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Abstract  

     Let n be a positive integer and 𝑝
3

(𝑛) denotes the number of overpartition triples. 

In this note, we prove two identities modulo 16 and 32 for 𝑝
3

(𝑛). We provide a new 

method to reprove a result of Lin Wang for completely determining and 𝑝
3

(𝑛) 

modulo 16. Also, we find and prove an infinite family of congruences modulo 32 for 

𝑝
3

(𝑛). The new method relies on expanding the fourth power of the overpartition 

infinite product together with the help of Gauss' identity.  

 

Keywords: Partitions, Overpartitions, Overpartition triples, Congruences, Sum of 

divisors.  

 

الثلاثية مذكره حول التجزئات الفوقية  
 

 علي حمود فليح, انعام مطر شرقي
العراق ,بغداد  ,الجامعة المستنصريةقسم الرياضيات, كلية العلوم,   

 
 الخلاصة
𝑝 عددا صحيحا موجبا وان الداله  nلنفترض ان        

3
(𝑛)   تشير الى عدد التقسيمات الفوقيه الثلاثيه للعدد

𝑝للداله   32و  16القياس  . في هذه المذكره  نبرهن على اثبات متطابقتين من nالصحيح 
3

(𝑛)  قدمنا .
𝑝طريقه جديده لاعادة برهان نتيجة تعود الى لين وانغ والتي تحدد بصورة كامله  

3
(𝑛)   هذا 16للمقاس .

𝑝للداله  32برهان عائلة غير منتهيه من المتطابقات ذات القياس بالاضافة الى ايجاد و 
3

(𝑛) الاسلوب .
المتبع في البرهان يعتمد على توسيع دالة الاس الرابع للمضروب اللانهائي لدالة التجزئه الفوقية سوية مع 

 استخدام محايدة كاوس.
1. Introduction 

1.1 Partitions and Overpartitions. In 1964, Leibniz wrote to Bernoulli asking for the 

possible ways to deconstruct a positive integer into a sum of numbers (integers), later called 

parts [1]. We arrange these parts in a non-increasing order to specify such integer sums 

differently. Since that time, the history of integer partitions has begun. Euler investigated the 

number of ways to sum an integer n into m parts. Using the contemporary mathematical 

notation 𝐷(𝑛, 𝑚) which was introduced afterward to denote the number of partitioning n into 

m parts, Euler established the generating formula for such partitions and by taking m to 

infinity, the algebraic generating formula of the number of unrestricted partitions, known as 

𝑝(𝑛), is identified by 

              ISSN: 0067-2904 
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∑ 𝑝(𝑛)𝑞𝑛

∞

𝑛=0

= ∏
1

1 − 𝑞𝑛

∞

𝑛=1

. 

     

       The introduction of generating functions by Euler was without a doubt the most 

significant contribution in the historical record of partitions [1]. Several questions regarding 

𝑝(𝑛) can be asked. In particular, about its mathematical properties. In 1920, Ramanujan [2] 

discovered remarkable arithmetic patterns for the partition function 𝑝(𝑛) 

 

𝑝(𝑙𝑛 + 𝑡) ≡ 0  (𝑚𝑜𝑑 𝑙), 
 

      where (𝑙, 𝑡) = (5,4), (7,5), (11,6). Following Ramanujan's discovery of these beautiful 

identities, the study of partitions has progressed far beyond 𝑝(𝑛). Identities of the form 

 𝑓(𝑙 𝑛 +  𝑡) modulo powers of primes have become the focus of such research for a partition 

function, say 𝑓(𝑛), and for the celebration of Ramanujan's identities such equivalences are 

referred to as Ramanujan-type congruences. Later, an extension of partitions, overpartitions 

were introduced. ``An overpartition of a positive number is a partition in which the first 

occurrence of a part can be overlined" [3]. The function 𝑝(𝑛) denotes the number of 

overpartitions of n and its generating function is noted by 

𝑃(𝑞) = ∏
1 + 𝑞𝑛

1 − 𝑞𝑛

∞

𝑛=1

. 

      After p(n), the function 𝑝(𝑛) has become a prominent focus, and numerous number 

theorists have investigated its arithmetic properties and discovered a decent number of 

Ramanujan-type congruences. The works of Hirschhorn and Sellers [4,5], Kim [6,7], Lovejoy 

[8], Mahlburg [9] and  Treneer [10] provide a wealth of information. In general, the proofs are 

approached using a variety of methods and techniques that include elementary number theory 

to modular forms. Many theorems and procedures for regular partitions have overpartition 

counterparts, which ought to come naturally. Several other generalizations, such as plane 

partitions and plane overpartitions have been introduced and investigated. For example, see  

[11],[12], [13] and [14]. 

