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Abstract

A complexified adjoint representations of the complexification Lie algebras
associated with the special orthogonal group SO(3) and special linear group SL(2,C)
have been obtained. A new representation of their tensor product is naturally arisen
and computed in details.
Keywords: Lie, groups, Complexification of Lie algebras, Tensor of
representations.
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1. Introduction

Elie Catan introduced new sights on the theory of Lie algebras by showing that complexification of
the Lie algebra of a compact group is a complex Lie algebra, which leads to classifying symmetric
spaces [1, 2]. Many physical phenomena studied through analyzing their symmetry, one of the pioneer
results in this direction is the discovery of Higgs boson. [3].Jonathan and Mich~ le V designed an
orbital method to determine a special variety of unitary representation [4]. Moreover; Martin provides
three different approaches to exhibit their close relationship to the pointwise tensor product [5].

Let G be any matrix lie group, g its associated Lie algebra and Ad is the adjoint representation of
G, then, the adjoint representation ad of g related with Ad through the formula: Ad(e*) = e%¢® for
each x € g, which provides a tool to transfer information between Lie groups and Lie algebras[6]. An
attempt has been made to compute the adjoint representations for the complexification of the
associated Lie algebras so(3)q, and si(2,¢)¢ of the matrix Lie groups SO(3) and SL(2,C)
respectively.
Seeking for new irreducible representations, tensor product representation of the tensor product Lie
algebras so(3)¢ ® sl(2, €)¢ , has been computed in details.
2. Notations and preliminaries

Throughout, we adopt the standard notations and definitions of matrix lie group, matrix lie algebra
and their representation's. For example, see [6].
Consider the basis {F;}3_, for the special orthogonal matrix Lie algebra so(3) where;

0 0 O 0 0 1 0 -1 0
F1:<0 0 —1>,F2=<0 0 0) andF3=<1 0 0) With commutation

01 O -1 0 O 0 0 O
Re|atI0nS [Fll Fz] = F3, [Fz,F3] = F1 and [F3,F1] = F2 (21)
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Also, {X;}3_, form a basis for the special linear matrix Lie algebra sl(2,¢) where;

(1 0 _(0 1 _ (0 0\ . .
X, = (1 _1),X2 = (0 0) and X; = (1 0) With commutation relations:
[XliXZ] = 2X2, [Xl,X3] = _2X3 and [Xz,X3] = X1 (22)

Definition 2.1 For any Lie algebra g, we define its complexification by: g¢ = {x + iylx € g,y € g }.
Moreover, every finite dimensional complex representation ¢ of g can be extended to g by:

Pe(x +iY) = 2(x) + i%(¥)
Definition 2.2 Let g be an arbitrary lie algebra, the adjoint representation ad of g is a lie algebra
homomorphism ad: g — gl(g), for x € g defined by:
ad,(y) =[x,ylvyeg
Our aim is to find the tensor adjoint representation of the complexification matrix Lie algebras
associated to so(3) and sl(2,C).
3. Complexification representation of so(3)¢
Definition 3.1 The special orthogonal Lie algebra so(3) associated to the special orthogonal Lie
group SO(3) is the set of all 3 x 3real traceless matrices x such that x!" = —x and its adjoint
representation is;

ad,:so(3) - gl(so(3))

Let xe so(3) then x = aF; + BF, + yF; forsome a, B,y € R ( R is the set of all real numbers)
Forany y € so(3) 3c; € R, i = 1,2,3 suchthaty = ¢, F; + ¢, F, + c3F5 , by definition 2.2 we have;
ad,(y) = [x,y] = [aF; + BF, + yF;,c;F; + ¢, F, + c3F3] , from the properties of Lie bracket [,] the
right expression take the form;
ad,(y) = (ac, — Bc1)Fs + (ye, — ac3)F, + (Bes — ycz)F3 Which can be simplify to get:

