

Complete ($k, r)$-Caps From Orbits In $\operatorname{PG}(\mathbf{3}, 11)$

Jabbar Sharif Radhi ${ }^{*}$, Emad Bakr Al-Zangana

Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraqi
Received: 3/4/2022 Accepted: 22/6/2022 Published: 30/1/2023

Abstract

The purpose of this article is to partition $P G(3,11)$ into orbits. These orbits are studied from the view of caps using the subgroups of $\operatorname{PGL}(4,11)$ which are determined by nontrivial positive divisors of the order of $P G(3,11)$. The $\tau_{i^{-}}$ distribution and c_{i}-distribution are also founded for each cap.

Keywords: Cap, Complete cap, Companion matrix, Projective space, Singer group.

جبار شريف ، عماد بكر زنكنة
قسم الرياضيات، كلية العلوم، الجامعة المستنصريـه، بغداد، العراق

> الخلاصة
> الغرض من هذا البحث هو تقسيم P (3,11 إلى مدارات ودراسة هذه المدارات من منظور الاغطية
> باستخدام الزمر الجزئية في PGL (4،11) والتي يتم تحديدها بواسطة التواسم الموجبة غير التافهة لي رتبة
> PG(3,11)

1. Introduction

The idea of construction caps of different sizes and degrees in projective space has been studied by many researchers in different ways. Some researchers studied the subject through the standard frame points [1] [2] [3]. The others studied the subject by group action on the projective plane [4] [5] as well as studied in three dimensional projective space over the fields of orders 8 and 23 [6] [7]. Also, some articles have been presented that are focused on the size of complete caps as in [8] [9] [10] [11] [12].

In $P G(3, q)$ the projective space of three dimension and order q has $\theta(3,11)=$ $q^{3}+q^{2}+q+1$ points, and by the duality has $q^{3}+q^{2}+q+1$ planes, $\left(q^{2}+1\right)\left(q^{2}+\right.$ $q+1$) lines and every plane contains $q^{2}+q+1$ lines, every lines contains $q+1$ points, any point of the space has the quadruple form $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. Also, there exists five points such that no four of them are on the line, for example, the points $[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,1,1,1]$ which are called the standard frame of $P G(3,11)$. The points of $P G(3, q)$ have a unique forms which are

[^0]$[1,0,0,0],[x, 1,0,0],[x, y, 1,0],[x, y, z, 1]$ for all x, y, z in F_{q}. A plane π in $P G(3, q)$ is the set of all points $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ satisfying linear equation $u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}+u_{4} x_{4}=0$. This plane denote by $\pi\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$, where $u_{1}, u_{2}, u_{3}, u_{4}$ are elements in F_{q} with $F_{q} \backslash\{0\}$.
2. Basic definitions and background

Definition 1: [13] A (k, r)-cap in $P G(n \geq 3, q)$ is a set of k points such that no $r+1$ points are collinear, but at most r points of which lie in any line. Here r is called the degree of the (k, r)-cap.

Definition 2: [13] The (k, r)-cap is called complete cap if it is not contained in $(k+1, r)$ cap. The maximum size of the cap of degree r is denoted by $m_{r}(n, q)$ and the smallest size of a complete cap of degree r is denoted by $t_{r}(n, q)$.

Definition 3: [13] Let K be a cap of degree r, an i-secant of a K in $P G(n, q)$ is a line such that $|k \cap \pi|=i$. The number of i-secants of K is denoted by τ_{i}.

Let Q be a point that is not on the (k, r)-cap, K. The number of i-secant of K passing through Q is denoted by $\sigma_{i}(Q)$.The number $\sigma_{r}(Q)$ of r-secants is called the index of Q with respect to K. The set of all points of index i will be denoted by C_{i} and the cardinality of C_{i} is denoted by c_{i}. The sequence $\left(t_{0}, \ldots, t_{r}\right)$ will represent to the secant distribution and the sequences $\left(c_{0}, \ldots, c_{d}\right)$ refer to the index distribution.

