𝑦) be a polynomial, this implies that 𝛿1,1 = 0 and 𝛿1,2 ≥ 0 and 

𝛿1,2 is even number, then equation (11) becomes, 

                        𝑓𝑛(𝑦) = 𝐶𝑛(𝑦
2 + 𝑟)

𝛿1,2
2 .                                                                       (12) 

Compute the terms of  𝑥𝑛 in Eq. (8), we have  

𝑛(−𝑦2 − (𝑟 + 𝛼))𝑓𝑛(𝑦) + (𝑟 + 𝑦
2)
𝑑𝑓𝑛−1(𝑦)

𝑑𝑦
− 𝜂𝑦

𝑑𝑓𝑛(𝑦)

𝑑𝑦
= 𝛿1,2𝑦𝑓𝑛−1(𝑦) + (𝑦

2𝛿0,2 + 𝑦𝛿0,1 +

𝛿0,0)𝑓𝑛(𝑦), 
 

as a solution of the above differential equation, we gain that 
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𝑓𝑛−1(𝑦) = (𝐶𝑛𝑛𝑦 + 𝐶𝑛𝛿0,2𝑦 +
1

2
𝐶𝑛𝛿0,1 𝑙𝑛(𝑦

2 + 𝑟) + (2𝛼𝑛 + 𝛿1,2𝜂 − 2𝑟𝛿0,2

+ 2𝛿0,0)
1

2√𝑟
𝐶𝑛𝑡𝑎𝑛

−1 (
𝑦

√𝑟
) −

𝐶𝑛𝜂𝛿1,2 𝑦

2(𝑦2 + 𝑟)
+ 𝐶𝑛−1) (𝑦

2 + 𝑟)
𝛿1,2
2 , 

where 𝐶𝑛−1 is a constants. 

Since 𝑟 > 0 and  𝑓𝑛(𝑦) ≠ 0 , then  𝑓𝑛−1(𝑦) must be polynomial, hence,   𝛿0,1 = 0  and 

2𝛼𝑛 + 𝛿1,2𝜂 − 2𝑟𝛿0,2 + 2𝛿0,0 = 0, hence; 𝛿0,0 = 𝑟𝛿0,2 − 𝛼𝑛 −
1

2
𝛿1,2𝜂. □ 

 

Lemma 10. The coefficients 𝛿0,2 = 0 and 𝛿0,0 = −𝛼𝑛 −
1

2
𝛿1,2𝜂 in cofactor 𝑘. 

Proof.  From Lemma (9), the coefficients of cofactor   𝛿2,2 = 𝛿1,1 = 𝛿0,1 = 0, 𝛿0,0 = 𝑟𝛿0,2 −

𝛼𝑛 −
1

2
𝛿1,2𝜂  and  𝛿1,2 ∈ Ν ∪ {0}, with 𝛿1,2 even number, then we can derive the cofactor 𝑘 is 

   𝑘 = 𝛿1,2𝑥𝑦 + 𝛿0,2𝑦
2 + 𝑟𝛿0,2 − 𝛼𝑛 −

1

2
𝛿1,2𝜂, 𝛿1,2 ∈ Ν ∪ {0}.                           (13)         

 

     To show that 𝛿0,2 = 0, put simplicity, the variables weight change can be converted to this 

computation  𝑥 = 𝑋 , 𝑦 = 𝜆−1𝑌 , 𝑡 = 𝜆2𝑇 , with  𝜆 ∈ ℝ \{0}. After that, system (1) is changed 

to 

                           
         𝑋′ = 𝜆2𝜇 − 𝑋𝑌2 − 𝜆2𝑋(𝑟 + 𝛼),

 𝑌′ = 𝜆3𝑟𝑋 + 𝜆𝑋𝑌2 − 𝜆2𝜂𝑌 ,
                                                              (14) 

the derivatives of the variables connected to 𝑇 are denoted by the primes. 

Taking in to account that 𝑓 is a Darboux polynomial of system (1) with cofactor 𝑘 specified in 

Eq. (13), by the transformation (14) and setting, 𝐹(𝑋, 𝑌) = 𝜆𝑛𝑓(𝑋, 𝜆−1𝑌), where 𝑛 defines the 

extent to which 𝑓 and  𝐾 = 𝜆2𝑘(𝑋, 𝜆−1𝑌 ) = 𝛿1,2𝑋𝑌𝜆 + 𝛿0,2𝑌
2 + 𝜆2 (𝑟𝛿0,2 − 𝛼𝑛 −

1

2
𝛿1,2𝜂).  

 

     Hence 𝐹 = ∑ 𝜆𝑖𝐹𝑖
𝑛
𝑖=0  , where 𝐹𝑖 is a weight homogeneous polynomial in the variables  𝑋  

and 𝑌 with weight degree 𝑛 − 𝑖 for  𝑖 = 0,1, … 𝑛, we get 

𝑓 = 𝐹|𝜆=1. 
From the definition of invariant algebraic curve we have 

(𝜆2𝜇 − 𝑋𝑌2 − 𝜆2𝑋(𝑟 + 𝛼) )∑𝜆𝑖
𝑛

𝑖=0

𝜕𝐹𝑖
𝜕𝑋

+ (𝜆3𝑟𝑋 + 𝜆𝑋𝑌2 − 𝜆2𝜂𝑌 )∑𝜆𝑖
𝑛

𝑖=0

𝜕𝐹𝑖
𝜕𝑌

= (𝛿1,2𝑋𝑌𝜆 + 𝛿0,2𝑌
2 + 𝜆2 (𝑟𝛿0,2 − 𝛼𝑛 −

1

2
𝛿1,2𝜂))∑𝜆𝑖𝐹𝑖

𝑛

𝑖=0

.                         (15) 

The calculation of the coefficients of  𝜆0 in Eq. (15) can generate 

                                         −𝑋𝑌2
𝜕𝐹0

𝜕𝑋
= 𝛿0,2𝑌

2𝐹0.                                                                    (16)  

The equation (16) has the general solution  

                                         𝐹0(𝑋, 𝑌) = 𝐺𝑛(𝑌)𝑋
−𝛿0,2 ,                                                               (17) 

where  𝐺𝑛 is an arbitrary function of  𝑌.  

Since 𝐹0(𝑋, 𝑌) must be a homogenous of degree 𝑛, we get that  

𝐹0(𝑋, 𝑌) = 𝐶𝑛𝑌
𝑛+𝛿0,2𝑋−𝛿0,2 ,                             

where 𝐶𝑛 is an arbitrary constant. 

By the weight change of since 𝐹0(𝑋, 𝑌) must be weight homogenous of degree 𝑛, we must be  

𝛿0,2 = 0. □  

 

Lemma 11. The coefficient  𝛿1,2 = 0 in cofactor 𝑘 and 𝜂 = 𝛼.   



