
Abdulmohsin Iraqi Journal of Science, 2016, Vol. 57, No.3B, pp:2121-2130

*Email:husamex@yahoo.com

2121

A Load Balancing Scheme for a Server Cluster Using History Results

Husam Ali Abdulmohsin*

Department of Computer Science, College of Science, University of Baghdad, Baghdad, Iraq

Abstract
Load balancing in computer networks is one of the most subjects that has got

researcher's attention in the last decade. Load balancing will lead to reduce

processing time and memory usage that are the most two concerns of the network

companies in now days, and they are the most two factors that determine if the

approach is worthy applicable or not. There are two kinds of load balancing,

distributing jobs among other servers before processing starts and stays at that server

to the end of the process is called static load balancing, and moving jobs during

processing is called dynamic load balancing. In this research, two algorithms are

designed and implemented, the History Usage (HU) algorithm that statically

balances the load of a Loaded Web Server (LWS) and the Massage Passing

Optimization (MPO) algorithm. HU algorithm is used at the Domain Name System

(DNS) side is to minimize the time required to execute the client requests based on

using history results available in one of the Web servers in the server cluster. The

MPO is for optimizing the message passing between the Web servers and the DNS.

This message optimization will lead to optimize the processing time in the DNS

cluster required to find under-loaded Web servers that will perform the request.

Keywords: static load balancing, dynamic load balancing, Supporting Web Servers

(SWS), History Usage (HU) Algorithm, Loaded Web Server (LWS), Massage

Passing Optimization (MPO), Domain Name System (DNS).

 توزيع مهام مجموعة خوادم بأستخدام النتائج القديمة

 *حسام علي عبدالمحسن
 بغداد, العراقجامعة بغداد, قسم علوم الحاسوب, كلية العلوم,

 الخلاصة
موازنة الحمل في العقد الاخير من الزمن. اكثر الباحثينموازنة الحمل من المواضيع التي جذبت انتباه

على هذين الذاكرة لذلك تعتمد الشركاتتقليل وقت معالجة البيانات و تقليل استخدام عاملين, تؤدي الى
هنالك نوعان من نظريات موازنة الحمل, النوع الثابت, هذا العاملين في تقييم اي نظرية تخص موازنة الحمل.

, و بالمهام قبل بدء المهامالغير محملة خوادمالى ال خادم المحمل بالمهامبتوزيع المهام من جهة الالنوع يقوم
امكانيات . استخدام مصادر و يتم توزيع المهام حتى اثناء تنفيذها من الممكن ان هنالك النوع المتحرك, و هنا

ي الحاجة الى اي تتطوير في خدمة سوف تكسب المنظومة وقت و تلغغير مشغولة او غير مست خوادم
و (HU) خوارزميتين, خوارزمية استخدام التأريخفي هذا البحث تم تصميم المنظومة و التي تكلف الكثير.

و (DNSعند جهة نظام مجال الاسم) HUنظرية ال يتم استخدام .(MPO) تقليل مناقلة الرسائلخوارزمية
قام بتنفيذ نفس المهام في زبون الى اي خادم ضمن المدى و الذي الذي يقوم بتوجيه المهام المرسلة من قبل ال

و بالتالي DNSلغرض تقليل مناقلة الرسائل بين الخوادم و ال MPOاستخدام خوارزمية ال الماضي و يتم
ل وقت ايجاد خوادم في حالة ركود او غير من خلال تقلي DNSوقت التنفيذ في ال تقوم الخوارزمية بتقليل

 و التي سوف تقوم بتنفيذ المهام.محملة

ISSN: 0067-2904

Abdulmohsin Iraqi Journal of Science, 2016, Vol. 57, No.3B, pp:2121-2130

2122

1. INTRODUCTION

Web servers in now days have been involved in many aspects of life for billions of users through

the internet. The great increase in Web servers and clients require the achievement of reliability,

availability and scalability of Web servers to produce fast service and high productivity for the clients’

requests received at all time. The most approach used to improve the performance of the Web servers

is the distributed Web server. A group of Web servers construct a cluster that represent replicated

resources that can be used to serve the frequent requests from clients. When a client sends a request,

that request can be distributed through the DNS cluster to every server in the cluster according to a

load status distribution algorithm to serve the client in the best time.