Definition 4: [14] The group of projectivities of $P G(n . q)$ is called the projective general linear group $\operatorname{PGL}(n+1, q)$. The elements of $\operatorname{PGL}(n+1, q)$ are non-singular matrices of dimension $n+1$, and its cardinality is
$\frac{\left(q^{n+1}-1\right)\left(q^{n+1}-q\right) \ldots\left(q^{n+1}-q^{n}\right)}{(q-1)}$.
Definition 5: [14] Let $f(x)=x^{n+1}-a_{n} x^{n}-\cdots-a_{1} x-a_{0}$ be primitive polynomial over F_{q} of degree $n+1$. A companion matrix for f is a $(n+1) \times(n+1)$ matrix
$C_{f}=\left(\begin{array}{ccc}0 & & I_{n} \\ 0 & & \vdots \\ \vdots & & \\ a_{0} & \cdots & a_{n}\end{array}\right)$.
The points and hyperplanes of $P G(n, q)$ are found by the formula:
$P(i)=\pi_{0} C_{f}^{i}$,
where $\pi_{0}=[1,0, \cdots, 0]$ and i from 0 to $\theta(n, q)-1$. The companion matrix C_{f} forms a cyclic subgroup of $\operatorname{PGL}(n+1, q)$ that is called the Singer group.

3. Procedures of construction complete caps and main results

To start the procedures of construction the following lemma is important.

Lemma 6:

(i) There exist 14 non-trivial cyclic subgroups of $\operatorname{PGL}(4,11)$ of order t divided $\theta(3,11)=1464$.
(ii) There exist 14 equivalence classes up to projectivity space $P G(3,11)$ of order t in y such that $t \cdot i=\emptyset(3,11)$.

Proof:

(i) Let $Y=\{2,3,4,6,8,12,24,61,122,183,244,366,488,732\}$ be the set of non-trivial factors of $\theta(3,11)$. The companion matrix C_{f} has $\operatorname{order} \theta(3,11)$, which also gives a cyclic subgroup, $\left\langle C_{f}\right\rangle$ of $P G L(4,11)$ such that $P G(3,11)$ is invariant with respect to it. All elements of Y divided the order of C_{f} by Lagrange Theorem and give cyclic subgroups of $\left\langle C_{f}\right\rangle$ denoted by $S_{i}=\left\langle C_{f}{ }^{i}\right\rangle, i \in Y$. In $P G L(4,11)$, any other cyclic subgroups of an order divided $\theta(3,11)$ will be a copy isomorphic to S_{i} for $i \in Y$.
(ii) For any $i \in Y$, the action of the subgroups S_{i} on projective space $P G(3,11)$ will divide the space points into i orbits; that is, equivalence classes of order $t \in Y$; that is, $t=\frac{\theta(3,11)}{i}$. The i equivalence classes will be projectively equivalent by C_{f}.

To construct the complete caps in the projective space $P G(3,11)$ using the action of the subgroups S_{i} in Lemma 6, the following algorithm is used:

1. Finding the points of $P G(3,11)$ by formula $P_{i}=(1,0,0,0) C(f)^{i}, i=0,1,2, \ldots, 1463$, where $C(f)=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a^{8} & a & 1 & a^{2}\end{array}\right)$ and $f(x)$ be primitive polynomial over F_{11} since $f(x) \neq 0$ for all $x \in F_{11}, f(x)=x^{4}-a^{2} x^{3}-x^{2}-a x-a^{8}, \quad a=2$ be primitive element of $F_{11}=$ $\left\{0, a, a^{2}, a^{3}, \cdots, a^{9} \mid a^{10}=1\right\}$.
By duality, the lines constructed using the formula $L_{i}=L_{0} C(f)^{i}, i=0,1,2, \ldots, 1463$.
Here L_{0} is the line that passes through a point whose fourth coordinate is zero.
2. Depending on the nontrivial divisors of 1464 which are $\{2,3,4,6,8,12,24,61,122,183,244,366,488,732\}$ generated subgroup of $\operatorname{PGL}(4,11)$, Lemma 6(i).
3. Finding the orbits of each H_{i}. Let $O_{i}[i, t]$ be representative of these orbits where $i \cdot t=$ $\theta(3,11)$
4. Check, if $O_{i}[i, t]$ is cap. If yes, then find the degree of $O_{i}[i, t]$ and check it, complete or not.
5. If $O_{i}[i, t]$ is not a complete cap, then the following steps are used to make it complete.

Step i: Determine the set of index zero points of the cap, $O_{i}[i, t]=B$.
Step ii: Add points of index zero c_{0} to make it complete.
Step iii: If step ii succeeds, then we stop.
Let $C_{0}^{O_{i}}$ be the set of adding points to $O_{i}[i, t]$. A complete (k, r)-cap will be $A=$ $O_{i}[i, t] \cup C_{0}^{B}$. The number 1464 has 14 non trivial positive divisors which are $2,3,4,6,8,12,24$, $61,122,183,244,366,488,732$, so we have 14 orbits.
The above procedure is executed by GAP (Groups-Algorithms-programing) a system for computational Discrete Algebra [15].