Ramadhan and Amin                                   Iraqi Journal of Science, 2023, Vol. 64, No. 7, pp: 3468-3484 

3476 

Proof . From Lemmas (9) and (10), the  coefficients of cofactor  𝛿2,2 = 𝛿1,1 = 𝛿0,1 = 𝛿0,2 =

0, 𝛿0,0 = −𝛼𝑛 −
1

2
𝛿1,2𝜂  and  𝛿1,2 ∈ Ν ∪ {0}, with 𝛿1,2 even number, then we can derive the 

cofactor 𝑘 is 

                           𝑘 = 𝛿1,2𝑥𝑦 − 𝛼𝑛 −
1

2
𝛿1,2𝜂, where 𝛿1,2 ∈ Ν ∪ {0}.            

We write the Darboux polynomial of the form  𝑓 = ∑ 𝑓𝑖
𝑛
𝑖=0 (𝑦)𝑥𝑖, where each 𝑓𝑖 is a polynomial 

in the variable 𝑦. Then must be satisfy the equation, 

(𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))∑
𝑑𝑓𝑖(𝑦)𝑥

𝑖

𝑑𝑥

𝑛

𝑖=0

+ (𝑟𝑥 + 𝑥𝑦2 − 𝜂𝑦)∑
𝑑𝑓𝑖(𝑦)𝑥

𝑖

𝑑𝑦

𝑛

𝑖=0

= (𝛿1,2𝑥𝑦 − 𝛼𝑛 −
1

2
𝛿1,2𝜂)∑𝑓𝑖

𝑛

𝑖=0

(𝑦)𝑥𝑖.                                                               (18) 

Compute the terms of  𝑥𝑛+1 in  Eq. (18) we have,   

                                 (𝑟 + 𝑦2)
𝑑𝑓𝑛(𝑦)

𝑑𝑦
= (𝛿1,2𝑦)𝑓𝑛(𝑦).                                                         (19) 

To solve this differential equation, we obtain 

                                      𝑓𝑛(𝑦) = 𝐶𝑛(𝑦
2 + 𝑟)

𝛿1,2
2   ,                                                                 (20) 

where 𝐶𝑛 is a constant. Compute the terms of  𝑥𝑛 in Eq. (18), we have  

𝑛(−𝑦2 − (𝑟 + 𝛼))𝑓𝑛(𝑦) + (𝑟 + 𝑦
2)
𝑑𝑓𝑛−1(𝑦)

𝑑𝑦
− 𝜂𝑦

𝑑𝑓𝑛(𝑦)

𝑑𝑦
= 𝛿1,2𝑦𝑓𝑛−1(𝑦) + (−𝛼𝑛 −

1

2
𝛿1,2𝜂) 𝑓𝑛(𝑦), 

by solving the differential equation above, we deduce that 

𝑓𝑛−1(𝑦) = (𝐶𝑛𝑛𝑦 −
1

2
(𝐶𝑛𝜂𝛿1,2 𝑦)(𝑦

2 + 𝑟)−1 + 𝐶𝑛−1) (𝑦
2 + 𝑟)

𝛿1,2
2 , 

where 𝐶𝑛−1 is a constant. Compute the terms of  𝑥𝑛−1 in Eq. (18), we have  

𝑛𝜇𝑓𝑛(𝑦) + (𝑛 − 1)(−𝑦
2 − (𝑟 + 𝛼))𝑓𝑛−1(𝑦) + (𝑟 + 𝑦

2)
𝑑𝑓𝑛−2(𝑦)

𝑑𝑦
− 𝜂𝑦

𝑑𝑓𝑛−1(𝑦)

𝑑𝑦
=

𝛿1,2𝑦𝑓𝑛−2(𝑦) + (−𝛼𝑛 −
1

2
𝛿1,2𝜂) 𝑓𝑛−1(𝑦), 

by solving the differential equation above, we deduce that 

𝑓𝑛−2(𝑦) =
1

2√𝑟(𝑦2+𝑟)2
((𝑦2 + 𝑟)

𝛿1,2
2 (−2(𝑦2 + 𝑟)2(𝑛𝜇𝐶𝑛 + 𝛼𝐶𝑛−1)𝑡𝑎𝑛

−1 (
𝑦

√𝑟
) + (𝐶𝑛(𝑦

2 +

𝑟)2 ((−𝛼 + 𝜂)𝑛 +
1

2
𝜂𝛿1,2) ln(𝑦

2 + 𝑟) + (𝑛𝐶𝑛(𝑛 − 1)𝑦
2 + 2𝐶𝑛−1(𝑛 − 1)𝑦 + 𝑛𝜂𝐶𝑛𝛿1,2 +

2𝐶𝑛−2)𝑟
2 + (2𝑛𝐶𝑛(𝑛 − 1)𝑦

4 + 4𝐶𝑛−1(𝑛 − 1)𝑦
3 + (𝑛𝜂𝐶𝑛𝛿1,2 + 4𝐶𝑛−2)𝑦

2 − 𝜂𝐶𝑛−1𝛿1,2𝑦 −
1

2
𝛼𝜂𝐶𝑛𝛿1,2) 𝑟 + (𝑛𝐶𝑛(𝑛 − 1)𝑦

4 + 2𝐶𝑛−1(𝑛 − 1)𝑦
3 + 2𝑦2𝐶𝑛−2 − 𝜂𝐶𝑛−1𝛿1,2𝑦 +

1

4
 𝐶𝑛 ((𝛿1,2 − 2)𝜂 − 2𝛼) 𝜂𝛿1,2) 𝑦

2)√𝑟)),   

where  𝐶𝑛−2 is a constant. 

Since  𝑓𝑛−2(𝑦) is a polynomial must be  𝑛𝜇𝐶𝑛 + 𝛼𝐶𝑛−1 = 0  and  (−𝛼 + 𝜂)𝑛 +
1

2
𝜂𝛿1,2 = 0, 

hence 𝐶𝑛−1 =
−𝑛𝜇𝐶𝑛

𝛼
, 𝛿1,2 =

2𝑛(𝛼−𝜂)

𝜂
 and 

𝑓𝑛−2(𝑦) =
1

2𝛼(𝑦2+𝑟)2
((𝑦2 + 𝑟)

𝑛(𝛼−𝜂)

𝜂 (((𝑦6𝛼 − 2𝑦5𝜇 + 2𝑟𝑦4𝛼 − 4(𝑟 +
1

2
𝜂 −

1

2
𝛼)𝜇𝑦3 +

𝛼(𝑟 − 𝜂 + 𝛼)2𝑦2 − 2𝑟𝜇(𝑟 − 𝜂 + 𝛼)𝑦 − 2𝑟2𝛼(−𝛼 + 𝜂)) 𝑛 − 𝑦6𝛼 + 2𝑦5𝜇 − 2𝑟𝑦4𝛼 +

4𝑟𝑦3𝜇 − 𝛼(𝛼2 − 𝜂2 + 𝑟2)𝑦2 + 2𝑟2𝑦𝜇 + 𝑟𝛼2(−𝛼 + 𝜂))𝑛𝐶𝑛 + 2𝛼𝐶𝑛−2(𝑦
2 + 𝑟)2)).  