 

1.2 Overpartition Triples. Taking a higher power of the overpartition function and obtaining 

a wider class of overpartitions as tuples is a natural generalization to overpartitions, which 

makes sense to examine for a bigger class of arithmetic properties linked to overpartitions. An 

overpartition triple of a positive integer n is a 3-tuple of overpartitions 

(λ1, λ2, λ3) such that |λ1| + |λ2| + |λ3| = 𝑛 [15]. The function 𝑝
3

(𝑛) counts all overpartition 

triples of n and we define 𝑝
3

(0) ≔ 1. For example, there are 24 overpartition triples of 𝑛 = 2 

given by 

(2, ϕ, ϕ), (2, ϕ, ϕ), (ϕ, 2, ϕ), (ϕ, 2, ϕ), (ϕ, ϕ, 2), (ϕ, ϕ, 2), 

(1,1, ϕ), (1, 1, ϕ), (1, 1, ϕ), (1, 1, ϕ), (ϕ, 1,1), (ϕ, 1, 1), (ϕ, 1, 1), (ϕ, 1, 1), 

(1, ϕ, 1),  (1, ϕ, 1),  (1, ϕ, 1),  (1, ϕ, 1), (1 + 1, ϕ, ϕ), (1 + 1, ϕ, ϕ), 

  (ϕ,  1 + 1, ϕ), (ϕ,  1 + 1, ϕ), (ϕ, ϕ, 1 + 1), (ϕ, ϕ, 1 + 1). 

Thus, 𝑝
3

(2) = 24. The generating function for overpartition triples is given by 

𝑃3(𝑞) = ∑ 𝑝
3

(𝑛)𝑞𝑛

∞

𝑛=0

= ∏ (
1 + 𝑞𝑛

1 − 𝑞𝑛
)

3

                           . . . (1)

∞

𝑛=1

 

Recall Gauss' identity [16], 
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∏
1 − 𝑞𝑛

1 + 𝑞𝑛

∞

𝑛=1

=
1

𝑃(𝑞)
= ∑ (−1)𝑛𝑞𝑛2

∞

𝑛=−∞

= 1 + 2 ∑ 𝑞4𝑛2

∞

𝑛=1

− 2 ∑ 𝑞(2𝑛−1)2

∞

𝑛=1

. 

Thus, we get 

1

𝑃(𝑞)
≡ 1 + 2 ∑ 𝑞4𝑛2

∞

𝑛=1

+ 14 ∑ 𝑞(2𝑛−1)2

∞

𝑛=1

(𝑚𝑜𝑑 16)           . . . (2) 

and 

1

𝑃(𝑞)
≡ 1 + 2 ∑ 𝑞4𝑛2

∞

𝑛=1

+ 30 ∑ 𝑞(2𝑛−1)2

∞

𝑛=1

(𝑚𝑜𝑑 32)         . . . (3) 

 

1.3 The Sum of Divisors. The sum of divisors function, it is often known as σ(𝑛), is a widely 

used mathematical function that has been linked to a number of well-known functions and 

notable identities such as the Riemann zeta function and the Dirichlet series. Robin's criterion 

for the Riemann hypothesis involving σ(𝑛) drew a lot of attention to this function. For a 

positive integer n, 

σ(𝑛) = ∑ 𝑑

𝑑|𝑛

, 

these numbers are generated by the q-series 

  

∑ σ(𝑛)𝑞𝑛

∞

𝑛=1

= ∑
𝑛𝑞𝑛

1 − 𝑞𝑛

∞

𝑛=1

. 

 

To explore the function σ(𝑛) and its relation to 𝑝(𝑛), one may look at the surprising nearly 

equivalent recursions for these functions which satisfy  

𝑓(𝑛) = 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2) − 𝑓(𝑛 − 5) − 𝑓(𝑛 − 7) + 𝑓(𝑛 − 12) + ⋯ , 
in which the difference only occurs when 𝑛 = 0 where 𝑝(0) is replaced by 1 and σ(0) by n. 

Furthermore, 𝑝(𝑛) and σ(𝑛) have a combination relationship stated by 

𝑚𝑝(𝑚) = ∑ σ(𝑛)𝑝(𝑚 − 𝑛)

𝑚

𝑛=0

. 

See [17] for more details about these relations.  

 

Throughout the main proofs, we will frequently refer to a well-known fact that σ(𝑛) ≡
1(𝑚𝑜𝑑 2) if and only if 𝑛 = 𝑚2 or 𝑛 = 2𝑚2 for some integer 𝑚. 