Theorem 7: The 14 equivalence classes $O_{i}[i, t]$ up to projective space $P G(3,11)$ are divided into complete and incomplete caps as follows:
(i) Four complete caps of degrees $7,6,4,2$.
(ii) Ten incomplete caps of degrees $2,3,4,6,12$.

Proof:
Let $T=C(f)$.
(i) Complete caps:

1. The action of the cyclic subgroup $\left\langle T^{3}\right\rangle$ on $P G(3,11)$ gets 3 orbits $O_{3}[3,488]$ of size 488 points. This orbit will be cap of degree 7 since it's τ_{i}-distribution of this orbit
is $\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}, \tau_{6}, \tau_{7}\right)=(976,2928,976,6466,976,2928,976)$ and c_{i} values are $c_{5}=976, c_{i}=0$ for $i \neq 5$.
2. The action of the cyclic subgroup $\left\langle T^{4}\right\rangle$ on $P G(3,11)$ gets 4 orbits $O_{4}[4,366]$ of size 366 points. This orbit will be cap of degree 6 since it's τ_{i}-distribution of this orbit is $\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}, \tau_{7}\right)=(793,1464,5124,1464,5124,1464,793)$ and c_{i} values are $c_{4}=732, c_{5}=366 c_{i}=0$ for $i \neq 4,5$.
3. The action of the cyclic subgroup $\left\langle T^{6}\right\rangle$ on $P G(3,11)$ get 6 orbits $O_{6}[6,244]$ of size 244 points. This orbit will be cap of degree 4 since it's τ_{i} - distribution of this orbit is $\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=(2989,1464,7320,1464,2989)$ and c_{i} values are $c_{18}=244, c_{20}=$ 976, $c_{i}=0$ for $i \neq 18,20$.
4. The action of the cyclic subgroup $\left\langle T^{12}\right\rangle$ on $P G(3,11)$ get 12 orbits $O_{12}[12,122]$ of size 122 points. This orbit will be cap of degree 2 since it's τ_{i}-distribution of this orbit is $\left(\tau_{0}, \tau_{1}, \tau_{2},\right)=(7381,1464,7381)$ and c_{i} values are $c_{55}=1342, c_{i}=0$ for $i \neq 55$.
(ii) Incomplete caps:
5. The action of the cyclic subgroup $\left\langle T^{2}\right\rangle$ on $P G(3,11)$ gives 2 orbits $O_{2}[2,732]$ of size 732 points. This orbit will be cap of degree 12 since it's τ_{i}-distribution of this orbit is $\left(\tau_{0}, \tau_{3}, \tau_{4}, \tau_{5}, \tau_{6}, \tau_{7}, \tau_{8}, \tau_{9}, \tau_{12}\right)=(61,1464,1464,2928,4392,2928,1464,1464,61)$, and it has $c_{0}=732$. Since it has degree 12 , then it has some lines as subsets, so to be complete we have to add the 732 points of index zero to the orbit.
6. The cyclic subgroup $\left\langle T^{8}\right\rangle$ acts on $P G(3,11)$ and gives 8 orbits $O_{8}[8,183]$ of size 183 points. This orbit is incomplete cap of degree 4 since it's τ_{i}-distribution of this orbit is $\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=(7321,4392,5490,1525,1098)$, and it has $c_{0}=183, c_{6}=366$, $c_{9}=732$. The orbit $O_{8}[8,183]$ will be complete cap of degree 12 when adding 19 points to it.
7. The cyclic subgroup $\left\langle T^{24}\right\rangle$ acts on $P G(3,11)$ and gives 24 orbits $O_{24}[24,61]$ of size 61 points. This orbit is incomplete cap of degree 2 since it's τ_{i}-distribution of this orbit is $\left(\tau_{0}, \tau_{1}, \tau_{2}\right)=(9943,4453,5490,1830)$, and it has $c_{0}=1452$. The orbit $O_{24}[24,61]$ will be complete of degree 2 when adding 61 points to it.