The load balancing technique is important to enhance the outcomes of the distributed Web servers.

To reach the distributed Web servers to the best performance, clients requests should be distributed

between the Web servers in the cluster through the DNS according to a load balancing technique to

serve the client within the best time [1, 2] as a static load balancing system, and the load of the over-

loaded Web server has to be assigned to another under-loaded Web server to enhance the performance

of the cluster and gain the full utilization of the resources. Any node in the network is to be flagged as

over-loaded or under-loaded according to a load threshold determined by the designer of the load

balancing system. The load threshold in this paper is 60%, any Web server load less than this

threshold is flagged as under-loaded and flagged as over-loaded otherwise.

Massage passing between the Web servers is the basic idea of implementing load balancing on

distributed Web servers, those messages are used to exchange the load status between the Web servers

in the cluster and with the DNS [1, 3]. A new technology in load balancing is called mobile agent

technology that can separate the main functions execution time of the Web server from the time

required to serve the client request. Mobile agents travel from one Web server to another collecting the

load information required, therefore, mobile agents need low network traffic than packet-passing

approach, because there will be no message passing between the Web servers anymore [4].

Using the resources of servers that are in idle mode or have less load than the loaded server, such

servers will be referred to as Supporting Web Servers (SWS) in this research, will gain processing

time to the system and avoid extra hardware expenses to develop the loaded server when there are

servers not using their resources in full capacity. The Web servers can be connected in different

network types, such as through a Local Area Network (LAN) to act as one powerful Web server or it

can be connected as a Wide Area Network (WAN) each Web server at a different site. The idea of

using the distributed Web server is to provide scalability, because they can easily engage in corporate

additional Web servers as a solution for the growth of the clients requesting services. One of the

advantages of the Web server cluster is that when a failure occurs in one of the servers, other servers

in the same cluster can serve instead of the failed server [4].

Managing the resources in the Web server cluster in a professional way will improve the outcome

of the overall system and prevents the inconvenient reactions of the system like the turn-around times

of client requests [5].

Load balancing is classified into two types, static and dynamic. The concept of static load

balancing is to balance the load before processing starts and the job remains at that server until the end

of the process. The concept of dynamic load balancing is to balance the load by sending a job from the

over-loaded server to another under-loaded server during runtime, because the load status of the

current Server change to loaded [6, 7].

The main purpose of load balancing to transfer new requests to an idle node in a static load

balancing system, or transfer already processed requests from the loaded node to the idle node in a

dynamic load balancing system, both technologies will lead to enhance the performance of the overall

system, therefore the main idea of load balancing to reach the perfect utilization of each resource in

the environment [4].

The main drawback in any load balancing algorithm in a Web server cluster is the knowledge

needed to determine the load status of each node in the cluster and the absence of scalability, both

needed to achieve load balancing [4].

The HU uses the history search results in one under-loaded Web server to serve a client requests.

The system enables the Web servers in the cluster to send packets between them and the DNS, to

enable the DNS to determine the load status of each one of them at a certain period of time. In this

research we used the habitual Packet-passing based load balancing mechanism, in this mechanism the

Abdulmohsin Iraqi Journal of Science, 2016, Vol. 57, No.3B, pp:2121-2130

2123

Web server merges its main functions with the maintenance functions like the load balancing function

[4]. In the packet-passing approach, the Web server has to exchange packets holding load information

with the DNS in order to take load balancing decisions. The exchange of the packets with the DNS

requires high communication efforts, like time and size, and this can lead to the decadence of the

overall system. Therefore, using the history results of one of the Web servers will avoid the overall

system time execution needed to execute the request again.

This paper explores in details the load balancing algorithm designed and implemented in this

research, the HU algorithm, and all the sub-functions related to the algorithm. Section 2 in this paper

shows the related works. Section 3, shows the experimental side of our work. Sections 4, describes the

HU Algorithm methodology in details. Section 5, shows the evaluation details of our work. Section 6,

discusses the conclusion out of this work.

