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Abstract

The aim of this paper is to introduce and study the concept of SN-spaces via the
notation of simply-open sets as well as to investigate their relationship to other
topological spaces and give some of its properties.
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1. Introduction

Let S be a subset of a topological space (X,T). By the symbols clS, intS and(X-S = S) we mean the
closure of S, the interior of S and the complement of S respectively. Recall that a subset S of a
topological space is called semi-open [1] If Sccl(int(S)) .In [2] the concept of a simply-open set was
defined, a subset S of a topological space (X, T) is called simply-open if S=OUN where O is open
and N is nowhere dense subsets of X. There are other equivalents definitions of simply-open set for
example In [3] Ganster, Reilly and Vamanmurthy showed that a subset S of a space (X,T) is simply-
open if and only if it is intersection of semi-open and semi-closed subsets of a space (X,T),and In [4]
and [5] simply-open sets called as semi-locally closed set and NDB-set, respectively. A subset S of a
space (X,T) is called regular open (resp. regular closed)[6] if S=int(cl S) (resp. S=cl (intS)). The
main results in this work can be found in theorems 2.4 in this theorem we give some equivalent
definitions of SN-space. Also in theorem 3.6 we showed that the property of being SN-space can be
preserved by so-continuous function.
2. SN- spaces
We would like to give the first lemma which we will need in our work
LEMMA 2.1 [7]. Every semi-open subset of a topological space (X, T) is simply-open.
Now we will introduce the concept of SN-space.
Definition 2.2 : A topological space X is said to be SN-space if for each pair of closed sets F; and F,
such that F;nF,=J , there exist disjoint simply-open sets U and V such that F; c U and F, < V.
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Clearly, every normal space is SN-space as every semi-open set is simply-open, but not conversely as

we will show in the next example.

Example 2.3 : let (X,T) be a topological space where X={a;,ar,az,a4 } and T= { &, {axas},

{a,8284}, {8283,81} , X} . Then X is SN-space, but normality is not satisfied since {a;} and {as}

cannot be contained in open and disjoint sets.

Now we will discuss some of SN-space properties, which is the first result in this paper.

Theorem 2.4 : In any topological space (X,T) the following statements are equivalent:

() X is SN-space.

(b) If G and H are open subsets of X such that X= G U H, then there exist simply-open sets A and B
s.t. AcG and BcH and AuB=X.

(c) If D open set contained in the closed set G, then there exists a simply-open set A such that D c
AcG.

Proof : (a)=(b) : Let G and H be open sets in a SN- space X such that X =UuV. Then X-G,X-H are

disjoint. Since X is SN-space there exist disjoint simply-open sets say G; and H; such that X-U < G,

and X-V c H;. Let A= X-G;, B=X—H; .Then A and B are required simply-open sets.

(b) =(c) :Let D be a closed set and G be an open set such that D <G. Then X-DuG=X. Then by

hypothesis, there exist simply-open sets S; and S, such that S; « X-D and S, < G and S; US; = X.

Then D < X-S;, X-G < X-S; and (X-S;)"(X-S,)= &. Let A= X-S; and B= X-S, . Then A satisfy that

DcAcG.

(c)= (a):Let G;and G, closed subsets of X have empty intersection . Let S = X-G,, then G;nS

= and F; < G where S is an open set .Then there is a simply-open set say A of X such that G; c A

cG . It follows that G, < X-A = B, then B is simply-open and A n B =. Therefore X is SN-

spacem

Now we will consider one of the main properties of SN-space.

Theorem 2.5 : A regular closed subspace of SN-space is SN-space.

Proof : Let Yc&X where Y is regular and closed subspace of X and X is SN- space .Let G and F

closed subsets of Y and disjoint . G and F are closed sets of X. Then there is a disjoint simply-open

sets S; and S, in X such that G <S; and FcS,. But S;nY and S,nY are simply-open in Y such that

GcSiNY and FcS,NY. Then Y is SN- spacem

The proof of following lemma is very easy so it omitted.

Lemma 2.5.1. For any disjoint simply-open sets A and B in a topological space (X,T) we have that

cl(A)c B

The property of a topological space of being SN-space can be characterized also in the following

result.

Since the homeomorphic image of open subset of a topological space is open and the homeomorphic

image of nowhere dense set is nowhere dense then simply-open preserved under homeomorphism. So

we have the following result is obvious and it will be given without proof.

Theorem 2.5.2 The property of a topological space of being SN-space is topological property.