8. The action of the cyclic subgroup $\left\langle T^{61}\right\rangle$ on $P G(3,11)$ gave 61 orbits $O_{61}[61,24]$ of size 24 points. This orbit will be cap of degree 12 since it's τ_{i}-distribution of this orbit is $\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{12}\right)=(13200,2880,144,2)$, and it has $c_{0}=1440$. Since it has degree 12 , then it has some lines as subsets, so to be complete we have to add the 1440 points of index zero to the orbit.
9. The action of the cyclic subgroup $\left\langle T^{122}\right\rangle$ on $P G(3,11)$ gives 122 orbits $O_{122}[122,12]$ of size 12 points. This orbit will be cap of degree 12 since it's τ_{i}-distribution of this orbit is $\left(\tau_{0}, \tau_{1}, \tau_{12}\right)=(14641,1584,1)$, and it has $c_{0}=1452$. Since it has degree 12 , then it has some lines as subsets, so to be complete we have to add the 1452 points of index zero to the orbit.
10. The cyclic subgroup $\left\langle T^{183}\right\rangle$ acts on $P G(3,11)$ and gives 183 orbits $O_{183}[183,8]$ of size 8 points. This orbit is incomplete cap of degree 4 since it's τ_{i}-distribution of this orbit is $\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{4}\right)=(15184,1024,16,2)$, and it has $c_{0}=144$. This orbit $O_{183}[183,8]$ will be complete of degree 4 when adding 198 points to it.
11. The cyclic subgroup $\left\langle T^{244}\right\rangle$ acts on $P G(3,11)$ and gives 244 orbits $O_{244}[244,6]$ of size 6 points. This orbit is incomplete cap of degree 6 since it's τ_{i}-distribution of this orbit is $\left(\tau_{0}, \tau_{1}, \tau_{6}\right)=(15433,792,1)$, and it has $c_{0}=1452$. This orbit $O_{244}[244,6]$ will be complete of degree 6 when adding 350 points to it.
12. The cyclic subgroup $\left\langle T^{366}\right\rangle$ acts on $P G(3,11)$ and gives 366 orbits $O_{366}[366,4]$ of size 4 points. This orbit is incomplete cap of degree 4 since it's τ_{i}-distribution of this orbit
is $\left(\tau_{0}, \tau_{1}, \tau_{4}\right)=(15697,528,1)$, and it has $c_{0}=1452, c_{1}=8$. This orbit $O_{366}[366,4]$ will be a complete cap of degree 4 when adding 200 points to it.
13. The cyclic subgroup $\left\langle T^{488}\right\rangle$ acts on $P G(3,11)$ and gives 488 orbits $O_{488}[488,3]$ of size 3 points. This orbit is an incomplete cap of degree 3 since it's τ_{i}-distribution of this orbit is $\left(\tau_{0}, \tau_{1}, \tau_{3}\right)=(15829,396,1)$, and it has $c_{0}=1452$. This orbit $O_{488}[488,3]$ will be a complete cap of degree 3 when adding 204 points to it.
14. The cyclic subgroup $\left\langle T^{732}\right\rangle$ acts on $P G(3,11)$ and gives 732 orbits $O_{732}[732,2]$ of size 2 points. This orbit is incomplete cap of degree 2 since it's τ_{i}-distribution of this orbit is $\left(\tau_{0}, \tau_{1}, \tau_{2}\right)=(15961,264,1)$, and it has $c_{0}=1452, c_{1}=10$. This orbit $O_{732}[732,2]$ will be complete when adding 1462 points to it.