 2. RELATED WORK

In 2003, Cao J., Sun Y., Wang X., Das S. K., proposed a scheme named MALD (Mobile Agent

based LoaD balancing) that create mobile agents that can reach distributed Web servers to add

scalability to the load balancing scheme designed. The duty of the mobile agents is to collect load

information from all Webs servers and also perform load balancing in the scheme. One of the main

obstacles of this scheme is the incorporation of the network environment with such versatile agents,

they consider the agent unauthorized to move from one Web server to the other collecting information

and performing tasks. The advantage of using the mobile agents in load balancing rather than

message-passing, is the flexibility, low traffic in information movement and high synchronization

between the Web servers, each Web server knows the status of all other Web server all the time.

During the evaluation of the MALD scheme, it showed that the MALD provided an efficient load

balancing results reaching a wide number of Web servers in the internet [4].

In 2007, Nehra N., R.B. Patel, V.K. Bhat, proposed a Multi-agent load balancing scheme in a

heterogeneous environment. To enhance the performance of a parallel computing cluster and decrease

the execution time needed, the Distributer Dynamic Load Balancing (DDLB) essential function is

designed to distribute the load among the available processes. But instead of load balancing the jobs

by migrating them from one process to another less loaded one as like in ordinary dynamic load

balancing, they intend to split the jobs into sub-jobs and then load balance them to nodes in the cluster.

In order to implement their approach, they designed a mobile agent that will be used to balance the

load in the cluster. In this study, they used the number of jobs waiting in the queue to be processed

represent the load of that node in the cluster. Many types of agents and their policies they searched in

this work to choose the best type compatible with the requirements of their proposed scheme. Many

mathematical functions and matrices were used to measure the performance of their proposed scheme

with the performance of the existing message passing schemes. This scheme was implemented on a

network of multiple LAN's using Platform for Mobile Agent Distribution and Execution (PMADE).

The results obtained from experimenting this scheme showed that it is more efficient that existing ones

[8].

In 2010, Eludiora S., Abiona O., Aderounmu G., Oluwatope A., Onime C., Kehinde L.,
studied the Un-regulated migration of jobs between the Web servers, and addressed the cause and

solution of the problem and the frequencies lost in the bandwidth for this unnecessary migration. To

achieve bandwidth optimization, it is necessary to design a policy that can determine the consumption

occurring in the bandwidth because of the jobs migration from server to server. The aim of their

research is to organize the migration of jobs between Web servers to decrease the bandwidth

consumption. The designed policy in the work is called Cooperative Adaptive Symmetrical Initiated

Dynamic/Diffusion (CASID), was programmed using Java Developer, to create a middle ware service

medium as an agent based, to simulate the jobs distributed among the Web servers according to some

criteria, such as, no job are allowed to migrate from Web server to another if all servers are busy and

that job has to remain at the same Web server for processing. The results of this work was compared

with the outcomes of the existing schemes, and the CASID scheme proved that its response time is

better and the bandwidth needed is much lower [9].

In 2014, A. Paulin Florence, proposed an approach to enhance to resource utilization by providing

a professional load balancing on all the resources in the server cloud environment. First, the load index

of all resources are computed through a load model, using the memory usage, access time to that

certain resource and CPU usage. Once all the load indexes are computed, all resources will be

Abdulmohsin Iraqi Journal of Science, 2016, Vol. 57, No.3B, pp:2121-2130

2124

assigned dynamically to a correspondent node in the cloud environment that needs to be load

balanced. The process of assigning resources to over loaded nodes is an optimal distribution problem

in load balancing studies and researches. Here comes the need for optimization algorithms, like

Genetic and modified genetic, but these algorithms don’t find the best neighbor solutions because it

doesn’t overcome the exploration problems. That why using the effective optimization procedure can

lead to better results as load balancing decisions than the genetic algorithms. The firefly optimization

algorithm was used to take the load balancing decisions. An indexed table and the index load

computed previously are used by the firefly optimization algorithm, the table will represent the

availability of the under-loaded Web servers and the queue of requests. Depending of the results

obtained by the firefly algorithm, load balancing decisions are carried out. Based on analyzing the

results obtained by this approach, it was noticed that the approach proposed is an efficient load

balancing algorithm and efficient in schedule optimization [10].

