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Abstract 
     A complexified adjoint representations of the complexification Lie algebras 

associated with the special orthogonal group SO(3) and special linear group SL(2,₵)  

have been obtained. A new representation of their tensor product is naturally arisen 

and computed in details. 
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 SL(2,₵) و SO(3) تدارس تمثيلات خاصة لزمر لي المصفوفيه 
 

 سعد عويد بديوي 
 قسم الرياضيات، كلية العلوم، الجامعة الطستظصريه، بغداد، العراق.

 الخلاصة
  SO(3)زمرة الطتعامدة الخاصة للالطعقدة  الطرتبطةلجبور لي  الطعقدةتم ايجاد التطثيلات الطساعدة      

 . تطثيل جديد لضربهطا الطكثف نشأ بصورة طبيعية وتم حسابه بالتفصيل.  SL(2,₵)الخاصة  والزمرة الخطية
Introduction  1. 

     Élie Catan introduced new sights on the theory of Lie algebras by showing that complexification of 

the Lie algebra of a compact group is a complex Lie algebra, which leads to classifying symmetric 

spaces [1, 2]. Many physical phenomena studied through analyzing their symmetry, one of the pioneer 

results in this direction is the discovery of Higgs boson. [3].Jonathan and Mich~ le V designed an 

orbital method to determine a special variety of unitary representation [4]. Moreover; Martin provides 

three different approaches to exhibit their close relationship to the pointwise tensor product [5]. 

     Let   be any matrix lie group, g its associated Lie algebra and  Ad is the adjoint representation of 

G, then, the adjoint representation ad of g related with Ad  through the formula:   (  )     ( )  for 

each    , which provides a tool to transfer information between Lie groups and Lie algebras[6]. An 

attempt has been made to compute the adjoint representations for the complexification of the 

associated Lie algebras   ( ) , and   (   )   of the matrix Lie groups SO(3) and SL(2,₵)   

respectively. 

Seeking for new irreducible representations, tensor product representation of the tensor product Lie 

algebras   ( )    (   )  , has been computed in details. 

Notations and preliminaries  2. 

     Throughout, we adopt the standard notations and definitions of matrix lie group, matrix lie algebra 

and their representation's. For example, see [6]. 

Consider the basis *  +   
  for the special orthogonal matrix Lie algebra so(3) where;  
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)   With commutation  

Relations:                       ,     -     ,     -         ,     -                                                (2.1) 
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Also, *  +   
  form a basis for the special linear matrix Lie algebra    (   )  where;  

   .
  
   

/     .
  
  

/         .
  
  

/ With commutation relations: 

,     -      ,     -           ,     -                                                                             (2.2) 

Definition 2.1 For any Lie algebra g, we define its complexification by:    *    |         +. 
Moreover, every finite dimensional complex representation ᶲ of g can be extended to    by: 

                         (    )   ( )    ( )                                                             
Definition 2.2 Let g be an arbitrary lie algebra, the adjoint representation ad of g is a lie algebra 

homomorphism        ( )          defined by:  

    ( )  ,   -                                              
Our aim is to find the tensor adjoint representation of the complexification matrix Lie algebras 

associated to so(3) and sl(2,₵). 

3. Complexification representation of   ( )  

Definition 3.1 The special orthogonal Lie algebra   ( ) associated to the special orthogonal Lie 

group SO(3) is the set of all     real traceless matrices x such that        and its adjoint 

representation is;  

      ( )    (  ( )) 
     Let x    ( ) then               for some         ( R is the set of all real numbers) 

For any      ( )       ,         such that y                 , by definition 2.2 we have; 

   ( )  ,   -  ,                          - , from the properties of Lie bracket [,] the 

right expression take the form; 

    ( )  (       )   (       )   (       )   Which can be simplify to get: 

   ( )  (

               
               
               

)                                                                               (3.1) 

Now,       ( )    (  ( ) ) can be written by definition 2.1 as follows: 

Let          ( ) , for each z    ( )    

     ( )     ( )       ( )  ,   -   ,   -         
     Since the basis of a Lie algebra g can be considered as a basis for its complexification    the 

element z can be written as:                  for some              . Therefore, using (3.1) 

we have; 

    ( )  (

               
               
               

)   (

                   
                   
                   

 ) 

                         =(
     

     

     
)   where   

   (       )   (         )    (       )   (         )  

    (       )   (         )    (       )   (         ) 

   (       )   (         )     (       )   (         ) 
}                                    (3.2) 

4. Complexification representation of   (   )  

Definition 4.1 The special linear Lie algebra sl(2,₵) associated to the special linear group SL(2,₵) is 

the set of all     complex traceless matrices, for     (   )  its adjoint representation is given by; 

      (   )     (  (   ) ) 
     The element A can be written as a linear combination of  basis elements, that is; 

                    and  for each     (   ) ,                  for some         , 

        

   ( )  ,   -  ,                             -  
   ( )  (         )    (         )    (         )   

   ( )  (
          (         )

 (         )          
)                                                                                 (4,1) 

     Now, the complexification representation       (   )    (  (   )) can be written using 

definition 2.1 as follows: 
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For each             (   ) ,    ( )     ( )       ( )  ,   -   ,   - 

     Note that   can be written as                   for some      ,        , from (4.1) we 

have;  

    ( )  (
          (         )

 (         )          
)   (

          (         )

 (         )          
) 

    ( )  .
    
    

/  Where   

              (         ) 

    (         )    (         ) 

    (         )    (         ) 

              (         ) }
 

 
                                                                                      (4.2) 

5. Tensor representation of     ( )    (   )  

Definition 5.1 Tensor product of two representations say,        of Lie algebras       respectively 

denoted by        is a representation of their direct sum       defined by: 

     (   )    ( )       ( )  for all      ,      . 

Therefore, considering the complexification representations      and      founded in section 3 and 

4, we get the tensor representation                  ( )    (   )  as follows; 

         (   )      ( )         ( ) 
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Where                          described in (3.2) and (4.2). 
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