Compute the terms of  𝑥𝑛−2 in Eq. (18), we have  



Ramadhan and Amin                                   Iraqi Journal of Science, 2023, Vol. 64, No. 7, pp: 3468-3484 

3477 

(𝑛 − 1)𝜇𝑓𝑛−1(𝑦) + (𝑛 − 2)(−𝑦
2 − (𝑟 + 𝛼))𝑓𝑛−2(𝑦) + (𝑟 + 𝑦

2)
𝑑𝑓𝑛−3(𝑦)

𝑑𝑦
− 𝜂𝑦

𝑑𝑓𝑛−2(𝑦)

𝑑𝑦
=

(
2𝑛(𝛼−𝜂)

𝜂
)𝑦𝑓𝑛−3(𝑦) + (−𝛼𝑛 − 𝑛(𝑓𝑛−2(𝑦))𝑓𝑛−2(𝑦), 

as the solution of this differential equation, we get the following 

𝑓𝑛−3(𝑦) =
1

6𝑟
5
2𝛼(𝑦2+𝑟)3

((6𝑟(𝑦2 + 𝑟)3 (𝑛𝛼𝐶𝑛(𝜂 − 𝛼)𝑟
2 + (𝐶𝑛(−2𝛼

3 + 2𝛼2𝜂 + 𝜇2)𝑛2 −

𝐶𝑛 (
1

2
𝜂2𝛼 +

1

2
𝜂𝛼2 − 𝛼3 + 𝜇2) 𝑛 − 2𝛼2(𝐶𝑛−2 +

1

2
𝐶𝑛))𝑟 −

1

4
𝐶𝑛𝑛𝛼

2(𝜂 + 2𝛼)(𝜂 −

𝛼)) 𝑡𝑎𝑛−1 (
𝑦

√𝑟
) + (3𝑛𝑟

5

2𝜇𝐶𝑛(𝑦
2 + 𝑟)3(𝜂 − 𝛼) ln(𝑦2 + 𝑟) −

3

2
𝑛𝑦5𝛼2𝐶𝑛(𝜂 + 2𝛼)(𝜂 −

𝛼)𝑟
3

2 + 𝑟
5

2 ((𝑦3𝛼 − 3𝜇𝑦2 − 6𝛼(𝜂 − 𝛼)𝑦 + 6𝜇(𝜂 − 𝛼))𝐶𝑛𝑛
3 − 3𝐶𝑛(𝑦

3𝛼 − 3𝜇𝑦2 − 4𝛼(𝜂 −

𝛼)𝑦 + 2𝜇(𝜂 − 𝛼))𝑛2 + 2((𝑦2𝛼 − 3𝑦𝜇 − 3𝛼 (𝜂 − 𝛼 −
1

2
)) 𝐶𝑛 + 3𝐶𝑛−2𝛼)𝑦𝑛 +

6𝛼(−2𝑦𝐶𝑛−2 − 𝑦𝐶𝑛 + 𝐶𝑛−3)) 𝑟
3 + (3(𝑦4𝛼 − 3𝜇𝑦3 − 5𝛼(𝜂 − 𝛼)𝑦2 + 4𝜇 (𝜂 − 𝛼)𝑦 −

2𝛼(𝜂 − 𝛼)2)𝐶𝑛𝑛
3𝑦 − 9(𝑦5𝛼 − 3𝑦4𝜇 −

11

3
𝛼(𝜂 − 𝛼)𝑦3 +

4

3
𝜇(𝜂 − 𝛼)𝑦2 −

1

3
𝛼2(𝜂 − 𝛼)𝑦 +

1

3
𝜇𝛼(𝜂 − 𝛼))𝐶𝑛𝑛

2 + ((6𝑦2𝛼 − 18𝑦4𝜇 − 18𝛼(𝜂 − 𝛼 −
1

2
)𝑦3 + 3(𝜂 + 1)𝛼(𝜂 − 𝛼)𝑦 −

3𝜇𝛼(𝜂 − 𝛼))𝐶𝑛 + 18𝛼 𝐶𝑛−2 (𝑦
2 +

1

3
𝜂 −

1

3
𝛼)𝑦)𝑛 + 18𝑦2𝛼(−2𝑦𝐶𝑛−2 − 𝑦𝐶𝑛 + 𝐶𝑛−3))𝑟

3 +

3((𝑦5𝛼 − 3𝑦4𝜇 − 4𝛼(𝜂 − 𝛼) 𝑦3 + 2𝜇(𝜂 − 𝛼)𝑦2 − 3𝛼(𝜂 − 𝛼)2𝑦) − 𝜇(𝜂 − 𝛼)2)𝐶𝑛𝑦𝑛
3 −

3(𝑦6𝛼 − 3𝑦5𝜇 −
10

3
𝛼(𝜂 − 𝛼)𝑦4 +

2

3
𝜇(𝜂 − 𝛼)𝑦3 −

1

3
𝛼(𝜂 + 2𝛼)(𝜂 − 𝛼)𝑦2 +

1

3
𝜇(𝜂 +

2𝛼)(𝜂 − 𝛼)𝑦 +
1

3
𝛼2(𝜂 − 𝛼)2)𝐶𝑛𝑛

2 + ((2𝑦6𝛼 − 6𝑦5𝜇 − 6𝛼 (𝜂 − 𝛼 −
1

2
) 𝑦4 + 2(𝜂 +

1)𝛼(𝜂 − 𝛼)𝑦2 − 2𝜇𝛼(𝜂 − 𝛼)𝑦 +
1

2
𝛼2(𝜂 − 𝛼)(𝜂 − 2𝛼)) 𝐶𝑛 + 6𝛼(𝑦

2 +
2

3
𝜂 −

2

3
𝛼)𝑦2)𝑛 +

6𝑦3𝛼(−2𝑦𝐶𝑛−2 − 𝑦𝐶𝑛 + 𝐶𝑛−3))𝑟 + 𝑦
3(𝐶𝑛(𝑦

6𝛼 − 3𝑦5𝜇 − 3𝛼(𝜂 − 𝛼)𝑦4 − 3𝛼(𝜂 − 𝛼)2𝑦2 −
3𝜇(𝜂 − 𝛼)2𝑦 + 𝛼(𝜂 − 𝛼)3)𝑛3 − 3(𝑦6𝛼 − 3𝑦5𝜇 − 3𝛼(𝜂 − 𝛼)𝑦4 + (𝛼3 − 𝛼𝜂2)𝑦2 +

