



ISSN: 0067-2904

## The Accuracy of Prediction for the Models IRI- 2012 and VOACAP in Measurements foF2 Over Iraq during High Solar Activity Level

### Fahmi A. Mohammed\*

Department of Space Environment, Atmosphere and Space Science Center, Directorate of Space and Communications, Ministry of Science and Technology, Baghdad, Iraq

#### Abstract

The accuracy of IRI- 2012 and VOACAP models during high solar activity level have been tested to know which of them is more accurate in predicting hourly foF2 values for three Iraqi cities (Baghdad, Mosul and Basrah). The results indicated that the accuracy of them increases for all hours during Spring and Summer and decreases during Winter and Autumn especially at hours near to sunrise; i.e., both of two models have the same accuracy. And that the foF2 values predicted by VOACAP model are higher than that predicted by IRI- 2012 model for all seasons.

Keywords: accuracy, IRI- 2012 model, VOACAP model, foF2, high solar activity level.

# دقة تنبؤ موديلي 2012 - IRI و VOACAP في قياسات foF2 فوق العراق خلال مستوي النشاط

# الشمسي العالي

# فهمي عبد الرحمن محمد \*

قسم بيئة الفضاء، مركز علوم الجو والفضاء، دائرة الفضاء والاتصالات، وزارة العلوم والتكنولوجيا، بغداد، العراق

الخلاصة:

تم اختبار دقة موديلي 2012 –IRI و VOACAP خلال مستوي النشاط الشمسي العالي، لمعرفة اي منهما هو اكثر دقة في تتبؤ قيم foF2 الساعية لثلاث مدن عراقية (بغداد، الموصل والبصرة) . بينت النتائج بأن الدقة لهما تزداد لجميع الساعات خلال فصلي الربيع والصيف، وتقل خلال فصلي الشتاء والخريف خصوصا عند ساعات قريبة من شروق الشمس؛ بمعنى ان كلا الموديلين لهما نفس الدقة. وان قيم foF2 المتنبأ بها بأستخدام موديل VOACAP تكون اعلى من تلك المتنبأ بها بأستخدام موديل 2012 –IRI ولجميع الفصول.

#### Introduction:

#### The Voice of America Coverage Analysis Program (VOACAP):

VOACAP predicts the expected performance of high frequency (HF) broadcast systems, and in doing so is useful in the planning and operation of HF transmissions for the four seasons, different sunspot activities, hours of the day and geographic location.

The software program will be taken (actually a suite of software programs) from the Voice of America (VOA) of the US Department of Commerce. The name of the program is VOACAP and there are two versions: The earlier version, which is now frozen in development and will not be further revised, is a DOS- based program. VOA also released a Windows- based program equally called VOACAP. Development of this software is an ongoing project and new versions of the program are released from time to time.

There are many good reasons to take a good look at VOACAP. One good reason is the price of the program - which is free. A second reason is that VOACAP is one of several software packages that are

\*Email:fahmibeg@yahoo.com

based on a program called IONCAP developed in the late 1970's by the Institute for Telecommunication Sciences (ITS) of the Department of Commerce.

Since the late thirties, many different organizations have been involved in the study of HF spectrum radio wave communications. A worldwide effort to measure ionospheric parameters, including noise, was established and detailed records have been obtained for variations in system performance over various paths. All of this research has shown that HF system performance is related, in a very complex manner, to solar activity, time of the day, day of the year, and the details of the radio wave path. In 1978, ITS released a FORTRAN program called the Ionospheric Communications Analysis and Prediction Program (IONCAP). Prior to the release of IONCAP, much of the path analysis that was done, had to be handled manually - a very time consuming process.

