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Abstract 

A network (or formally a graph) can be described by a set of nodes and a set of 

edges connecting these nodes. Networks model many real-world phenomena in 

various research domains, such as biology, engineering and sociology. Community 

mining is discovering the groups in a network where individuals group of 

membership are not explicitly given. Detecting natural divisions in such complex 

networks is proved to be extremely NP-hard problem that recently enjoyed a 

considerable interest. Among the proposed methods, the field of evolutionary 

algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to 

present the general statement of community detection problem in social networks. 

Then, it visits the problem as an optimization problem where a modularity-based ( ) 

and normalized mutual information (   ) metrics are formulated to describe the 

problem. An evolutionary algorithm is then expressed in the light of its characteristic 

components to tackle the problem. The presentation will highlight the possible 

alternative that can be adopted in this study for individual representation, fitness 

evaluations, and crossover and mutation operators. The results point out that 

adopting     as a fitness function carries out more correct solutions than adopting 

the modularity function . Moreover, the strength of mutation has a background role. 

When coupled with non elite selection, increasing mutation probability could results 

in better solutions. However, when elitism is used, increasing mutation probability 

could bewilder the behavior of EA. 
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 خوارزمية تطورية ذات تصنيف ثنائي الأبعاد لكشف الجاليات في الشبكات المعقدة
  

 , سجى حاتم كريم, براء علي عطية*صلاح عبد الأمير ىسج

 قسم الحاسبات ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق
 خلاصةال

من خلال مجموعة من العقد ومجموعة من الروابط التي تربط هذه العقد. تعتبر  كمخططيمكن وصف الشبكة 
الشبكات نموذج لعديد من الظواهر في العالم الحقيقي و في المجالات البحثية المختلفة ، مثل علم الأحياء 

نترنت، وشبكات والهندسة وعلم الاجتماع. الشبكات الاجتماعية  والشبكات البايولوجية، الشبكة العالمية، والإ
التعاون وشبكات الطاقة، والفيسبوك والبيئية والاتصالات وشبكات النقل ماهي الا أمثلة .و دراسة هذه الشبكات 
المعقدة  تشمل باحثين من  تخصصات مختلفة كثيرة، على سبيل المثال ،علوم الكمبيوتر، والهندسة، وعلم 

إلى تشكيل العديد من المجالات المتعددة مما يؤدي  الأحياء، والرياضيات، والفيزياء، وعلم الاجتماع،
التخصصات. اكتشاف المجتمع هو اكتشاف المجموعات المرتبطة بالشبكة من حيث انها عضو صريح في 

والتي تأخذ اهتماما  (EAs) الشبكة او لا. ومن بين الطرق المقترحة في هذا المجال الخوارزميات التطورية
كشف المجتمعات في و هو تقديم بيان عام للمشكلة  هذا البحثفالهدف من خيرة . في الفترة الاملفتا للنظر 

 (Q) مستندة الى مقياسي  تطمح هذه الرسالة الى النظر للمشكلة كونها مشكلة امثلية الشبكات الاجتماعية و 
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في ضوء تعتبران مقياسان لوصف المشكلة . ثم يتم التعبير عن الخوارزمية  التطورية  لتانوال  (NMI)و
العناصر المميزة لها لمعالجة هذه المشكلة. و سوف يتم  تسليط الضوء على البدائل الممكنة التي يمكن 

بوصفها مقياس لكفاءة الفرد تنفذ  NMIوتشير النتائج إلى أن اعتماد  اعتمادها في هذه الدراسة لتمثيل الأفراد.
( لها دوركبير. عندما يقترن pmاحتمالية قوة الطفرة ). اضافة لذلك، Qحلول أكثر دقة من اعتماد مقياس 

الافراد مع عدم اختيار النخبة منهم، وزيادة احتمال الطفرة يمكن أن يؤدي إلى حلول أفضل. ومع ذلك، عند 
 .EAاستخدام النخبة، وزيادة احتمال الطفرة قد يربك سلوك الـ 