3. EXPERIMENTAL Environment and setting

The HU algorithm is implemented in a multi LAN at the University of Baghdad, college of science,

computer science department. The lab contained 21 nodes, one of the nodes acts as the DNS cluster,

six of them were installed as Web servers, which represented the server cluster in our paper, and

fourteen nodes were installed as clients, each one of those clients represented unknown number of

virtual clients, the purpose of creating a big number of clients is to test the HU algorithm and check

how much load will be balanced and determine the optimization time. Windows 10 was installed on

all the nodes in both LAN's. The reason behind using windows 10 is because of the high security

communication provided. The firewall of the operating system was on during the experiment of the

project. Some configurations were needed to the firewall of the operating system to allow transferring

the packets through the LAN's. We needed to fix the configuration of the LAN's, to create a Sub work

group cluster (same subnet) for all six servers, so each packet flowing in the cluster will reach all the

servers to the port specified in the packet. One Microsoft Access Databases was installed on all

servers, the Database contains four tables, the first table is the Under-Loaded Status table (ULS), used

to store the load status of the under-loaded Web servers, the second table is the Standard Table (ST),

used to store 1000 SQL standard statements that will be used randomly as client requests, the third

table is the History Table (HT), used to store the execution history, that will be used to refer to text

files that contain the results of a certain SQL statement, store all the SQL requests executed at that

server, the fourth table will be used to store the data set that is a Citizenship information Database, that

contain 25 piece of information of each citizen (first name, second name, third name, tribe, height,

weight, Eye color, etc.), this table will be stored at each server in the cluster to be used for the

execution of the SQL statements received by the clients. The system will go through a self-learning

phase, that represents the first 60min of the project life, then the evaluation process will start, this

60min will be used to fill in the history table and the under-loaded status table, so the DNS cluster can

take the right decisions through this work.

4. METHODOLOGY

In this work we proposed two new algorithms, the HU algorithm that can load balance the load in

the DNS cluster by getting advantage of the Web server history search results stored. The load

balancing will be done through forwarding the instant request received by the DNS cluster to all

under-loaded Web servers that each one will check if it has served the same request in the past or not.

The second algorithm is the MPO algorithm for the message passing between the Web servers and the

DNS cluster, in this algorithm, all the load packets received by the Web servers that are over-loaded

will be neglected by the DNS cluster. The use case diagram of the project is shown in Figure-1.

Abdulmohsin Iraqi Journal of Science, 2016, Vol. 57, No.3B, pp:2121-2130

2125

Figure 1- The use case diagram of the HU algorithm

There are 1000 request in the ST as mentioned previously, The 1000 requests are selected

randomly, but each will be executed for a fixed number of times controlled by a counter in the ST,

each request that will reach its maximum execution times will be deleted from the ST to insure that it

will not be selected randomly any more. This fixed number of execution times is to insure fair

evaluation for the overall system with and without the proposed algorithms.

When a client sends a request, the DNS cluster will recieve the request and search for a Web server

in the Web server Cluster, for example Web Server Y, to balance the load with under two conditions,

first Web server Y has to be under-loaded, second, it has performed such a request in its history

results. The DNS will send the client request and IP to Web Server Y, that will inturn execute the

request and send the results directly to the client. To achieve the load balancing in this designed HU

algorithm, many funtions have to be performed, those functions will be described in details.

4.1 Load Status Calculation Function

This function exists in each web server in the cluster is to compute the load value that will be from

0 to100 as shown in the Pseudo code in Figure-2. The main idea of computing the load of any node in

the network is to compute its accumulated load in a period of time and to not calculate the load in a

specific second or milisecond because unrealiable results will be gained, like the CPU is busy this

milisecond while its not the milisecond after or vise-versa.

The CPU load of the Web server shown at Figure-2 (#4), is calculated through the Java function

shown in Figure-3. To be mentioned that the result of this function is how many ms have the processor

being processing the curent process regardless of the multiprocessing and all the paralell operation the

CPU performs. As we mentioned previously in the experimental section, that the system will be

operated for 60min then the load balancing will start operating, one of the reasons is to calculate the

CPU_LOAD. This function operates in a loop to find the summation of the CPU_LOAD for the last

60ms, then devide it by 60. The purpose of looking at the last 60 milliseconds of the CPU performance

will give us more reliable results about the CPU load status.

Figure 2- The Pseudo code of the function calcualting the web server load status.