There are separate subroutines in the IONCAP program for antenna analysis. For any path, the gain of the antenna in the direction of the path and at the elevation angle of the specific signal needs to be considered. In the earliest versions of IONCAP only simple antenna geometries were included but, since it is fairly easy to extend a modular program, VOACAP and other software offer more complex antenna geometries, or the opportunity for you to quantify your own particular antenna system. IONCAP is designed around the 12- month running average of the sunspot number, not the day-to-day measured solar flux. During sunspot lows, which is the present situation, this doesn't matter much but near sunspot peaks the differences can be large. IONCAP also does not include geomagnetic effects related to the A- or K- indices [1].

The operation and use of the Ionospheric Communications Analysis and Prediction Program (IONCAP), are described by the report [2]. The computer program is an integrated system of subroutines designed to predict high- frequency (HF) sky wave system performance and analyze ionospheric parameters. These computer- aided predictions may be used in the planning and operation of high- frequency communication systems using sky waves. This report contains instructions for the use of IONCAP. A description of the input data requirements, including data definition, organization, and instructions for setup of the various analysis tasks, is presented. Procedures and formats are given for preparing the input data and executing the program. The various outputs are presented and described with an interpretation of the analysis results [2].

### International Reference Ionosphere model (IRI- 2012):

For successful radio communication, it is essential to predict the behavior of the ionospheric region that will affect a given radio communication circuit. Such a prediction will identify the time periods, the path regions and the sections of high frequency bands that will allow or disrupt the use of the selected high frequency communication circuit. The need for predicting the behavior of the ionosphere leads to modelling of that atmospheric region. Several models were developed to predict the behavior of the ionospheric parameters. Empirical models are widespread tools to describe ionospheric conditions. These models are used not only for the long- term prediction, but also for the real- time description of the ionospheric conditions. One of the most widely used new empirical models, is the IRI- 2012. IRI- 2012 model is actively used in a great variety of applied and research projects. In particular, IRI provides a basis for the simulation and prediction of the ionospheric radio wave propagation. The model takes into account daily and seasonal variations, perturbed and quiet conditions as well as the impact of the solar activity on the ionospheric plasma. The IRI- 2012 model uses an ionospheric- effective solar index that is based on ionosonde measurements, the IG12 index, to obtain NmF2. Ionospheric measurements are essential to know the behavior of the ionosphere and also to check the validity of the ionospheric models [3]. The references [4-7] give more information about IRI model.

In this paper, the accuracy of IRI- 2012 and VOACAP models in predicting foF2 for Baghdad, Mosul and Basrah during high solar activity level, have been compared.

### **Materials and Methods:**

Predicted hourly foF2 values for Baghdad, Mosul and Basrah were deduced from IRI- 2012 and VOACAP models, by inputting the geographical coordinates for these cities and the monthly smoothed sunspot number of 2000 (high solar activity level). The hourly seasonal averages of foF2 were calculated and the results were listed in Tables (1- 4). Also, the results obtained, were drown as shown in Figures (1- 4).

Input system parameters in VOACAP were:

| 1. Man- made noise level at 3 MHz (- dBW/ Hz) in a 1 Hz bandwidth = - 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 dBW/ Hz   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| (residential).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| Man- made noise level at 3 MHz in $- dBW/Hz$ (dB below a watt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| I = 140.4 = industrial = -27.7  Log (F) + 76.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1)         |
| 2 = 144.7 = residential = -27.7 Log (F) + 72.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2)         |
| $3 = 150 = rural = -27.7 \log (F) + 67.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3)         |
| 4 = 164.1 = remote = -28.6  Log  (F) + 53.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)         |
| 5 = 138.7 = noisy = -37.5  Log  (F) + 83.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5)         |
| 6=152.7= quiet= - 29.1 Log (F) + 65.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (6)         |
| Other values are specified in the range of (100-200).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| Default = -145 dBW/Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| The external noise factor ( <i>f</i> a) defined as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| $f_{n} = \frac{p_{n}}{p_{n}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (7)         |
| $r^{a} kT_{0}b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (,)         |
| Fa is the external noise figure, defined as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| $F_a = 10 log f_a$ $dB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (8)         |
| Wilcit.<br>Dn - available noise nower from an acquivelent lossless entenne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| Pn = available noise power from an equivalent lossiess antenna.<br><b>b</b> $P_{1}$ $P_{2}$ |             |
| $K = Boltzmann's constant = 1.38* 10^{-4} J/K.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| To= reference temperature (K) taken as 290 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| b = noise power bandwidth of the receiving system (Hz).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| Eq. (7) can be written as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| $P_n = F_a + B - 204 \ dBW$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (9)         |
| Where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| $P_n$ (available power, W) = 10 log $p_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (10)        |
| $\mathbf{B} = 10 \log \mathbf{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (11)        |
| b = 1 Hz, then $B = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| -204 = 10 log k To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (12)        |
| Eq. (9) becomes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| $P_n = F_a - 204 \ dBW$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (13)        |
| Fa deduced from the Figure below at a frequency of 3 MHz and for residential environmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t (line B): |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 80 NNNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _           |
| $\hat{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • I         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 mm       |
| 0.2 0.5 1 2 5 10 20 50 100 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |

Figure 1- Median values of man- made noise power for a short vertical lossless grounded monopole antenna.

(14)

Environment category: Lines A: city, B: residential, C: rural, D: quiet rural and E: galactic [8]. **Fam = 59 dB** 

Substitute (14) in (13) gives:

#### $P_n = -145 \text{ dBW/ Hz}$

### 2. Minimum takeoff angle of main lobe = 0.1 degrees.

The value is normally very small unless antenna performance is expected to be so poor at low angles that these angles should not be used in the estimation of upper useful frequencies. Or if the horizon is so obstructed that low takeoff and reception angles appear unlikely. Range = (0.01-40 degrees), default = 0.1 degrees).

#### 3. Require circuit reliability = 90%

The required circuit reliability which is an estimate of the percent of days within the month that the signal quality will be acceptable and should be specified for LUF calculations or time availability for service probability. Range = (1-99%), default = 90%.

### 4. Required signal to noise ratio = 73 dB.

The required signal to noise ratio of the hourly median signal power relative to the hourly median noise in a 1 Hz bandwidth which is necessary to provide the type and quality of service required. Range = (-30 to 99 dB), default = 73 dB.

### 5. Multipath power tolerance = 3 dB.

The maximum difference in signal power between sky- wave modes to permit satisfactory system performance in the presence of multiple signals. Modes weaker than this level below the MRM are not considered multipath problems. (0 = multipath not considered). Range = (0-40 dB), default = 3 dB. **6. Maximum tolerance time delay = 0.1 milliseconds.** 

The maximum tolerable difference in delay times between sky- wave modes to permit satisfactory system performance in the presence of multiple signals. Modes within this time delay are not considered multipath problems. (0 = multipath not considered). Range = (0-99.99 msec), default = 0.1 milliseconds.

#### 7. Absorption model = normal.

Tx antenna (transmitter antenna parameters):

Tx power (transmit power = 0.001 to 9999.99 Kw) = 500 Kw.

Main beam (transmit antenna main beam azimuth (deg. from North = 0-360 deg.)) = 0 deg.

Rx antenna (receiver antenna parameters):

Receiver bearing (receive antenna direction (degrees from North = 0-360)) = 0 degree.

Gain (receiver gain (for isotrope only = -90 to 90 dBi)) = 0 dBi.