(−𝛼2𝜇 + 𝜂2𝜇)𝑦 − 𝛼(𝜂 + 𝛼)(𝜂 − 𝛼)2)𝐶𝑛𝑛
2 + ((2𝑦6𝛼 − 6𝑦5𝜇 − 6𝛼 (𝜂 − 𝛼 −

1

2
) 𝑦4 +

3(𝜂 + 1)𝛼(𝜂 − 𝛼)𝑦2 − 3𝜇𝛼(𝜂 − 𝛼)𝑦 + 2𝛼(𝜂 − 𝛼)(−3𝛼2 + 𝜂2))𝐶𝑛 + 6𝐶𝑛−2𝑦
2𝛼(𝑦2 − 𝛼 +

𝜂))𝑛 + 6𝑦3𝛼(−2𝑦𝐶𝑛−2 − 𝑦𝐶𝑛 + 𝐶𝑛−3))))(𝑦
2 + 𝑟)

𝑛
𝛼

𝜂
−𝑛
).   

 

       Since 𝑓𝑛−3(𝑦) is a polynomial, must be the coefficient of logarithm removed, we have 

𝑛𝑟
5

2𝜇𝐶𝑛(𝜂 − 𝛼) = 0, but the parameters 𝛼, 𝑟, 𝜇 and 𝜂 are positive real numbers and 𝑛𝐶𝑛 ≠ 0 

(𝐶𝑛 ≠ 0 by Lemma 9, 𝑓𝑛(𝑦) ≠ 0 and 𝑛 ≠ 0 otherwise 𝑓𝑛(𝑦) be constant) then must be  𝜂 −

𝛼 = 0, but 𝛿1,2 =
2𝑛(𝛼−𝜂)

𝜂
,  hence 𝛿1,2 = 0. □ 

 

Proof of Theorem 8. From Lemmas 9, 10 and 11, the cofactor of system (1) is 𝑘 = −𝛼𝑛, 

where 𝜂 = 𝛼. Let  𝐹 = ∑ 𝑓𝑖
𝑛
𝑖=0 (𝑥, 𝑦) , where  𝑓𝑖  is a homogeneous polynomial in the variables  

𝑥 and 𝑦 with degree 𝑖 for 𝑖 = 0,1, …𝑛  and 𝑘 = −𝑛𝛼 is a cofactor. Without missing the 

generality, it is supposed that  𝑓𝑛(𝑥, 𝑦) ≠ 0 and 𝑛 > 0 in each variables 𝑥 and  𝑦 . 

From the definition of Darboux polynomial, we can have  
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(𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))∑
𝜕𝑓𝑖(𝑥, 𝑦)

𝜕𝑥

𝑛

𝑖=0

+ (𝑟𝑥 + 𝑥𝑦2 − 𝛼𝑦)∑
𝜕𝑓𝑖(𝑥, 𝑦)

𝜕𝑦

𝑛

𝑖=0

= (−𝑛𝛼)∑𝑓𝑖(𝑥, 𝑦).                                                            

𝑛

𝑖=0

(21) 

Using the terms of degree 𝑛 + 2 in Eq. (21), we get 

                                               −𝑥𝑦2
𝜕𝑓𝑛(𝑥,𝑦)

𝜕𝑥
+ 𝑥𝑦2

𝜕𝑓𝑛(𝑥,𝑦)

𝜕𝑦
= 0,                                                              

by solving the partial differential equation above, we deduce that 

                                    𝑓𝑛(𝑥, 𝑦) = 𝐺𝑛(𝑥 + 𝑦),  
 

     where 𝐺𝑛 is an arbitrary polynomial function of 𝑥 + 𝑦. 

 

     Since 𝑓𝑛(𝑥, 𝑦) is the homogeneous polynomial of degree 𝑛  it should be in this form 

                               𝑓𝑛(𝑥, 𝑦) = 𝐶𝑛(𝑥 + 𝑦)
𝑛, 

 

     where 𝐶𝑛 is an arbitrary constant. 

Similarly, by using the terms of degree 𝑛 + 1 in Eq. (21), we get 

                                𝑓𝑛−1(𝑥, 𝑦) = 𝐺𝑛−1(𝑥 + 𝑦), 
where 𝐺𝑛−1 is an arbitrary polynomial of 𝑥 + 𝑦. 

 

     Since, 𝑓𝑛−1(𝑥, 𝑦) is the homogeneous polynomial of degree 𝑛 − 1. Then it must be in the 

following form 

  𝑓𝑛−1(𝑥, 𝑦) = 𝐶𝑛−1(𝑥 + 𝑦)
𝑛−1, 

  

     where 𝐶𝑛−1 is an arbitrary constant. 

 

Using the terms of degree  𝑛 in Eq. (21), we get 

−𝑥(𝑟 + 𝛼)
𝜕𝑓𝑛(𝑥, 𝑦)

𝜕𝑥
− 𝑥𝑦2

𝜕𝑓𝑛−2(𝑥, 𝑦)

𝜕𝑥
+ (𝑟𝑥 − 𝛼𝑦)

𝜕𝑓𝑛(𝑥, 𝑦)

𝜕𝑦
+ 𝑥𝑦2

𝜕𝑓𝑛−2(𝑥, 𝑦)

𝜕𝑦
= (−𝑛𝛼)𝑓𝑛(𝑥, 𝑦). 

To solve this partial differential equation, we can obtain 

  𝑓𝑛−2(𝑥, 𝑦) = 𝐺𝑛−2(𝑥 + 𝑦), 
where 𝐺𝑛−2 is an arbitrary polynomial of  𝑥 + 𝑦. 

Since, 𝑓𝑛−2(𝑥, 𝑦) is the homogeneous polynomial of degree 𝑛 − 2. Then it must be in the 

following form 

𝑓𝑛−2(𝑥, 𝑦) = 𝐶𝑛−2(𝑥 + 𝑦)
𝑛−2, 

where 𝐶𝑛−2 is an arbitrary constant. 

The terms of degree 𝑛 − 1 in Eq. (21), we obtain that 

 

𝜇
𝜕𝑓𝑛(𝑥, 𝑦)

𝜕𝑥
− 𝑥(𝑟 + 𝛼)

𝜕𝑓𝑛−1(𝑥, 𝑦)

𝜕𝑥
− 𝑥𝑦2

𝜕𝑓𝑛−3(𝑥, 𝑦)

𝜕𝑥
+ (𝑟𝑥 − 𝛼𝑦)

𝜕𝑓𝑛−1(𝑥, 𝑦)

𝜕𝑦

+ 𝑥𝑦2
𝜕𝑓𝑛−3(𝑥, 𝑦)

𝜕𝑦
= −𝑛𝛼𝑓𝑛−1(𝑥, 𝑦). 