#1 The CPU load of the last 60 milliseconds are accumulated in variable CPU_LAOD;

#2 While (True)

#3 Wait for 2 ms;

#4 CPU_LOAD = (New_CPU_LOAD + OLD_CPU_LOAD) / 2; Calculate the CPU usage at the Server

#5 Calculate Memory Usage at the Server;

#6 Calculate the Active Requests at the Server;

#7 Calculate the Load of the Server;

#8 Send the Load of the Server to the DNS;

#9 End of while

Client Z1
Client Z4

Client B1 Client B4

Client A1
Client A4

Client A2

Web Server 1 Web Server 2

Web Server

6

Web Server 3

Client Model 1 Client Model 4

Client Request

Client Request Load

Balanced

Server Load Status

Packet

Web Server 5 Web Server 4

Client A3
Web Server Cluster

Client B2

DNS Server

DNS

Server

DNS

Server

Client B3 DNS Server

Client Z2 Client Z3 Client Model 2 Client Model 3

Abdulmohsin Iraqi Journal of Science, 2016, Vol. 57, No.3B, pp:2121-2130

2126

Figure 3- The CPU usage Java function

The memory usage of the Web server is calculated through the two Java functions shown in Figure-4.

The output of the two functions is in Byte.

Figure 4-The Memory usage Java function

The function used to calculate the estimated number of Active requests is shown in Figure-5.

Figure 5-The Number of Active Requests in a Java function

The maximum number of connections to the Server was fixed in the program to the value 150 as

shown in Figure-6.

Figure 6-Fixing the Maximum Number of Connections to a Server in Java function

The function used to calculate the load of the Web server is shown in Figure-7.

Figure 7-The Web server load calculation function

Where CPU_LOAD is the workload on the server, measured in the length of job queue, Number of

Active connections on the Server (NAR) is the number of threads created at each milliseconds,

Maximum number of Connections (MC) allowed to the server, which equals 150 in our work.

FREE_MEM is the percentage of free memory space, w1, w2, w3 are the weights of the

parameters, w1+w2+w3 = 1, [7]. Here we decided to equal the weights of w2 and w3 because both

parameters are similarly important, and the value of w1 will be 0.4 for its higher importance in load

balancing. At the end of calculating the load, it will be sent to the DNS as shown in Figure-2 (#8).

4.2 Updating Under-Loaded Status (ULS) Table function

Under-loaded Web server sends a packet called Load Packet (LP) to the DNS Cluster to updating

its load status, the DNS will check instantly the load value stored in the received packet, through the

MPO algorithm propossed, if it is above 60, the packet will be neglected, if not, the ULS will be

updated as shown in the Pseudo code in figure 8. The MPO was supported with a new function called

the monitoring function (MF), the job of this function is to scan the ULS every 2ms, and delete the

entry of any Web server in the cluster that has not updated its status in the last 2ms, because that

means that the Web server of the entry deleted is newly over-loaded, and thats the reason for not

sending its LP. The ULS at the DNS will be updated all the time, Figure 9, shows the ULS at a certain

moment. The LP sent to the DNS stores the load and IP of that Web server sending the LP, the load

status is a value calculated by a function that will be discussed later in this work. To be mentioned, the

Web servers status in the ULS are sorted in an accending order, so the DNS can take priority decisions

according to the less under-loaded Web server.

CPU_LOAD = OperatingSystemMXBean.getSystemLoadAverage() /

OperatingSystemMXBean.getAvailableProcessors() (load average per cpu)

TOTAL_MEM = OperatingSystemMXBean.getTotalPhysicalMemorySize();

FREE_MEM = (OperatingSystemMXBean.getFreePhysicalMemorySize() * 100) /

TOTAL_MEM;

Public double getEstimatedAverageNumberOfActiveRequests(){

return getRequestPerSecondRetirementRate() * (getAverageServiceTime() +

getAverageTimeWaitingInPool()); }

ServerSocket Server = New ServerSocket (System.out, 150);

Load = w1 * CPU_LOAD + w2 * NAR / MC + w3 * (TOTAL_MEM - FREE_MEM)

Abdulmohsin Iraqi Journal of Science, 2016, Vol. 57, No.3B, pp:2121-2130

2127

Figure 8- The Pseudo code of function updating the under-load status table.

Figure 9- The Under-Loaded Status Table (ULS) at a certain moment.