| Table 1- Seasonal hourly averages of foF2 for Baghdad, Mosul and | d Basrah during Winter- 2000. The yellow's |
|------------------------------------------------------------------|--------------------------------------------|
| values represent the abnormal predicted foF2 values using tw     | wo models                                  |

| (Seasonal average of smoothed sunspot number, Ri= 166.9)/ Winter- 2000 |         |        |        |         |        |        |  |
|------------------------------------------------------------------------|---------|--------|--------|---------|--------|--------|--|
|                                                                        |         | VOACAP |        |         |        |        |  |
| Time(LT)                                                               | Baghdad | Mosul  | Basrah | Baghdad | Mosul  | Basrah |  |
| 0                                                                      | 4.873   | 4.571  | 5.269  | 6.1     | 5.733  | 6.567  |  |
| 1                                                                      | 4.889   | 4.727  | 5.093  | 6.1     | 5.9    | 6.267  |  |
| 2                                                                      | 4.961   | 4.874  | 5.011  | 5.667   | 5.6    | 5.667  |  |
| 3                                                                      | 4.646   | 4.615  | 4.571  | 4.833   | 4.867  | 4.667  |  |
| 4                                                                      | 3.908   | 3.969  | 3.733  | 4.433   | 4.5    | 4.2    |  |
| 5                                                                      | 3.552   | 3.658  | 3.341  | 5.433   | 5.333  | 5.333  |  |
| 6                                                                      | 4.473   | 4.446  | 4.412  | 7.867   | 7.533  | 8.1    |  |
| 7                                                                      | 6.677   | 6.395  | 6.885  | 10.8    | 10.333 | 11.2   |  |
| 8                                                                      | 9.23    | 8.798  | 9.613  | 13.033  | 12.6   | 13.433 |  |
| 9                                                                      | 11.121  | 10.763 | 11.492 | 14.033  | 13.767 | 14.367 |  |
| 10                                                                     | 11.986  | 11.805 | 12.265 | 14.133  | 13.967 | 14.4   |  |
| 11                                                                     | 12.078  | 12.004 | 12.324 | 13.867  | 13.733 | 14.267 |  |
| 12                                                                     | 11.858  | 11.774 | 12.163 | 13.7    | 13.467 | 14.233 |  |
| 13                                                                     | 11.671  | 11.504 | 12.098 | 13.7    | 13.267 | 14.367 |  |
| 14                                                                     | 11.591  | 11.306 | 12.174 | 13.567  | 13     | 14.433 |  |
| 15                                                                     | 11.447  | 11.042 | 12.152 | 13.167  | 12.533 | 14.067 |  |
| 16                                                                     | 10.992  | 10.504 | 11.747 | 12.367  | 11.633 | 13.367 |  |

| (Seasonal average of smoothed sunspot number, Ri= 166.9)/ Winter- 2000 |           |          |          |          |           |        |
|------------------------------------------------------------------------|-----------|----------|----------|----------|-----------|--------|
|                                                                        | IRI- 2012 |          |          |          | IRI- 2012 |        |
| Time(LT)                                                               | Time(LT)  | Time(LT) | Time(LT) | Time(LT) | Time(LT)  |        |
| 17                                                                     | 10.114    | 9.57     | 10.906   | 11.167   | 10.3      | 12.333 |
| 18                                                                     | 8.901     | 8.288    | 9.787    | 9.733    | 8.733     | 11.1   |
| 19                                                                     | 7.611     | 6.927    | 8.574    | 8.5      | 7.4       | 9.8    |
| 20                                                                     | 6.549     | 5.844    | 7.465    | 7.6      | 6.567     | 8.8    |
| 21                                                                     | 5.87      | 5.211    | 6.636    | 7.033    | 6.133     | 8.067  |
| 22                                                                     | 5.452     | 4.876    | 6.09     | 6.567    | 5.8       | 7.467  |
| 23                                                                     | 5.107     | 4.649    | 5.647    | 6.233    | 5.667     | 6.9    |