Examples 8:

1. $(244,6)$-cap is complete of degree 4.

The orbit $O_{6}[6,244]$ has 244 points and the τ_{i}-distribution of $O_{6}[6,244]$ is $\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=(2989,1464,7320,1464,2989)$, so $O_{6}[6,244]$ is (244,4)-cap. Also, it has $c_{18}=244, c_{20}=976$; that is, $c_{0}=0$, thus it is complete cap.
2. $(488,7)$-cap is a complete of degree 7 .

The orbit $O_{3}[3,488]$ has 488 points and the τ_{i}-distribution of $O_{3}[3,488]$ is $\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}, \tau_{6}, \tau_{7}\right)=(976,2928,976,6466,976,2989,976)$, so $O_{3}[3,488]$ is $(488,7)$ cap. Also, it has $c_{5}=976$; that is, $c_{0}=0$, thus it is complete cap.

Corollary 9:

(i) O_{2} [2,732] is the union of 61 disjoint lines.
(ii) $O_{61}[61,24]$ is the union of tow disjoint lines.
(iii) $O_{122}[122,12]$ is just a line.

Proof:
(i) The class $O_{2}[2,732]$ is the union of 61 disjoint lines of the following order depending on the formula $L_{i}=L_{0} C(f)^{i}, i=1, \ldots, 60$.
(ii) The class $O_{61}[61,24]$ is the union of $L_{83} \cup L_{6676}$.
(iii) The class $O_{122}[122,12]=L_{83}$.

Note 10: All the results in this paper can be transformed into results in linear codes and Graphs, see [16] [17] [18].

4. Conclusions

The action of the cyclic groups of $\operatorname{PGL}(4,11),\left\langle T^{2}\right\rangle,\left\langle T^{3}\right\rangle,\left\langle T^{4}\right\rangle,\left\langle T^{6}\right\rangle,\left\langle T^{8}\right\rangle,\left\langle T^{12}\right\rangle$, $\left\langle T^{24}\right\rangle,\left\langle T^{61}\right\rangle,\left\langle T^{122}\right\rangle,\left\langle T^{183}\right\rangle,\left\langle T^{244}\right\rangle,\left\langle T^{366}\right\rangle,\left\langle T^{488}\right\rangle,\left\langle T^{732}\right\rangle$ on $P G(3,11)$ gave 14 orbits and these orbits gave complete and incomplete caps. The details as follows:

1. Complete caps:

Table 1: Details about the complete caps

$\mathbf{1}$	$O_{3}[3,488]$	$\boldsymbol{\tau}_{\boldsymbol{i}}$-distribution	$\boldsymbol{c}_{\boldsymbol{i}}$-distribution
		$\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}, \tau_{6}, \tau_{7}\right)$	$\left(c_{5}\right)$
$\mathbf{2}$	$O_{4}[4,366]$	$(976,2928,976,6466$,	(976)
		$\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}, \tau_{6}\right)$	$\left(c_{4}, c_{5}\right)$
$\mathbf{3}$	$O_{6}[6,244]$	$(793,1464,5124,1464$,	$(732,366)$
		$\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)$	$\left(c_{18}, c_{20}\right)$
		$(2928,1464,7320,1464$	$(244,976)$

4	$O_{12}[12,122]$	$\left(\tau_{0}, \tau_{1}, \tau_{2}\right)$	$\left(c_{55}\right)$
		$(7381,1464,7381)$	(1342)

Let \# denote the number of adding points to the orbit to be complete.
2. Incomplete caps.

Table 2: Details about the incomplete caps

	Orbit	τ_{i}-distribution	c_{i}-distribution	\#
1	0_{2} [2,732]	$\left(\tau_{0}, \tau_{3}, \tau_{4}, \tau_{5}, \tau_{6}, \tau_{7}, \tau_{8}, \tau_{9}, \tau_{12}\right)$	$\left(c_{0}\right)$	732
		$\begin{gathered} (61,1464,1464,2928,4392 \\ , 2928,1464,1462,61) \end{gathered}$	732	
2	$O_{8}[8,183]$	$\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)$	$\left(c_{o}, c_{6}, c_{9}\right)$	19
		$(3721,4392,5490,1525,1098)$	$(183,366,732)$	
3	$O_{24}[24,61]$	($\tau_{0}, \tau_{1}, \tau_{2}$)	$\left(c_{0}\right)$	61
		$(9943,4453,1830)$	(1452)	
4	$O_{61}[61,24]$	$\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{12}\right)$	$\left(c_{0}\right)$	1440
		(13200,2880,144,2)	(1440)	
5	$O_{122}[122,12]$	$\left(\tau_{0}, \tau_{1}, \tau_{12}\right)$	$\left(c_{0}\right)$	1452
		(14641,1584,1)	(1452)	
6	$O_{183}[183,8$	$\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{4}\right)$	$\left(c_{o}, c_{1}\right)$	198
		(15184,1024,16,2)	$(1440,16)$	
7	$O_{244}[244,6]$	$\left(\tau_{0}, \tau_{1}, \tau_{6}\right)$	$\left(c_{o}, c_{1}\right)$	350
		$(15433,792,1)$	$(1452,6)$	
8	$O_{366}[366,4]$	$\left(\tau_{0}, \tau_{1}, \tau_{4}\right)$	$\left(c_{o}, c_{1}\right)$	200
		$(15697,528,1)$	$(1452,8)$	
9	$O_{488}[488,3]$	$\left(\tau_{0}, \tau_{1}, \tau_{3}\right)$	$\left(c_{o}, c_{1}\right)$	204
		$(15829,396,1)$	$(1452,9)$	
10	$O_{732}[732,2]$	$\left(\tau_{0}, \tau_{1}, \tau_{2}\right)$	$\left(c_{o}, c_{1}\right)$	1462
		$(15961,264,1)$	$(1452,10)$	

5. Acknowledgment:

The authors would like to thanks the University of Mustansiriyah, College of Science, and Department of Mathematics for their motivation and support.