1 Introduction 

Complex networks constitute an efficacious formalism to represent the relationships among the 

objects composing many real world systems. Collaboration networks, the Internet, the world-wide-

web, biological networks, communication and transport networks, social networks are just some 

examples.  For example, in social networks, individuals or organizations are tied through various 

social contacts, familiarities, or profiles. Social modularity means, then, a set of social individuals 

which satisfy dense convergence of contacts. In protein-protein interaction (PPI) networks, all cell 

activities can be understood by analyzing those proteins structured as interacting and separable 

modules. Thus, PPI modularity refers to a set of physically or functionally interacted proteins work 

together to accomplish particular functions. Another example is in recommendation systems where 

latent similarities between users (in terms of friendship, commenting, items, and etc.) can be used to 

help such system to work. With the growing demand for all these and other real-world applications, 

community structure aspires to capture the essential characteristics, topology, and functions of these 

networking systems [1]. 

In the last few years many different approaches have been proposed to uncover community 

structure (i.e. to detect communities) in networks. In general, these techniques can be categorized into 

three main approaches: top-down co-clustering methods, bottom-up co-clustering methods and 

optimization methods.  The top-down (also called divisive hierarchical) methods initiate the whole 

network as one community and iteratively detect the weakest edges that connect different communities 

and remove them [2-4]. In contrary, a bottom-up (agglomerative hierarchical) method, initializes each 

node as one community. It then iteratively merges similar communities according to some quality 

measures [5, 6]. 

Due to NP-completeness, many algorithms define and formulate the community detection problem 

as modularity maximization problem. These optimization methods share a common ground by trying 

to optimize one or two objective functions realizing correlation among featured subgroups and divide 

the network's nodes according to these subgroups into sub-networks [7, 8]. The main aim of this paper 

is to revisit and elaborate both modularity     and normalized mutual information       metrics as 

an optimization models that can cast on the properties of community structure. Then, based on the 

model definition, an evolutionary algorithm (EA) is proposed to tackle the problem. The remainder of 

this paper is organized as follows. Section 2 presents basic concepts relating to the community 

detection problem. Section 3 presents related works while section 4 introduces our formulation for the 

evolutionary community detection problem. Results on two commonly used social networks are 

reported in section 5. Finally, conclusions and future work are pointed out in section 6. 

2 Problem Statement 
A complex network is a representation of a complex system from real life in terms of nodes and 

edges, where a node is an individual member in the system and an edge is a link between nodes 

according to a relation in the system [9]. As an example, in a social network, a node represents a 

person and an edge represents social interaction between two people. One of the main problems in the 

study of the complex networks is the detection of community structure. There are two main challenges 

in discovering communities. The first is that it is not known a priori the number of groups present in a 

given network. The second is that the communities may overlap, i.e. some nodes can belong to more 

than one cluster. The membership of an entity to many groups is very common in real world networks. 

For example, in a social network, a person may participate to many interest groups. Also in real world, 

objects often have multiple roles. Example, a professor collaborates with researchers in different 

fields; a person has his family group, as well as, friends group at the same time etc. 

In contrast to data clustering, community sets detection is defined to be a bi-clustering (i.e., co-

clustering) problem. Consider an     data set matrix   consisting of   objects, each being 
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characterized by   features, i.e.   [   ]         and        . Note that in community 

detection problem, both dimensions of  , called adjacency matrix, are identical, equal to the number 

of nodes   in the networks (i.e.,   [   ]          ). Any clustering algorithm tries to partition 

the space of   into a set of   regions or clusters according to the correlation among   objects. Thus, if 

    and      are two clusters, then          . However, considering both correlation of features as 

well as objects in the light of clustering process, means to simultaneously select and group (i.e. co-

cluster) both dimensions of   into sub-matrices, each of which consists of locally correlated objects 

under a subset of their features (see Figure-1) [10]. In Figure 1, one can see that the traditional 

clustering (left matrix) searches a partition of all objects into   disjoint groups (here    ). The right 

matrix, however, depicts bi-clustering where a set of blocks containing a consistent local pattern is to 

be found (here    ). Note that it is not generally possible to display several bi-clusters at the same 

time as contiguous blocks. 