Table 2- Seasonal hourly averages of foF2 for Baghdad, Mosul and Basrah during Spring- 2000

| (Seasonal average of smoothed sunspot number, Ri= 174.1)/ Spring- 2000 |           |        |        |         |        |        |  |
|------------------------------------------------------------------------|-----------|--------|--------|---------|--------|--------|--|
|                                                                        | IRI- 2012 |        |        |         | VOACAP |        |  |
| Time(LT)                                                               | Baghdad   | Mosul  | Basrah | Baghdad | Mosul  | Basrah |  |
| 0                                                                      | 8.014     | 7.361  | 8.659  | 10.333  | 9.533  | 11.033 |  |
| 1                                                                      | 7.76      | 7.202  | 8.271  | 9.833   | 9.167  | 10.4   |  |
| 2                                                                      | 7.435     | 6.978  | 7.833  | 9.133   | 8.667  | 9.567  |  |
| 3                                                                      | 6.835     | 6.508  | 7.158  | 8.533   | 8.2    | 8.733  |  |
| 4                                                                      | 6.231     | 6.04   | 6.311  | 8.433   | 8.233  | 8.467  |  |
| 5                                                                      | 6.113     | 6.003  | 6.09   | 9.3     | 9.1    | 9.333  |  |
| 6                                                                      | 6.986     | 6.851  | 7.007  | 10.9    | 10.633 | 11.033 |  |
| 7                                                                      | 8.657     | 8.438  | 8.802  | 12.5    | 12.2   | 12.733 |  |
| 8                                                                      | 10.343    | 10.066 | 10.586 | 13.567  | 13.233 | 13.867 |  |
| 9                                                                      | 11.474    | 11.175 | 11.787 | 14.267  | 13.9   | 14.667 |  |
| 10                                                                     | 12.16     | 11.811 | 12.558 | 14.967  | 14.433 | 15.5   |  |
| 11                                                                     | 12.745    | 12.292 | 13.258 | 15.6    | 14.933 | 16.233 |  |
| 12                                                                     | 13.223    | 12.659 | 13.849 | 15.733  | 15.033 | 16.533 |  |
| 13                                                                     | 13.343    | 12.721 | 14.055 | 15.4    | 14.7   | 16.167 |  |
| 14                                                                     | 13.09     | 12.47  | 13.838 | 14.9    | 14.267 | 15.6   |  |
| 15                                                                     | 12.72     | 12.12  | 13.455 | 14.433  | 13.867 | 15.167 |  |
| 16                                                                     | 12.358    | 11.765 | 13.078 | 13.9    | 13.267 | 14.7   |  |
| 17                                                                     | 11.831    | 11.242 | 12.571 | 13.067  | 12.467 | 13.9   |  |
| 18                                                                     | 10.985    | 10.425 | 11.737 | 12.133  | 11.6   | 12.9   |  |
| 19                                                                     | 9.983     | 9.47   | 10.675 | 11.467  | 10.9   | 12.167 |  |
| 20                                                                     | 9.167     | 8.659  | 9.771  | 11.167  | 10.433 | 11.933 |  |
| 21                                                                     | 8.705     | 8.125  | 9.313  | 11.1    | 10.233 | 11.967 |  |
| 22                                                                     | 8.474     | 7.797  | 9.171  | 11      | 10.067 | 11.9   |  |
| 23                                                                     | 8.265     | 7.556  | 8.998  | 10.733  | 9.867  | 11.567 |  |

| <b>Table 3-</b> Seasonal | hourly averages | of foF2 for Baghdad   | Mosul and Basrah | during Summer- 2000 |
|--------------------------|-----------------|-----------------------|------------------|---------------------|
| Lable e beabonai         | moury averages  | of for 2 for Dugnaua, | mobul and Dublan | aaring Sammer 2000  |