4.3 The History Function (HF)

When the DNS recieves a request, it will operate the HF to determine which Web servers in the

ULS has performed the client request in its history. The HF will start sending packets called the Client

Request Packet (CRP) to all under-loaded Web servers in the ULS to check if one of them has

performed the client request in the past or not. The DNS will send a Request Packet (RP) to the first

under-loaded Web server that will respond to the DNS CRP, that will inturn reply to the client request

and send the results directly to the client. When the CRP is sent, all under-loaded Web servers that

received the CRP will look in its History table (HT) to check if it has performed such a request in the

past or not, if not, the under-loaded Web server will send a Negative Packet (NP) that contains the

value (0) to the DNS, If it did find the client request in its HT, it will send a positive message that

contains the value (1) to the DNS notifying him that it has served such a request and he will take the

load and serve that client on behalf, at this moment the DNS will send a packet called the Neglect

Packet (NOP) to all web servers that didn’t respond till that moment to ignore the CRP that holds the

IP of the client. The response packet regardless if it is negative or positive, will be sent to port (2200)

at the DNS cluster side. If the DNS didn't receive any packet from any Web server in the ULS tabel

(no under-loaded Web server has performed the same request before), it will go back to the first Web

server in the ULS (the least under-loaded Web server) and send the request to that Web server for

manupulation and finding results and sending the results directly to the client. Figure 10, shows the

pseudo code of this function.

#1 While (True)

#2 The DNS is Listening at the port 2100 to receive any load packet;

#3 if the load value in the packet received > 60

#4 Neglect packet;

#5 else Update ULS table

#6 End of while

Abdulmohsin Iraqi Journal of Science, 2016, Vol. 57, No.3B, pp:2121-2130

2128

Figure 10-The Pseudo code of function updating the under-load status table.

5. EVALUATION

We have used the same 1000 requests every time we evaluate the system with and without the HU

algorithm. The 1000 requests are selected randomly but each are executed for a 100 number of times

to equally evaluate the system with and without the HU algorithm every time. So the total number of

requests that will be executed will be 100,000 requests. The total number of requests served with and

without the HU algorithm is equalled. We can get from the results obtained from experiment number

1, that the experiment total time required to execute the 100,000 requests using the HU algorithm is

2.41.02 h/m/s and 2.58.16 h/m/s without using the HU algorithm. Experiment number 2, shows that

the experiment total time required to execute the 100,000 requests using the HU algorithm is 2.39.42

h/m/s and 2.56.23 h/m/s without using the HU algorithm. Experiment number 3, shows that the

experiment total time required to execute the 100,000 requests using the HU algorithm is 2.41.57

h/m/s and 2.57.09 h/m/s without using the HU algorithm. As we can see from the results that the

performance of the system is faster with the HU algorithm.

Another kind of evaluation was done to the system with and without the HU algorithm. We choose

a 20 second random period of time, we noticed that the number of requests processed in that period

using the HU algorithm is higher than without using the HU algorithm as shown in Figure 11. The

total number of requests served using the HU algorithm in the 20 seconds is 202 and 198 without

using the HU algorithm, taking in consideration the same sequence in process execution. Figure 11

shows that the Average CPU and Memory usage when using the HU algorithm is 5152 kB/s which is

higher than without using it which is 5085 kB/s because of storing the old requests results and the

extra message passing between the servers.

#1 While (True)

#2 The DNS is listening at the port 8080 to receive any client request;

#3 wait until client request received, then send a packet called the Client Request Packet (CRP)

that contains the client request, to all under-loaded Web servers in the ULS; all web servers will

check in their HT, and send a positive or negative response packet;

#4 DNS wait for any under-loaded Web server response at port 2200 for 4ms maximum; if the

DNS didn’t receive any response packet during the 4ms, go to #10.

#5 when a response packet received at port 2200, DNS will check if it is a negative packet or not;

#6 if the response packet is negative; go back to #4;

#7 If the response packet is positive;

#8 The web server started responding to the client request.

#9 The DNS will send the NOP to all web servers that didn’t respond to the CRP, to neglect the

CRP; go to #11;

#10 Send the CRP again to the the least under-loaded Web server in the ULS to perform the client

request.