To solve this differential equation, we can obtain 

 

𝑓𝑛−3(𝑥, 𝑦) = (𝑙𝑛(𝑥) − 𝑙𝑛(−𝑦))(𝜇𝑛𝐶𝑛 + 𝛼𝐶𝑛−1)(𝑥 + 𝑦)
𝑛−3 + (𝜇𝑛𝐶𝑛 + 𝛼𝐶𝑛−1)

(𝑥 + 𝑦)𝑛−2

𝑦
+ 𝐺𝑛−3(𝑥 + 𝑦) 
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where  𝐺𝑛−3 is an arbitrary polynomial of 𝑥 + 𝑦. 

 

Since 𝑓𝑛−3(𝑥, 𝑦) is a homogeneous polynomial of degree  𝑛 − 3, should be 

 

                         𝑛𝐶𝑛𝜇 + 𝛼𝐶𝑛−1 = 0  then 𝐶𝑛−1 =
−𝑛𝜇

𝛼
𝐶𝑛, hence 

                                     𝑓𝑛−3 = 𝐶𝑛−3(𝑥 + 𝑦)
𝑛−3 and   𝑓𝑛−1 =

−𝑛𝜇

𝛼
𝐶𝑛(𝑥 + 𝑦)

𝑛−1, 

 

where 𝐶𝑛−3 is an arbitrary constant. 

Using the terms of degree  𝑛 − 2 in Eq. (21), we get 

𝜇
𝜕𝑓𝑛−1(𝑥, 𝑦)

𝜕𝑥
− 𝑥(𝑟 + 𝛼)

𝜕𝑓𝑛−2(𝑥, 𝑦)

𝜕𝑥
− 𝑥𝑦2

𝜕𝑓𝑛−4(𝑥, 𝑦)

𝜕𝑥

+ (𝑟𝑥 − 𝛼𝑦)
𝜕𝑓𝑛−2(𝑥, 𝑦)

𝜕𝑦
𝑥𝑦2

𝜕𝑓𝑛−4(𝑥, 𝑦)

𝜕𝑦
= −𝑛𝛼𝑓𝑛−2(𝑥, 𝑦). 

 

To solve this differential equation, we can obtain 

𝑓𝑛−4(𝑥, 𝑦) = (2𝛼𝐶𝑛−2 + 𝜇(𝑛 − 1)𝐶𝑛−1)(𝑙𝑛(𝑥) − 𝑙𝑛(−𝑦))(𝑥 + 𝑦)
𝑛−4 + (2𝛼𝐶𝑛−2 + 𝜇(𝑛 −

1)𝐶𝑛−1)
(𝑥+𝑦)𝑛−3

𝑦
+ 𝐺𝑛−4(𝑥 + 𝑦), 

 where 𝐺𝑛−4 is an arbitrary polynomial of  𝑥 + 𝑦. 

Since 𝑓𝑛−4(𝑥, 𝑦) is a homogeneous polynomial of degree  𝑛 − 4, must be 

2𝛼𝐶𝑛−2 + 𝜇(𝑛 − 1)𝐶𝑛−1 = 0, hence  𝐶𝑛−2 =
−𝜇(𝑛−1)

2𝛼
𝐶𝑛−1, 

since 𝐶𝑛−1 =
−𝑛𝜇

𝛼
𝐶𝑛, we get  𝐶𝑛−2 =

𝑛(𝑛−1)𝜇2

2𝛼2
𝐶𝑛, then 

        𝑓𝑛−4(𝑥, 𝑦) = 𝐶𝑛−4(𝑥 + 𝑦)
𝑛−4  and  𝑓𝑛−2(𝑥, 𝑦) =

𝑛(𝑛−1)𝜇2

2𝛼2
𝐶𝑛(𝑥 + 𝑦)

𝑛−2,  

                                                        

      where 𝐶𝑛−4 is an arbitrary constant. 

      Using the terms of degree  𝑛 − 3 in Eq. (21), we get 

 

             𝜇
𝜕𝑓𝑛−2(𝑥,𝑦)

𝜕𝑥
− 𝑥(𝑟 + 𝛼)

𝜕𝑓𝑛−3(𝑥,𝑦)

𝜕𝑥
− 𝑥𝑦2

𝜕𝑓𝑛−5(𝑥,𝑦)

𝜕𝑥
+ (𝑟𝑥 − 𝛼𝑦)

𝜕𝑓𝑛−3(𝑥,𝑦)

𝜕𝑦
+

𝑥𝑦2
𝜕𝑓𝑛−5(𝑥,𝑦)

𝜕𝑦
= −𝑛𝛼𝑓𝑛−3(𝑥, 𝑦). 

 

To solve this differential equation, we can obtain 

𝑓𝑛−5(𝑥, 𝑦) = (3𝛼𝐶𝑛−3 + 𝜇(𝑛 − 2)𝐶𝑛−2)(𝑙𝑛(𝑥) − 𝑙𝑛(−𝑦))(𝑥 + 𝑦)
𝑛−5 + (3𝛼𝐶𝑛−3 + 𝜇(𝑛 −

2)𝐶𝑛−2)
(𝑥+𝑦)𝑛−4

𝑦
+ 𝐺𝑛−5(𝑥 + 𝑦)), 

 

where 𝐺𝑛−5 is an arbitrary polynomial of 𝑥 + 𝑦. 

Since 𝑓𝑛−5(𝑥, 𝑦) is a homogeneous polynomial of degree  𝑛 − 5, must be 

 

3𝛼𝐶𝑛−3 + 𝜇(𝑛 − 2)𝐶𝑛−2 = 0, hence; 𝐶𝑛−3 =
𝜇(𝑛−2)

3𝛼
𝐶𝑛−2 , since 𝐶𝑛−2 =

𝑛(𝑛−1)𝜇2

2𝛼2
  we get 

𝐶𝑛−3 =
−𝑛(𝑛−1)(𝑛−2)𝜇3

6𝛼3
𝐶𝑛, then 

       𝑓𝑛−5(𝑥, 𝑦) = 𝐶𝑛−5(𝑥 + 𝑦)
𝑛−5  and  𝑓𝑛−3(𝑥, 𝑦) =

−𝑛(𝑛−1)(𝑛−2)𝜇3

6𝛼3
𝐶𝑛(𝑥 + 𝑦)

𝑛−3, 

 

where 𝐶𝑛−5 is an arbitrary constant. 