| (Seasonal average of smoothed sunspot number, Ri= 173.2)/ Summer- 2000 |           |        |        |         |        |        |  |
|------------------------------------------------------------------------|-----------|--------|--------|---------|--------|--------|--|
|                                                                        | IRI- 2012 | VOACAP |        |         |        |        |  |
| Time(LT)                                                               | Baghdad   | Mosul  | Basrah | Baghdad | Mosul  | Basrah |  |
| 0                                                                      | 8.683     | 8.334  | 8.828  | 9.933   | 9.433  | 10.1   |  |
| 1                                                                      | 8.462     | 8.041  | 8.673  | 9.5     | 9.1    | 9.733  |  |
| 2                                                                      | 8.103     | 7.678  | 8.381  | 9.033   | 8.6    | 9.233  |  |
| 3                                                                      | 7.626     | 7.256  | 7.897  | 8.667   | 8.333  | 8.8    |  |
| 4                                                                      | 7.266     | 6.992  | 7.436  | 8.767   | 8.567  | 8.8    |  |
| 5                                                                      | 7.395     | 7.22   | 7.438  | 9.367   | 9.233  | 9.333  |  |
| 6                                                                      | 8.033     | 7.921  | 8.045  | 10      | 9.9    | 10.033 |  |
| 7                                                                      | 8.729     | 8.633  | 8.803  | 10.333  | 10.267 | 10.467 |  |
| 8                                                                      | 9.08      | 8.981  | 9.217  | 10.467  | 10.367 | 10.667 |  |
| 9                                                                      | 9.204     | 9.099  | 9.377  | 10.867  | 10.7   | 11.1   |  |
| 10                                                                     | 9.51      | 9.348  | 9.756  | 11.567  | 11.267 | 11.967 |  |
| 11                                                                     | 10.139    | 9.824  | 10.529 | 12.367  | 11.8   | 12.933 |  |
| 12                                                                     | 10.803    | 10.284 | 11.374 | 12.733  | 12     | 13.533 |  |
| 13                                                                     | 11.144    | 10.471 | 11.87  | 12.633  | 11.833 | 13.5   |  |

| (Seasonal average of smoothed sunspot number, Ri= 173.2)/ Summer- 2000 |           |          |          |          |           |          |  |
|------------------------------------------------------------------------|-----------|----------|----------|----------|-----------|----------|--|
|                                                                        | IRI- 2012 |          |          |          | IRI- 2012 |          |  |
| Time(LT)                                                               | Time(LT)  | Time(LT) | Time(LT) | Time(LT) | Time(LT)  | Time(LT) |  |
| 14                                                                     | 11.058    | 10.321   | 11.893   | 12.267   | 11.467    | 13.167   |  |
| 15                                                                     | 10.722    | 9.966    | 11.607   | 11.9     | 11.1      | 12.8     |  |
| 16                                                                     | 10.375    | 9.62     | 11.247   | 11.567   | 10.833    | 12.367   |  |
| 17                                                                     | 10.108    | 9.407    | 10.893   | 11.167   | 10.6      | 11.833   |  |
| 18                                                                     | 9.814     | 9.249    | 10.437   | 10.7     | 10.3      | 11.1     |  |
| 19                                                                     | 9.405     | 9.016    | 9.792    | 10.3     | 10        | 10.467   |  |
| 20                                                                     | 8.991     | 8.751    | 9.144    | 10.067   | 9.833     | 10.133   |  |
| 21                                                                     | 8.774     | 8.611    | 8.795    | 10.067   | 9.833     | 10.133   |  |
| 22                                                                     | 8.763     | 8.595    | 8.788    | 10.167   | 9.867     | 10.267   |  |
| 23                                                                     | 8.78      | 8.535    | 8.866    | 10.067   | 9.7       | 10.233   |  |

| Table 1 Cassanal hours           | Lowers and of for for          | Dockdod Mogul and  | Decreab during Autumn 2000 |
|----------------------------------|--------------------------------|--------------------|----------------------------|
| <b>1 able 4-</b> Seasonal nourry | v averages of $10\Gamma Z$ for | Dagnuau, mosul and | Dasrah during Autumn-2000  |
|                                  |                                |                    |                            |