  
Figure 1-Comparison between clustering (left) and bi-clustering (right) 

 

Simultaneous matrix co-clustering needs a quality index that can capture the embedded sub-matrix 

structures. The modularity (noted as  ) index of Newman and Girvan, lays the foundation of many 

existing successful graph clustering algorithms [11]. The purpose of   is to capture the hidden 

structure of community sets in complex networks by maximizing intra-cluster links while minimizing 

inter-cluster ones. Consider a network constituted by   nodes which can be formally described as a 

graph        , where                is the set of vertices (or nodes) and                
is the set of edges (or connections) between nodes. Then, the cardinality of  ,      | | and the 

volume of  ,      | |. The degree of any vertex,     , is defined as the number of edges incident 

to  . Throughout this paper, the notation      is used to represent cardinality concept, while      is 

used to represent volume concept. 

Now, consider partitioning   of    into a co-clustering solution             such that each 

vertex          is exactly assigned to one cluster         . The impact of   in   can, now, 

be quantified in two distinct terms. The set of edges between vertices existing in two distinct clusters: 

 (     )                 and the set of edges found inside one cluster:               .  

Then, modularity in [1] will award   according to the fraction of connections inside its communities 

as formulated in Eq.1, where two contradictory objectives are implicitly handled.  The left operand in 

Eq. 1 biases towards a solution   that is covered with a densely intra-connected modules, i.e. many 

edges fall within          . On the other hand, the right operand in Eq. 1 recommends that    with 

few edges fall at random without regarding the structure of           modules.   

     ∑ [
|        |

    
  

∑          

     
  ] 

                                                                 (1)  

The problem of community detection in social networks is modeled, in the literature, as graph 

partitioning or graph co-clustering problem. Finding a globally optimal solution to the graph co-

clustering problem, however, is NP-hard. Informally, a community in a network is a sub-network 

having dense connections within its nodes and loose connections with other communities. Let      be 

the space of all possible partitions   of a graph  . Also, let a cluster      be a community belongs to 

a partition  , and let          be the set of edges connecting vertices of    , i.e.                 
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          . Then, we can quantitatively and semantically formalize the following definitions. For 

vertex     : 

         |              |  ∑           
 is the number of intra-edges of  , and 

  ̅       |              |  ∑           
 is the number of inter- edges of  . 

To this end, we can generalize the language of intra- and inter- connections to a single community    

and to the whole partition   as: 

       |        |  ∑            
 is the number of intra-cluster connections of   . 

  ̅     | (     )|    
 ∑  ̅          

 is the number of inter-cluster connections of   . 

      |    |  |             
 | is the number of intra-partition connections of  , and  

  ̅    |         | is the number of inter-partition connections of  , and  

Note that we usually refer to      as the degree of vertex  , while for a cluster or group of vertices  , 

     is said to be the volume of  . For example, in [12] Pizzuti refers to      as the volume of 

community  , while the number of nodes in  , i.e. | | is referred to as its cardinality. According to 

the volume of a community  , Radicchi et al. [4] semantically define   as a weak community if 

      ̅   , or as strong community if            ̅   . Formally speaking, 

Definition 1: Strong Community  

The sub graph   is a community in a strong sense if 

  
        

             .                                                                                                                    (2) 

In a strong community each node has more connections within the community than with the rest of the 

graph.  

Definition 2: Weak Community 

The sub graph   is a community in a weak sense if 

 ∑   
  

       ∑   
   

                                                                          (3) 

In a weak community the sum of all degrees within   is larger than the sum of all degrees toward the 

rest of the network. Clearly a community in a strong sense is also a community in a weak sense, while 

the converse is not true. 

3 Related work 

During the past decade, the research on analyzing the community structure in complex networks 

has drawn a great deal of attention. Dominated ones are:  

M. Girvan and M. E. J. Newman (2002) proposed a divisive hierarchical clustering method to 

identify communities. The algorithm looks for the edges in the network that are most “between” other 

vertices, meaning that the edge is, in some sense, responsible for connecting many pairs of others, or 

in other words, looks edges that lie between communities. Such edges need not be weak at all in the 

similarity sense. They tested this method on computer generated and real-world graphs whose 

community structure is already known and they detect community with high degree of success [13]. 