Similarly, by computing 𝑓1(𝑥, 𝑦) and 𝑓0(𝑥, 𝑦) , we can obtains 
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𝑓1(𝑥, 𝑦) = 𝐶1(𝑥 + 𝑦), 
where 𝐶1 is  an arbitrary constant. 

                                              𝐶1 =
𝑛(𝑛−1)(𝑛−2)…2𝜇𝑛−1

(𝑛−1)! 𝛼𝑛−1
𝐶𝑛, 

and 

                                              𝑓0(𝑥, 𝑦) =
𝑛(𝑛−1)(𝑛−2)…𝜇𝑛

𝑛! 𝛼𝑛
𝐶𝑛,  

Thus, 𝐹 = 𝑓𝑛(𝑥, 𝑦) + 𝑓𝑛−1(𝑥, 𝑦) + ⋯+ 𝑓0(𝑥, 𝑦). 

Hence, 𝐹 = 𝐶𝑛(𝑥 + 𝑦)
𝑛 −

𝑛𝜇

𝛼
𝐶𝑛(𝑥 + 𝑦)

𝑛−1 +
𝜇2𝑛(𝑛−1)

2! 𝛼2
𝐶𝑛(𝑥 + 𝑦)

𝑛−2 −
𝜇3𝑛(𝑛−1)(𝑛−2)

3! 𝛼3
𝐶𝑛(𝑥 +

𝑦)𝑛−3 +⋯+
𝜇𝑛−1𝑛(𝑛−1)…2

(𝑛−1)! 𝛼𝑛−1
𝐶𝑛(𝑥 + 𝑦) +

𝜇𝑛𝑛(𝑛−1)…1

𝑛! 𝛼𝑛
𝐶𝑛. 

 

     By Binomial Theorem, then 𝐹 = 𝐶𝑛(𝑥 + 𝑦 −
𝜇

𝛼
)𝑛, where 𝐶𝑛 is an arbitrary constant, with 

the cofactor  −𝑛𝛼. Then system (1) has a unique irreducible Darboux polynomial 𝛼𝑥 + 𝛼𝑦 − 𝜇 

with the cofactor – 𝛼 if and only if  𝜂 = 𝛼. □ 

 

Proposition 12. System (1) has only two irreducible exponential factors  𝑒𝑥+𝑦and 𝑒(𝑥+𝑦)
2
 with  

cofactors  𝜇 − 𝛼𝑥 − 𝜂𝑦  and  2(𝑥 + 𝑦)(𝜇 − 𝛼𝑥 − 𝜂𝑦) respectively. 

Proof. By Theorem 8, system (1) has the irreducible Darboux polynomial 𝛼 𝑥 + 𝛼𝑦 − 𝜇  when  

𝜂 = 𝛼. Then in view of Theorem 2, system (1) can have an exponential factor of the form: 

either 𝐸 = exp (𝑔) with  𝑔 ∈ ℂ[𝑥, 𝑦], or only when 𝜂 = 𝛼, 𝐸 = 𝑒

𝑔(𝑥,𝑦)

(𝑥+𝑦−
𝜇
𝛼
)𝑠 with 𝑠 ≥ 1 and such 

that 𝑔 ∈ ℂ[𝑥, 𝑦] is co-prime with 𝑥 + 𝑦 −
𝜇

𝛼
  and the degree of 𝑔 no more than 𝑠 . 

       We first prove that system(1) with 𝜂 = 𝛼 has no exponential factors of the form 𝐸 =

𝑒

𝑔(𝑥,𝑦)

(𝑥+𝑦−
𝜇
𝛼
)𝑠 . 

       Suppose that system (1) with 𝜂 = 𝛼 has an exponential factor of the form 𝐸 = 𝑒

𝑔(𝑥,𝑦)

(𝑥+𝑦−
𝜇
𝛼
)𝑠 

with 𝑠 ≥ 1 such that 𝑥 + 𝑦 −
𝜇

𝛼
  is co-prime with 𝑔 ∈ ℂ[𝑥, 𝑦]. In view of Theorem 3, we can 

assume that 𝑠 = 1 and that 𝑔 has degree at most one (note that here 𝑔1 = 𝑥 + 𝑦 −
𝜇

𝛼
  has degree 

one). We write 𝑔 has a polynomial of degree one in the variables 𝑥 and 𝑦 as follows: 

                              𝑔(𝑥, 𝑦) = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3,                                                                       

 

      where  𝑎1, 𝑎2 and  𝑎3 are constant.                       

     Clearly 𝑔 satisfies 

         𝑋(𝐸) = (𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))
𝜕𝐸

𝜕𝑥
+ (𝑟𝑥 + 𝑥𝑦2 − 𝛼𝑦)

𝜕𝐸

𝜕𝑦
= 𝐿𝐸,      

then 

(𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))
𝜕

𝜕𝑥
(

𝑔(𝑥, 𝑦)

(𝑥 + 𝑦 −
𝜇

𝛼
)
) + (𝑟𝑥 + 𝑥𝑦2 − 𝛼𝑦)

𝜕

𝜕𝑦
(

𝑔(𝑥, 𝑦)

(𝑥 + 𝑦 −
𝜇

𝛼
)
) = 𝐿, 

 

     where 𝐿 is a cofactor of exponential factor 𝐸. 

     As a simply version of the above equation, it can be converted to; 

(𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))
𝜕𝑔(𝑥,𝑦)

𝜕𝑥
+ (𝑟𝑥 + 𝑥𝑦2 − 𝛼𝑦)

𝜕𝑔(𝑥,𝑦)

𝜕𝑦
− 𝛼𝑔(𝑥, 𝑦) = 𝐿(𝑥 + 𝑦 −

𝜇

𝛼
).      (22)    

The cofactor  𝐿 must be a polynomial of degree 2 and so 

                            𝐿 = 𝑏0𝑥
2 + 𝑏1𝑥𝑦 + 𝑏2𝑦

2 + 𝑏3𝑥 + 𝑏4𝑦 + 𝑏5 ,                                           (23) 

where  𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4 and 𝑏5 are constant. 
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From Eq. (22)and using an algebraic manipulator , 

(𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))𝑎1 + (𝑟𝑥 + 𝑥𝑦
2 − 𝛼𝑦)𝑎2 + 𝛼(𝑎1𝑥 + 𝑎2𝑦 + 𝑎3) = (𝑏0𝑥

2 + 𝑏1𝑥𝑦 +

𝑏2𝑦
2 + 𝑏3𝑥 + 𝑏4𝑦 + 𝑏5)(𝑥 + 𝑦 −

𝜇

𝛼
).                                                                                   (24) 

 

Comparing the coefficients of Eq. (24), we obtain  

𝑏0 = 𝑏1 = 𝑏2 = 𝑏3 = 𝑏4 = 𝑏5 = 0  and  𝑎1 = 𝑎2, 𝑎3 =
−𝜇𝑎1

𝛼
  then  𝑔 = 𝑎1(𝑥 + 𝑦 −

𝜇 

𝛼
)   and  

𝐿 = 0. However this is not possible since 𝑔  is co-prime with  𝑥 + 𝑦 −
𝜇

𝛼
 . Hence this case is 

not possible. 