| (Se      | (Seasonal average of smoothed sunspot number, Ri= 165.7)/ Autumn- 2000 |        |        |         |        |        |  |
|----------|------------------------------------------------------------------------|--------|--------|---------|--------|--------|--|
|          | IRI- 2012                                                              |        | VOACAP |         |        |        |  |
| Time(LT) | Baghdad                                                                | Mosul  | Basrah | Baghdad | Mosul  | Basrah |  |
| 0        | 6.957                                                                  | 6.484  | 7.408  | 7.8     | 7.333  | 8.2    |  |
| 1        | 6.783                                                                  | 6.414  | 7.092  | 7.467   | 7.167  | 7.633  |  |
| 2        | 6.55                                                                   | 6.273  | 6.725  | 6.833   | 6.7    | 6.867  |  |
| 3        | 6.035                                                                  | 5.851  | 6.102  | 6.133   | 6.133  | 6.033  |  |
| 4        | 5.471                                                                  | 5.41   | 5.426  | 6.3     | 6.333  | 6.133  |  |
| 5        | 5.616                                                                  | 5.622  | 5.501  | 7.8     | 7.767  | 7.733  |  |
| 6        | 6.92                                                                   | 6.852  | 6.88   | 10.233  | 9.967  | 10.333 |  |
| 7        | 8.862                                                                  | 8.65   | 9      | 12.3    | 12     | 12.667 |  |
| 8        | 10.475                                                                 | 10.198 | 10.744 | 13.567  | 13.233 | 13.9   |  |
| 9        | 11.365                                                                 | 11.127 | 11.651 | 14.067  | 13.833 | 14.433 |  |
| 10       | 11.827                                                                 | 11.608 | 12.126 | 14.3    | 14     | 14.733 |  |
| 11       | 12.174                                                                 | 11.869 | 12.592 | 14.4    | 14     | 15     |  |
| 12       | 12.398                                                                 | 11.953 | 13.014 | 14.467  | 13.933 | 15.267 |  |
| 13       | 12.454                                                                 | 11.899 | 13.232 | 14.433  | 13.833 | 15.367 |  |
| 14       | 12.39                                                                  | 11.779 | 13.264 | 14.267  | 13.6   | 15.267 |  |
| 15       | 12.202                                                                 | 11.574 | 13.105 | 13.833  | 13.133 | 14.833 |  |
| 16       | 11.775                                                                 | 11.159 | 12.661 | 13.067  | 12.3   | 14.067 |  |
| 17       | 11.068                                                                 | 10.469 | 11.916 | 12      | 11.2   | 13.067 |  |
| 18       | 10.18                                                                  | 9.587  | 10.98  | 10.867  | 10.033 | 11.9   |  |
| 19       | 9.244                                                                  | 8.663  | 9.974  | 9.9     | 9.033  | 10.9   |  |
| 20       | 8.417                                                                  | 7.864  | 9.031  | 9.267   | 8.433  | 10.133 |  |
| 21       | 7.833                                                                  | 7.296  | 8.35   | 8.833   | 8      | 9.633  |  |
| 22       | 7.477                                                                  | 6.927  | 7.977  | 8.467   | 7.667  | 9.233  |  |
| 23       | 7.203                                                                  | 6.659  | 7.716  | 8.067   | 7.433  | 8.733  |  |







Figure 3- Hourly variation of predicted foF2 for Baghdad, Mosul and Basrah during Winter 2000.



Figure 4- Hourly variation of predicted foF2 for Baghdad, Mosul and Basrah during Spring 2000.



Figure 5- Hourly variation of predicted foF2 for Baghdad, Mosul and Basrah during Spring 2000.



Figure 6- Hourly variation of predicted foF2 for Baghdad, Mosul and Basrah during Summer 2000.



Figure 7- Hourly variation of predicted foF2 for Baghdad, Mosul and Basrah during Summer 2000.



Figure 8- Hourly variation of predicted foF2 for Baghdad, Mosul and Basrah during Autumn 2000.



Figure 9- Hourly variation of predicted foF2 for Baghdad, Mosul and Basrah during Autumn 2000.