Radicchi et al. (2004) proposed a divisive hierarchical algorithm to identify communities based on the 

concept of edge-clustering coefficient, defined in analogy with the node clustering coefficient. The 

edge-clustering coefficient is the number of triangles an edge participates, divided by the number of 

triangles it might belong to, given the degree of the adjacent nodes. Their algorithm works like that of 

Newman and Girvan, but it is faster. The main difference is that instead of choosing to remove the 

edge with the highest edge "betweenness", the removed edges are those having the smallest value of 

edge-clustering coefficient [4]. 

Pons and Latapy (2006) introduced an agglomerative hierarchical algorithm to compute the 

community structure of a network. The algorithm starts from a partition of the graph in which each 

node is a community, and then merges the two adjacent communities (i.e. having at least a common 

edge) that minimize the mean of the square distances between each vertex and its community. The 

distances between communities are recomputed and the previous step is repeated until all the nodes 

belong to the same community. In order to decide the best partitioning to choose, the modularity 

criterion of Girvan and Newmann is adopted [14]. 

Clauset et al. (2004) proposed agglomerative hierarchical clustering method to find communities. 

They used it to analyze a network of items for sale on the web-site of a large online retailer (amazon 

.com), The network has more than 400 000 vertices and 2 million edges. They could extract 

meaningful communities from this network [5].                      
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Recently, the relaxed nature of meta-heuristic evolutionary algorithm based optimization methods 

(i.e. EA-based community detection algorithms), makes them very suitable to reduce the complexity 

of the problem and to approach adequate and more reliable solutions than the existing state-of-the-art 

community detection algorithms. The prominent EA-based community detection algorithms that 

successfully beat existing ones are: Pizzuti's MOO model (2012), Shi, Yan, Cai, & Wu's MOO model 

[15], and Gong, Cai, Chen & Ma's MOO model [16]. 

Shi, Yan, Cai, & Wu [15] they defined the community detection problem as a multi-objective 

minimization problem. These objective functions are the two terms of the modularity function   in 

Eq.1.  

Pizzuti [12] formulated a multi-objective maximization model for a partition  , the first objective is 

to maximize community score [17] while the second objective is to maximize the community fitness 

proposed by Lancichinetti,  Fortunato & Kertész [18].  Formally speaking: 

      ∑
∑  

    

     
      

     
      

 
                                                                                                          (4) 

where     controls the size of community     found. For a given community   , its fitness       is 

maximized by maximizing the fitness of its nodes, i.e.: 

       
     

        ̅     
                                                      (5) 

Also, here     control the size of community   . Then [12]) defines       as: 

      ∑      
 
                                                  (6) 

 After evolving a set of solutions, Pizzuti suggested selecting the partition with the maximum 

modularity value     .  

4 The proposed community mining algorithm 

An evolutionary algorithm (EA) evolves a constant-size population of elements (called 

chromosomes) by using the genetic operator of reproduction, crossover and mutation. Each 

chromosome represents a candidate solution to a given problem and it is associated with a fitness value 

that reflects how good it is, with respect to the other solutions in the population. Generally, a 

chromosome is encoded as a string of bits from a binary alphabet. The reproduction operator copies 

elements of the current population into the next generation with a probability proportional to their 

fitness (this strategy is also called roulette wheel selection scheme). The crossover operator generates 

two new chromosomes by crossing two elements of the population selected proportional to their 

fitness. The mutation operator randomly alters the bits of the strings. 

4.1 Genetic Representation and Initialization 

The choice for a good genotype encoding (i.e. individual representation) is an essential issue for the 

applicability and effectiveness of any evolutionary algorithm. It is highly problem-related decision 

step. In all related works [19], the adopted representation is the locus-based adjacency representation 

being proposed by Park and Song . In locus-based representation, each individual   is represented as a 

fixed-length vector of   genes where   is the total number of nodes in the network (see Figure 2). The 

allele value of each gene can be varied from   to  . Thus,                                      .  
The decoding function   of individual   will outline the structure of the communities of the 

network, i.e.               
 . By its nature, the locus-based representation can automatically 

determine the number of communities,  , being encoded in each individual  . Consider gene   is 

assigned with value  . This means that nodes   and   will be in the same community  . However, this 

decoding function may hold in some cases infeasible solutions if node   has no connection with all 

nodes (including  ) of community   (i.e.              ).   