 

     In summary, system (1) has an exponential factor it should be of the form 𝐸 = exp (𝑔) with 

𝑔 ∈ ℂ[𝑥, 𝑦]\ℂ. In this case, 𝑔 satisfies 

         (𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))
𝜕𝑔(𝑥,𝑦)

𝜕𝑥
+ (𝑟𝑥 + 𝑥𝑦2 − 𝛼𝑦)

𝜕𝑔(𝑥,𝑦)

𝜕𝑦
= 𝐿,                                   (25) 

 

     where  𝐿 = 𝐿(𝑥, 𝑦) is polynomial of degree two in the variable 𝑥 and 𝑦  and that we can take 

as in Eq. (23). 
 

     Let 𝑔 can be written in the homogeneous form 𝑔(𝑥, 𝑦) = ∑ 𝑔𝑖(𝑥, 𝑦),
𝑛
𝑖=0  where each  𝑔𝑖 is a 

homogeneous polynomial in the variables 𝑥 and  𝑦 of degree 𝑖 and 𝑛 > 0.  

Using the terms of degree 𝑛 + 2  with 𝑛 ≥ 3  in Eq. (25), we get  

−𝑥𝑦2
𝜕𝑔𝑛(𝑥,𝑦)

𝜕𝑥
+ 𝑥𝑦2

𝜕𝑔𝑛(𝑥,𝑦)

𝜕𝑦
= 0 . 

 

     We may obtain by solving the partial differential equation given above 

𝑔𝑛(𝑥, 𝑦) = 𝐺𝑛(𝑥 + 𝑦), 
where 𝐺𝑛 is an arbitrary polynomial of 𝑥 + 𝑦. 

 

Since 𝑔𝑛(𝑥, 𝑦) is a homogeneous polynomial of degree  𝑛, then it should be in the following 

form 

  𝑔𝑛(𝑥, 𝑦) = 𝐶𝑛(𝑥 + 𝑦)
𝑛, 

 

 where 𝐶𝑛 is an arbitrary constant. 

Calculating the terms of degree 𝑛 + 1 with 𝑛 ≥ 3   in  Eq. (25) we obtain 

−𝑥𝑦2
𝜕𝑔𝑛−1(𝑥,𝑦)

𝜕𝑥
+ 𝑥𝑦2

𝜕𝑔𝑛−1(𝑥,𝑦)

𝜕𝑦
= 0 . 

 

By solving the above-mentioned partial differential equation, we can obtain  

𝑔𝑛−1(𝑥, 𝑦) = 𝐺𝑛−1(𝑥 + 𝑦), 
 where 𝐺𝑛−1 is an arbitrary polynomial of 𝑥 + 𝑦. 

Since 𝑔𝑛−1(𝑥, 𝑦) is a homogeneous polynomial of degree 𝑛 − 1, then it should be in the 

following form 

   𝑔𝑛−1(𝑥, 𝑦) = 𝐶𝑛−1(𝑥 + 𝑦)
𝑛−1, 

 where 𝐶𝑛−1 is an arbitrary constant. 

 

Calculating the terms of degree 𝑛  with 𝑛 ≥ 3  in Eq. (25) we obtain 

−𝑥𝑦2
𝜕𝑔𝑛−2(𝑥, 𝑦)

𝜕𝑥
− 𝑥(𝑟 + 𝛼)

𝜕𝑔𝑛(𝑥, 𝑦)

𝜕𝑥
+ (𝑟𝑥 − 𝛼𝑦)

𝜕𝑔𝑛(𝑥, 𝑦)

𝜕𝑦
+ 𝑥𝑦2

𝜕𝑔𝑛−2(𝑥, 𝑦)

𝜕𝑦
= 0. 

 

     We may obtain by solving the partial differential equation given above 
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𝑔𝑛−2(𝑥, 𝑦) = −𝑛𝛼𝐶𝑛(𝑙𝑛(𝑥) − 𝑙𝑛(−𝑦))(𝑥 + 𝑦)
𝑛−2 − 𝑛𝛼𝐶𝑛

(𝑥 + 𝑦)𝑛−1

𝑦
+ 𝐺𝑛−2(𝑥 + 𝑦), 

 

where 𝐺𝑛−2 is an arbitrary polynomial of 𝑥 + 𝑦. 

     Since 𝑔𝑛−2(𝑥, 𝑦) is a polynomial of degree  𝑛 − 2, 𝑛 > 1 and  𝛼 > 0 then 𝐶𝑛 = 0, hence 

𝑔𝑛(𝑥, 𝑦) = 0. 

 

     In contrast to the fact that  𝑛 ≥ 3, this results in  𝑔 being a constant. Then  𝑛 ≤ 2 is required. 

In this situation, 𝑔 is a polynomial of degree two in variables 𝑥 and 𝑦 that we write it as  

𝑔(𝑥, 𝑦) = 𝐴1𝑥
2 + 𝐴2𝑥𝑦 + 𝐴3𝑦

2 + 𝐴4𝑥 + 𝐴5𝑦 + 𝐴6,  
 

      where  𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 and  𝐴6  are constant. Then, by equation (25), we obtain that  

(𝜇 − 𝑥𝑦2 − 𝑥(𝑟 + 𝛼))(2𝐴1𝑥 + 𝐴2𝑦 + 𝐴4) + (𝑟𝑥 + 𝑥𝑦
2 − 𝛼𝑦)(𝐴2𝑥 + 2𝐴3𝑦 + 𝐴5) =

𝑏0𝑥
2 + 𝑏1𝑥𝑦 + 𝑏2𝑦

2 + 𝑏3𝑥 + 𝑏4𝑦 + 𝑏5.      
 

Comparing the coefficients, we obtain 

𝐴1 = 𝐴3, 𝐴2 = 2𝐴3,𝐴4 = 𝐴5, 𝑏0 = 𝑏1 = −2𝐴2𝛼 , 𝑏2 = −𝐴2𝛼, 𝑏3 = 𝑏4 = 𝐴2𝜇 − 𝐴4𝛼  and  

𝑏5 = 𝐴4𝜇. 

 

That is 𝑔(𝑥, 𝑦) = 𝐴6 + 𝐴5(𝑥 + 𝑦) + 𝐴3(𝑥 + 𝑦)
2. 