References:

[1] A.Sh. Al-Mukhtar, Complete arcs and surfaces in three dimensional projective space over Galois filed. PhD. Thesis: University of Technology, Iraq, 2008.
[2] A.Sh. Al-Mukhtar, "On projective 3-space over Galois field," Ibn Al-Haitham Journal For Pure and Applied Science, vol. 25, no. 1, pp. 259-265, 2012.
[3] F.F. Kareem, "A complete (k;r)-cap in $\mathrm{PG}(3, \mathrm{p})$ over Galois field GF(4)," Ibn AL-Haitham J. for pure \& appl. Sci., vol. 2, no. 24, pp. 236-247, 2011.
[4] E.B. Al-Zangana and S.A. Joudah, "Action of group on the projective plane over field GF(41)," J. phys. Conf. Ser., p. 1033(1):012059, 2018.
[5] N.A. Al-Seraji, E.A. Alnussairy and Z.S. Jafar, "The group action on the finite projective planes on order 53,61,64," Journal of discrete Mathematical Sciences and Cryptography, vol. 23, no. 8, pp. 1573-1582, 2020.
[6] N.A. Al-seraji, A.J. Al-Rikabi and E.B. Al-Zangana , "Caps by groups action on the PG(3,8)," Iraqi Journal of Science (IJS), vol. 63, no. 4, pp. 755-1764, 2022.
[7] E.B. Al-Zangana and N.K. Kasm Yahya, "Subgroups and orbits by companion matrix in three dimensional projective space," Baghdad Science Journal, vol. 19, no. 4, pp. 805-810, 2022.
[8] G. Faina, and F. Pambianco, "Small complete caps in PG(r,q), r ≥ 3. ," Discrete Mathematics, vol. 174, no. 1-3, pp. 117-123, 1997.
[9] A.A. Davydov, S. Marcugini and F. Pambianco, "Complete caps in projective spaces PG(n,q)," J. Geom, vol. 80, no. 1, pp. 23-30, 2004.
[10] J. Bierbrauer, S. Marcugini and F. Pambianco, "The smallest size of complete cap in PG(3,7)," Discrete Mathematics, vol. 360, no. 13, pp. 1257-1263, 2006.
[11] V. Abatangelo and B. Larato, "Complete caps in PG(3,q) with q odd," Discrete Mathematics, vol. 308, no. (2-3), pp. 184-187, 2008.
[12]A.A. Davydov, G. Faina, S. Marcugini and F. Pambianco, "On sizes of complete caps in projective space $\mathrm{PG}(\mathrm{n}, \mathrm{q})$ and arcs in planes $\mathrm{PG}(2, q), " J$. Geom., vol. 94, no. (1-2), pp. 31-58, 2009.
[13] J.W.P. Hirschfeld, Finite projective spaces of three dimensions.: Oxford University Press, 1985.
[14]J. W. P. Hirschfeld, Projective geometries over finite fields, 2nd ed. New York: Ox- ford Mathematical Monographs, The Clarendon Press, Oxford University Press, 1998.
[15] The GAP Group. (2021) GAP. Reference manual. Version 4.11.1 released on 02 March 2021. [Online]. https://www.gap-system.org/
[16] J.W.P. Hirschfelda and J.A. Thas, "Open problems in finite projective spaces," Finite Fields and Their Applications, vol. 32, pp. 44-81, 2015.
[17]N.Y. Kasm Yahya, "Applications geometry of space in PG(3,p)," J. Interdiscip. Math., vol. 25, no. 2, pp. 285-297, 2022.
[18]E.B. Al-Zangana and E.A. Shehab, "Certain types of linear codes over the finite field of order twenty-five," Iraqi Journal of Science (IJS), vol. 62, no. 11, pp. 4019-4031, 2021.

[^0]: *Email: e.b.abdulkrareem@uomustansiriyah.edu.iq