4.2 Fitness Function 

The quality of each individual can be evaluated in terms of normalized mutual information (   ) 

over ten different runs for each network. Normalized mutual information between two partitions   

and   of a network   of   nodes, is the normalization of the mutual information (  ) score between 

  and   being scaled between 0 (no mutual information) and 1.0 (perfect correlation) [20]. Consider 

the confusion matrix   [   ]          and         , where     be the number of nodes of 

community   of   that are also in community   of  . Then,  

     ,   
  ∑ ∑                    

  
   

  
   

∑             
  
    ∑             

  
   

                                    (7) 
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where    and    are the sum of elements of community   in   and community   in  , respectively. 

Consider a correct partition of social network   has    communities and also consider a candidate 

partition   of a chromosome has    communities. Then, for the above formulation, one can see that 

the confusion matrix   will have    rows and    columns, where each entery     in   features the 

nodes being belong to the correct community   in partition   and the candidate community   in 

partition  . 

Another alternative to quantify EA individuals is modularity defined as: 

     ∑ [
|        |

    
  

∑          

     
  ] 

                                                                                 (8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-Individual representation. 

 

4.3 Evolutionary Operators 

Uniform crossover and mutation operators are used with probability    and   , respectively. 

Consider two individuals    and    to be the two participating parents in the crossover. A child    can 

be formally generated by: 

          

   
  {

  
          

  
           

                            (9)  

where         is a uniform random number. For the mutation operator, the allele of the mutated gene 

   can be altered to any value   such that          . 

5 Results and Discussions 

In this section, we test the performance of the proposed model. The characteristic components of 

the EA are quantified to their, more or less, commonly used setting found in the literature. Population 

size     , maximum number of generation        , and       . The results report the impact 

of the proposed fitness models, selection with elitism, mutation strength. Two real life networks with 

known community structures (i.e. correct partition) are experimented with. The performance of the 

algorithm is evaluated (over five different runs for each network) in terms of confusion matrix, 

modularity, and NMI. 

The well-known "karate club" study of Zachary [21] forms a social network consisting of 34 

members of a karate club over a period of two years. During the course of the study, a disagreement 

developed instructor, which ultimately resulted in the instructor's leaving and starting a new club, 

taking about a half of the original club's members with him. Zachary constructed a network of 

friendships between members of the club, using a variety of measures to estimate the strength of ties 
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between individuals.  Figure-3 shows the network, with the instructor and the administrator 

represented by nodes 1 and 34, respectively. Figure-4 shows the correct division of this network into 

two communities (depicted in two different colors) of roughly equal size. 

A New Zealand's population of 62 bottlenose dolphins living off Doubtful Sound was compiled by 

Lusseau's study to draw a seven year complex couple relations. In this network, dolphins represented 

as vertices have a link with each other if they are observed together more often than expected by 

chance over a period of seven years from 1994 to 2001. A total of       | |      relations is 

explored in this network with two large groups. Figure 3 and 4 depict the original network with its 

correct partition, respectively. 

 

 
 

Figure 3- Left: the friendship relations of Zachary’s karate club network. Rigth: correct partition of Zachary's 

karate network into two communities. 

 

 

Figure 4- Left: the friendship relations of Dolphin network. Rigth: correct partition of Dolphin network into two 

communities. 
 

Table 1- Quantitative average results for 5 different runs on Zacharys Karate Club where NMI. 

With Elitism Without Elitism 
Generations 

Pm=0.7 Pm=01 Pm=0.7 Pm=0.1 

0.70282 0.6953 0.69254 0.68852 1 

0.72628 0.78622 0.70644 0.72790 5 

0.78064 0.80694 0.6061 0.70400 10 

0.81768 0.81766 0.59642 0.65098 15 

0.8372 0.81794 0.56448 0.62610 20 

0.8372 0.81794 0.56086 0.64970 25 
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Table 2- Quantitative average results for 5 different runs on Zacharys Karate Club. 