 

     This implies that 𝑒𝐴3(𝑥+𝑦)
2+𝐴5(𝑥+𝑦)+𝐴6 is the exponential factor with cofactor 𝐴2(−2𝑥(𝑥 +

𝑦) − 𝛼 + 𝜇(𝑥 + 𝑦)) − 𝐴4(𝛼(𝑥 + 𝑦) − 𝜇). Then 𝑒𝑥𝑝(𝑥 + 𝑦) and  𝑒𝑥𝑝(𝑥 + 𝑦)2 are only 

exponential factors of system (1) with cofactors  𝜇 −𝛼𝑥 − 𝜂𝑦 and 2(𝑥 + 𝑦)(𝜇 − 𝛼𝑥 − 𝜂𝑦) 
respectively. □ 

 

We now prove the result related with Darboux F.I. of system (1). 

 

Theorem 13. System (1) has not Darboux F.I. .  

Proof. By Theorem 8 and Proposition 12, if 𝜂 = 𝛼 then 𝑥 + 𝑦 −
𝜇

𝛼
  is the unique invariant 

algebraic curve of system (1) with the cofactor  𝑘 = 𝛼 with  𝑒𝑥+𝑦and 𝑒(𝑥+𝑦)
2
  

are the unique exponential factors of system (1) with cofactors  𝐿1 = 𝜇 −𝛼𝑥 − 𝛼𝑦  and  𝐿2 =
2(𝑥 + 𝑦)(𝜇 − 𝛼𝑥 − 𝛼𝑦) respectively. From Proposition 5, system (1) has Darboux first integral 

if and only if 

                                              𝜆𝑘 + 𝜇1 𝐿1 + 𝜇2𝐿2 = 0,  𝜆, 𝜇1, 𝜇2 ∈ ℂ.  

Then  

                                      𝜆𝛼 + 𝜇1(𝜇 − 𝛼𝑥 − 𝛼𝑦) + 𝜇2(2(𝑥 + 𝑦)(𝜇 − 𝛼𝑥 − 𝛼𝑦)) = 0. 
 

Comparing the coefficients, we obtain the following equations, 

𝜆𝛼 + 𝜇1𝜇 = 0, 
−𝛼𝜇1 + 2𝜇2𝜇 = 0, 
−𝜇1𝛼 + 2𝜇2𝜇 = 0, 
−2𝛼𝜇2 = 0, 

−2𝛼𝜇2 − 2𝛼𝜇2 = 0, 
−2𝛼𝜇2 = 0, 

     since the parameter 𝛼 is positive real constant, then 𝜆 = 𝜇1 = 𝜇2 = 0, by Proposition 5, the 

system (1) has no Darboux F.I. . □ 
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      Let us now prove that system (1) does not have an integrating factor of Darboux type as a 

consequence of Theorems 6, 8 and Proposition 5. 

 

Corollary 14. System (1) has no integrating factors of Darboux type.  

Proof. By Theorem 8, system (1) has only one Darboux polynomial if and only if 𝜂 = 𝛼, in 

which case it is 𝑥 + 𝑦 −
𝝁

𝛼
 with the cofactor  𝑘 = −𝛼, and by Proposition 12, System (1) has 

only two exponential factors  𝑒𝑥+𝑦 with  cofactor  𝐿1 = 𝜇 − 𝛼𝑥 − 𝜂𝑦 and 𝑒(𝑥+𝑦)
2
  with  cofactor 

𝐿2 = 2(𝑥 + 𝑦)(𝜇 − 𝛼𝑥 − 𝜂𝑦) respectively. In order that system (1) has a Liouvillian F.I., by 

Theorem 6, system (1) must have an integrating factor of Darboux type. From Proposition 5, 

system (1) has an integrating factor of Darboux-type if and only if   

 

                                          𝜆𝑘 + 𝜇1 𝐿1 + 𝜇2𝐿2 = −𝑑𝑖𝑣(𝑃, 𝑄),  

             −𝛼 𝜆 + 𝜇1(𝜇 − 𝛼𝑥 − 𝜂𝑦) + 𝜇2(2(𝑥 + 𝑦)(𝜇 − 𝛼𝑥 − 𝜂𝑦)) = 2𝑥𝑦 − 𝑦
2 − 𝑟 − 2𝛼, 

 

     where 𝜆, 𝜇1, 𝜇2 ∈ ℂ. Since 𝛼, 𝜂, 𝑟 > 0, then above equation has no solution. Hence system 

(1) has no integrating factor of Darboux type, then the result follows directly by Proposition 5. 

□ 

 

     As a consequence of Corollary 14 and Theorem 6, we obtain directly the main result. 

Theorem 15. System (1) has no Liovillian F.I. . 

 

Proposition 16. System (1) has a unique irreducible Darbox invariant. 

Proof. By Theorem 8, if 𝜂 = 𝛼 the 𝑥 + 𝑦 −
𝜇

𝛼
  is the unique invariant algebraic curve of system 

(1),  with the cofactor  𝑘 = 𝛼 and by Proposition 12, 𝑒𝑥+𝑦 and 𝑒(𝑥+𝑦)
2
 are the unique 

exponential factors of system (1) with cofactors  𝐿1 = 𝜇 −𝛼𝑥 − 𝛼𝑦  and  𝐿2 = 2(𝑥 + 𝑦)(𝜇 −
𝛼𝑥 − 𝛼𝑦) respectively. From Proposition 5, system (1) has Darboux invariant if and only if 

                                      𝜆𝑘 + 𝜇1 𝐿1 + 𝜇2𝐿2 = −𝑠,   𝜆, 𝜇1, 𝜇2 ∈ ℂ 𝑠 ∈ ℂ\{0}, 
 then  

                                𝜆𝛼 + 𝑢1(𝜇 − 𝛼𝑥 − 𝛼𝑦) + 𝑢2(2(𝑥 + 𝑦)(𝜇 − 𝛼𝑥 − 𝛼𝑦)) = −𝑠 . 
Comparing the coefficients, we obtain 

𝜆𝛼 + 𝜇1𝜇 = −𝑠, 
−𝛼𝜇1 + 2𝜇2𝜇 = 0, 
−𝜇1𝛼 + 2𝜇2𝜇 = 0, 
−2𝛼𝜇2 = 0, 

−2𝛼𝜇2 − 2𝛼𝜇2 = 0, 
−2𝛼𝜇2 = 0, 

since the parameter 𝛼 is positive real constant, then 𝜆 =
−𝑠

𝛼
  and  𝜇1 = 𝜇2 = 0, by Proposition 

5, then  (𝑥 + 𝑦 −
𝜇

𝛼
  )
𝜆

𝑒−𝛼𝜆𝑡 , be the unique Darboux invariant of system (1).  □ 
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