#11 End of while

Abdulmohsin Iraqi Journal of Science, 2016, Vol. 57, No.3B, pp:2121-2130

2129

Figure 11- The System Specification Comparison With and Without Using the HU Algorithm

6. CONCLUSION

Reaching high performance results in DNS clusters load balancing is a hard challenge for most of

the researchers. In this work we aimed to minimize the response time required to meet the clients

requests by using the history results in the Web servers available in the cluster to optimiz the time

required to manupulate the clients request, becuase most of the clients request in reality are redundent.

Through the experiments in the lab two conclusions were reached, first, the time required to server

the clients was optimized by using the HU algorithm, second, it was noticed that many packets were

used to perform the algorithms designed, this message passing caused extra data movement in the

network trafic, that caused some delay in the network.

Performing the load balancing algorithm using the massage exchange technology uses more

processing time and resources, it will be better to add mobile agents that move from one Web server to

another to decide which Web server is better to execute the client requestand to reduce time and

information exchnaging between the servers in the cluster. The message passing between the Web

servers and the DNS can be reduced also by using message optimization methods.

REFERENCES

1. Cardellini V. and Colajanni M. 2000. Dynamic Load Balancing on Web-server Systems,

IEEE Internet Computing, 3 (1999), pp:28-39.

2. Tang W. and Mutka M. 2000 Load Distribution via Static Scheduling and Client Redirection for

Replicated Web Servers, in: Proc. 1st International Workshop on Scalable Web Services (in

conjunction ICPP 2000), Toronto, Canada, pp:127-133.
3. Dias D., Kish W., Mukherjee R. and Tewari R.1996. A Scalable and Highly Available Web-

Server, in: Proc. 41st International Computer Conference (COMPCON’96), IEEE Computer

Society, San Jose, CA, pp:85-92.
4. Cao J., Sun Y., Wang X. and Das S. K. 2003.Scalable Load Balancing on Distributed Web

Servers Using Mobile Agents, Internet Computing and E-Commerce Lab, Department of

Computing, The Hong Kong Polytechnic University, Journal of Parallel and Distributed

Computing, 63(10), pp:996-1005.

5. Arora M., Das S. K.2002. A De-centralized Scheduling and Load Balancing Algorithm for

Heterogeneous Grid Environments. Proc. of Int. Conf. Parallel Processing Workshops, 499,

IEEE, Washington.

6. Gan B. P., Low Y. H. and Jain S. 2000. Load Balancing for Conservative Simulation on Shared

Memory Multiprocessor Systems, Gintic Institute of Manufacturing Technology 71 Nanyang

Drive Singapore 638075{bpgan,yllow,sjain}@gintic.gov.sg.

7. Cardellini V., Janni M. C. and Yu P. S. 1999. Dynamic Load Balancing on Web-server Systems,

IEEE Internet Computing, 3(3), pp:28-39.

0

5

10

15

20

25

30

1234567891011121314151617181920

AVERAGE OF CPU AND MEMORY USAGE USING THE HU ALGORITHM

TOTAL NUMBER OF REQUESTS SERVED AT ONE SECOND USING THE HU ALGORITHM

AVERAGE OF CPU AND MEMORY USAGE WITHOUT USING THE HU ALGORITHM

TOTAL NUMBER OF REQUESTS SERVED AT ONE SECOND WITHOUT USING THE HU ALGORITHM

Second

R
eq

u
es

ts

Abdulmohsin Iraqi Journal of Science, 2016, Vol. 57, No.3B, pp:2121-2130

2130

8. Nehra N., Patel R.B. and Bhat V.K. 2007. A Framework for Distributed Dynamic Load

Balancing in Heterogeneous Cluster, Journal of Computer Science, 3 (1), pp: 14-24, 2007 ISSN

1549-3636, Science Publications.

9. Eludiora S., Abiona O., Aderounmu G., Oluwatope A., Onime C. and Kehinde L. 2010. A Load

Balancing Policy for Distributed Web Service, Int. J. Communications, Network and System

Sciences, 3, pp:645-654 doi:10.4236/ijcns.2010.38087 Published Online August 2010, IJCNS.

10. Florence A. P. and Shanthi V. 2014. A Load Balancing Model Using Firefly Algorithm In Cloud

Computing, Journal of Computer Science 10 (7), pp: 1156-1165.