With Elitism Without Elitism 

Generations Pm=0.7 Pm=01 Pm=0.7 Pm=0.1 

NMI Q NMI Q NMI Q NMI Q 

0.75 0.16 0.74 0.33 0.71 0.24 0.71 0.33 1 

0.75 0.16 0.74 0.16 0.73 0.45 0.73 0.04 5 

0.75 0 0.74 0.16 0.72 0.43 0.73 0.26 10 

0.75 0 0.74 0.16 0.70 0.42 0.70 0.29 15 

0.75 0 0.75 0 0.71 0.21 0.70 0.16 20 

0.75 0 0.75 0 0.67 0.24 0.70 0.21 25 
 

Table 3- Quantitative average results for 5 different runs on Bottlenose Dolphins where NMI 

With Elitism Without Elitism 
Generations 

Pm=0.7 Pm=01 Pm=0.7 Pm=0.1 

0.6596 0.6596 0.67602 0.6596 1 

0.72282 0.72282 0.6563 0.72282 5 

0.80044 0.80044 0.5971 0.80044 10 

0.80868 0.80868 0.65462 0.80868 15 

0.85666 0.85666 0.58298 0.85666 20 

0.87926 0.87926 0.59034 0.87926 25 
 

Table 4- Quantitative average results for 5 different runs on Bottlenose Dolphins. 

With Elitism Without Elitism 

Generations Pm=0.7 Pm=01 Pm=0.7 Pm=0.1 

NMI Q NMI Q NMI Q NMI Q 

0.724 0.612 0.75 0.76 0.69 0.596 0.744 0.69 1 

0.774 0.742 0.77 0.60 0.666 0.554 0.694 0.616 5 

0.786 0.734 0.77 0.71 0.67 0.522 0.692 0.628 10 

0.786 0.734 0.78 0.81 0.664 0.57 0.66 0.48 15 

0.786 0.734 0.78 0.83 0.702 0.528 0.666 0.4 20 

0.796 0.84 0.78 0.85 0.67 0.4 0.676 0.508 25 

 

The results reported in Tables 1 – 4 reveal the ability of the tested EA on social networks and the 

impact of different characteristic components of the proposed EA, point out that adopting     as a 

fitness function carries out more correct solutions than adopting the modularity function . Moreover, 

the strength of mutation has a background role. When coupled with non elite selection, increasing 

mutation probability could results in better solutions. However, when elitism is used, increasing 

mutation probability could bewilder the behavior of EA. 

The structure of Bottlensoe Dolphin network seems to be easier tackling by the proposed EA than 

the structure of Zachary's karate club network. Some EA's runs reach the correct (i.e. optimal solution 

at        ) for Bottlensoe Dolphin network. However in Zachary's karate club network, the 

proposed EA mis-detect at least one node (either node 3 or node 10).Node's characteristics 

(represented by number of its connections) have also an impact to the quality of the final solution 

provided by the proposed EA. For example, in Zachary's karate club network, the mis-detection of 

only one, but different, node may not imply similar quality of the final result. Mis-detection of node 3 

results in final solution quality measured at           . However, mis-detection of node 10 has a 

solution with quality           . This is expected as node 10 has less neighborhoods (only two 

connections) than node 3 (has ten connections). As compared with non elitist, using elitism with 

selection can preserve the best qualified solution to further generations which in turns causes EA to 

reach more correct solutions. 

The strength of mutation (measured by its probability of occurance) has a secondary role. When 

coupled with non elite selection, increasing mutation probability could results in   better solutions. 

However, when elitism is used, increasing mutation probability could bewilder the behavior of EA, 

resulting in improper improvement in the solution's quality. 
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6 Conclusions  

The results reported in this paper reveal the ability of EA to handle community detection problem 

in social networks. Also, the results reports the impact of different characteristic components of the 

proposed EA. 

The work drafted in this paper can be extended to include further investigations including, but not 

limted to another chromosome representation can be explored. For example, one can consider that one 

complete cluster, rather than group of clusters, can be encoded in the chromosome. The EA, here, has 

to deliver at the end of generations, one community with its intra-connected nodes. Remaining un-

detected nodes and un-detected communities are subsequently determined by successive application of 

EA and Further community-structure wise fitness functions can be proposed, designed, and 

investigated. Mutation operator can be re-designed to approach a more effective one. The mutation 

operator can work as a local search operator to modify the community belongingness of those nodes 

satisfying a pre-determined condition.  For example, a mutation operator can move a node from the 

community that forms with its nodes less-intra connections to a community that would form with its 

nodes more-intra connections. 
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