0 pcy —acy, yecg —acs
ad,(y) = (acz —Ba 0 14 303)
acz —ycy Pe3—ye 0
Now, adg:so(3)¢ = gl(so(3)¢) can be written by definition 2.1 as follows:
Lety = x + iy € so(3)¢, foreach z € s0(3),
adg,(P) = ad,(x) +iad,(y) = [z,x] + i[z,y]

Since the basis of a Lie algebra g can be considered as a basis for its complexification g the
element z can be written as: z = 1, F; + r,F, + r3F5 for some r; € R,i = 1,2,3. Therefore, using (3.1)
we have;

(3.1)

0 ar, — fry arz; —yn 0 T,C4 —T1Cy T3C1 — T1C3
adg,(P) = <ﬁr1 —ar 0 Brs — VT2> +1i <7”1C2 — 120 0 r3€ — 7”2C32>
yry —ary  yr, — fry 0 T1C3 —T3C, T5C3 —13C; 0
0 w w,
=<w3 0 w4) where
ws we 0
wy = (ary — pry) +i(ryc; — 1162), w5 = (arg —yry) + i(r3¢0 — 1163),
w3 = (Bry — ary) + i(ric; — 1561), wa = (Br3 — y12) + i(13¢, — 15C3), (3.2)
ws = (yry —arz) +i(ric3 —r361) , we = (y12 — Br3) + i(1203 — 1362).
4. Complexification representation of sl(2, )
Definition 4.1 The special linear Lie algebra sl(2,C) associated to the special linear group SL(2,C) is
the set of all 3 x 3 complex traceless matrices, for A € sl(2,¢) its adjoint representation is given by;
ad,:s1(2,¢) - gl(sl(2,¢))

The element A can be written as a linear combination of basis elements, that is;
A =5,X; +5s,X, +53X; and foreach B €sl(2,(), B = kX, + k,X, + k3X; for some s;,k; € €,
i=1,23
ady(B) = [A,B] = [s1X1 + 52X5 + 53X3, k1 X1 + ko X, + k3X5]
ady(B) = (52k3k— 53k2k)X1 +22((51le - 52}51)))(2 + 2(s3ky — 51k3)X3

SaK3 — S3i¢p S1R2 — S2Kq

ady(B) = (2(53k1 — S1k3) s3ky — szk3 ) “1)

Now, the complexification representation adg:sl(2,¢) = gl(sl(2,()) can be written using
definition 2.1 as follows:
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Foreach u,t = A +iB €l(2,¢) ,adg,(r) = ad,(A) + i ad,(B) = [u,A] + i[u, B]

Note that u can be written as u = hyX; + h,X, + h3X5; forsome h; € ¢, i = 1,2,3, from (4.1) we
have;

adg,(T) = ( hysz —hss;  2(hys; — h251)> i( hoks — h3ky  2(hik, — h2k1)>
# 2(h3sy — hys3) h3s; — hys3 2(h3ky — hqk3) hsk,; — hyks
01 02

adg,(t) = (03 04) Where

01 = hys3 — h3s, + i(hyks — hsky),
oy = 2(hys; — hysy) + i2(hik; — h2k1)'} 4.2)
03 = 2(h3s; — hys3) + i2(hsk, — hik3), '

04 = h3Sy — hysg + i(hsk, — hoks).
5. Tensor representation of so(3)¢ ® sl(2, ()¢
Definition 5.1 Tensor product of two representations say, p; , p, of Lie algebras g;, g, respectively
denoted by p; ®p, is a representation of their direct sum g, ®g, defined by:

P1®p,(6,1) = p1(0)RI + IQp,(A) forall6 e g, , 1€ g, .
Therefore, considering the complexification representations adg, and ad, founded in section 3 and

4, we get the tensor representation ad¢,®ad, of so(3)¢Dsl(2, )¢ as follows;
ad¢,®adg, (P, 7) = ady,(P)®! + IQadg, ()

0 w w, o o
=| w3 0 Wy ®12 + 13® (0.3 0.4)

ws wg O

- w3 03 0, 0
0 wg 0 o0 o0y
ws 0 wg 03 04

Where w;,0; € ¢ V 1 <i<6,1<j<4 described in (3.2) and (4.2).
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