Theorem 2.6 Any topological space (X,T) is SN-space if and only if there exists an simply-open set

G such that FeGccl(G)<H for any open superset H of a closed set F.

Proof. Let X be SN-space then there exists disjoint simply-open subsets G and G; such that FcG

and H-X cG; then G;-XcH then by using Lemma 2.6 we have the inclusion FcGccl(G) <Gi-X cH.

Conversely let F; and F, be any closed subsets of X such that F;~ F, =Z.Then by necessarily

condition we have simply-open set G such that F,cGccl(G)cF,-X but cl(G)cF-X—F,ccl(G)-X

and cl(G)-X is simply open and G cl(G)-X=¢, so X is SN-spacem

In the next definition we will consider weak form of SN-space

Definition 2.7 : A topological space X is called WSN-space if for each disjoint closed ,regular closed

subsets F; and F, respectively , there exist simply-open sets G; and G, such that F;=G; and F,cG,

such that G;and G, are disjoint sets.

Clearly, every SN-space is WSN-space. The next example showed that the converse is not necessarily

true.

Example 2.8:Let (X,T) be topological space where X={a;,a;,az} and T= {X J,{a:}.{a1,a,}.{a1,as}}-

Then X is WSN- space , but it is not SN- since there are closed sets {a,} and {as} have no disjoint

simply-open sets containing them.
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The main result in this section will be given in the next theory.

Theorem 2.9: If X is WSN-space then if G;uG, =X where G; is open and G, is regular open, then

there exist simply-open sets A and B such that AcG,, BcG, and AuB= X.

Proof: Let G; and G, be open and regular open subsets of a WSN- space X respectively such that

G,uG, =X. Then (X-G;) and ,(X-G, ) is disjoint closed and regular closed respectively . So there exist

disjoint simply-open sets A and B such that X-G; < A and X-G,cB. Let G= X- U; and H= X-V; .

Then A-X and B-X are simply-open sets such that A-X < G; B-X < G, and (A-X) u (B-X) = X.

Finally in this section we noted that in example.1. [8] Below this example is still true if we replace the

topological space by SN-space.

Examp2.10.[8]. The space (X,T) where X{a,b,c} and T={X,,{a}{b,c}} is SN-space, but {a,

b} and {c} are disjoint sets which cannot be separated by disjoint simply-open sets.

3. The Main Results

In this section the property of a topological space for being SN-space discussed if it’s preserved by

so-continuous function.

Definition 3.1[4] The function f: (X, T) — (Y, F) is said to be so-continuous if f*(S) is simply-

open in (X, T) whenever Sis openin (Y, F)

By Proposition 2.1.the next lemma is very easy to prove

Lemma3.2. Every continuous function is so-continuous.

From upper Lemma we have directly the following Lemma:

Lemma 3.3. If f: (X,T) —— (Y,F) is one-to-one, onto, pre-semi-open, and so-continuous function

between two SN- spaces X and Y then f is semi —homeomorphism.

Remark 3.4. The inverse image of SN- space under so-continuous bijective function is not necessarily

SN- space.

Proof. Let X be an uncountable set such that (X, Tg) is a discrete space and (X, T;) indiscrete space,

then (X, Tq) is not SN- space and (X, T;) is SN- space. Now, let f : (X, Tq) —— (X, T;) be a function

defined by f(x) = x, V x € X . Then f}(x) = x, therefore f is so-continuous, bijection and the inverse

image of SN- space (X, T;) is not SN- space (X, Ty) m

If we define f: (X, T)) — (X, Tg) by f(x) =x, ¥V x € X .We then prove that; the bijection image of

SN- space should not be simply-normal spacem

THEOREM 3.5. let (X,T) and (Y,F) be two SN- spaces., the function f: (X,T) — (Y,F) is so-

continuous function if and only if , for every closed subset B of Y , f*(B) is simply-closed in X.

Proof. Necessity. If f: (X,T) — (Y,F) is so-continuous function , then for every open subset O of

Y, £1(0) is simply-open in X. If B is any closed subset of Y, then B is open. Thus f* (B%) is simply-

open, but ' (B%= (f* (B))° so that ' (B) is simply-closed.

Sufficiency. If, for all closed subset B of Y, f* (B) is simply-closed in X, and if O is any open subset

of Y, then O° is closed . Also , f*(0%)=(f*(0))® is simply-open. Thus f*(0) is simply-openm
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