#### **Discussion of results:**

It is seen that, the predicted foF2 value for Basrah is smaller than that for Baghdad and Mosul at (3, 4, 5 and 6 LT), and for Mosul is greater than that for Baghdad at (4 and 5 LT); while for Basrah is smaller than that for Baghdad and Mosul at (3 and 4 LT), and for Basrah is equal to that for Baghdad at 2 LT and equal to that for Mosul and smaller than that for Baghdad at 5 LT (the yellow color, Table-1). The predicted foF2 value for Basrah using both of IRI- 2012 and VOACAP is greater than that for Baghdad and Mosul and for Baghdad is greater than that for Mosul, for the other hours. The same abnormal in predicted foF2 values at (3, 4, 5 and 6 LT) using two models is seen, as shown in the yellow color, Table-4.

The predicted foF2 values for Basrah are greater than that for Baghdad and Mosul, for Baghdad are greater than that for Mosul for all hours of the day Tables-2 and 3.

IRI- 2012 and VOACAP are accurate in predicting foF2 for Baghdad, Mosul and Basrah for all hours (day and night) during Summer and Spring of 2000, where seasonal values of smoothed sunspot number (during Summer and Spring) are greater than those during Winter and Autumn. Also, it is seen from Figures (2-9) that the variation curve of predicted foF2 using both of IRI- 2012 and VOACAP is the same, and that the predicted hourly foF2 values for Baghdad, Mosul and Basrah, using VOACAP, are higher than those, using IRI- 2012 model, for all seasons of 2000, Tables (1-4), probably because of input system and antenna parameters values in VOACAP are inaccurate which need to engineer deals with antennas and gives accurate information about antenna type used, signal to noise ratio, transmitted power, etc. And then the predicted values of foF2 using VOACAP are near to those using IRI- 2012 model.

#### **Conclusions:**

From the results obtained, we conclude that both of VOACAP and IRI- 2012 models have approximately the same accuracy and can be used any of them in predicting hourly foF2 values for Baghdad, Mosul and Basrah during high solar activity level.

### **References:**

- 1. Coleman, J.2014. VOACAP primer. Creative Commons BY- NC-SA, pp: 1-20.
- 2. Teters, L.R., Lioyd, J.L., Haydon, G.W. and Lucas, D.L. **1983.** Estimating the performance of telecommunication systems using the ionospheric transmission channel/ Ionospheric Communications Analysis and Prediction Program (IONCAP) user's manual. *NTIA report*, pp:83-127.
- **3.** Ezquer, R.G., Lopez, J.L., Scida, L.A., Cabrera, M.A., Bianchi, B.C., Pezzopane, M., Zuccheretti, E. and Mosert, M. **2014.** Behavior of ionospheric magnitudes of F2 region over Tucuman during a deep solar minimum and comparison with the IRI- 2012 model predictions. *Journal of Atmospheric and Solar-Terrestrial Physics*, 107, pp: 89- 98.

- **4.** Bilitza, D. **2006.** The International Reference Ionosphere- Climatological Standard for the Ionosphere. *In Characterising the Ionosphere*, pp: 32-1-32-12. Meeting Proceedings RTO- MP-IST-056.
- 5. Bilitza, D., McKinnell, L.A., Reinisch, B. And Rowell, T.F. 2011. The international reference ionosphere today and in the future. *J. Geod.*, 85, pp: 909- 920.
- 6. Bilitza, D. 2014. The International Reference Ionosphere: Rawer's IRI and its status today. *Adv. Radio Sci.*, 12, pp: 231-236.
- 7. Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., McKinnell, L.A. and Reinisch, B. 2014. The International Reference Ionosphere 2012- a model of international collaboration. *J. Space Weather Space Clim.*, 4, pp: A07.
- 8. International Telecommunication Union, ITU. 2015. Radio noise. Recommendation, R- P. 372, Geneva.