 

2. Main Results and Proofs 

      The goal of this paper is to provide two theorems for the overpartition triple function 

𝑝
3

(𝑛) modulo 16 and 32. The first result fully characterizes 𝑝
3

(𝑛) modulo 16 and the second 

result provides an infinite family of congruences modulo 32. We define the following 

function throughout the proofs of the main theorems, 

 

𝐴(𝑞) ≔
𝑞

1 − 𝑞
. 

         Also for all integer 𝑘 such that  𝑘 ≥ 1, we recall that the standard notation for the 𝑘𝑡ℎ 

power of the overpartition generating function is defined by  

𝑃(𝑞)𝑘 = 𝑃𝑘(𝑞). 

In particular, we prove the following identity modulo 16 for 𝑃4(𝑞).  



Al-Saedi
 
and Sharqi                                 Iraqi Journal of Science, 2023, Vol. 64, No. 5, pp: 2405- 2412 

2408 

Theorem 2.1 

𝑃4(𝑞) ≡ 1 + 8 ∑(𝑞𝑛2
+ 𝑞2𝑛2

)  (𝑚𝑜𝑑 16)

∞

𝑛=1

. 

Proof. 

𝑃4(𝑞) = ∏ (1 + 2
𝑞𝑛

1 − 𝑞𝑛
)

4∞

𝑛=1

= ∏(1 + 4𝐴(𝑞𝑛) + 4𝐴2(𝑞𝑛))
2

∞

𝑛=1

 

≡ ∏(1 + 8𝐴(𝑞𝑛) + 8𝐴2(𝑞𝑛))           (𝑚𝑜𝑑 16)

∞

𝑛=1

 

≡ 1 + 8 ∑ 𝐴(𝑞𝑛)

∞

𝑛=1

+ 𝐴2(𝑞𝑛)                (𝑚𝑜𝑑 16). 

 

Extending each of the terms in the preceding series in terms of q-series, 

  

𝐴(𝑞) + 𝐴2(𝑞) =
𝑞

1 − 𝑞
+

𝑞2

(1 − 𝑞)2
= ∑ 𝑞𝑚

∞

𝑚=1

+ 𝑞2 ∑ 𝑚𝑞𝑚−1

∞

𝑚=1

 

= ∑ 𝑞𝑚

∞

𝑚=1

+ 𝑚𝑞𝑚+1 = ∑ 𝑚𝑞𝑚

∞

𝑚=1

. 

 

Replacing 𝑞 by 𝑞𝑛 and taking sum over all integers𝑛 ≥ 1, we obtain 

∑ 𝐴(𝑞𝑛)

∞

𝑛=1

+ 𝐴2(𝑞𝑛) = ∑ ∑ 𝑚𝑞𝑛𝑚

∞

𝑚=1

∞

𝑛=1

= ∑(𝑞𝑛 + 2𝑞2𝑛 + 3𝑞3𝑛 + ⋯ )

∞

𝑛=1

 

                  = 𝑞 + (1 + 2)𝑞2 + (1 + 3)𝑞3 + (1 + 2 + 4)𝑞4 + (1 + 5)𝑞5 + ⋯ 

                                  = ∑ ∑ 𝑑

𝑑|𝑛

∞

𝑛=1

𝑞𝑛  = ∑ σ(𝑛)𝑞𝑛

∞

𝑛=1

. 

Recall that σ(𝑛) ≡ 1 (𝑚𝑜𝑑 2) for 𝑛 = 𝑚2 or𝑛 = 2𝑚2, 𝑚 ≥ 1. Thus, we conclude that 

1 + 8 ∑ 𝐴(𝑞𝑛)

∞

𝑛=1

+ 𝐴2(𝑞𝑛) ≡ 1 + 8 ∑(𝑞𝑛2
+ 𝑞2𝑛2

) (𝑚𝑜𝑑 16)

∞

𝑛=1

, 

as it is desired.                                                              □ 

 

For the fourth power of the overpartition generating function, the next result establishes an 

equivalence modulo 32.  

 

Theorem 2.2 

𝑃4(𝑞) ≡ 1 + 8 ∑ 𝜎(𝑛)𝑞𝑛

∞

𝑛=1

+ 16 ∑(𝑞2𝑛2
+ 𝑞4𝑛2

)         (𝑚𝑜𝑑 32)

∞

𝑛=1

 

Proof. 

𝑃4(𝑞) = ∏(1 + 8𝐴(𝑞𝑛) + 24𝐴2(𝑞𝑛) + 32𝐴3(𝑞𝑛) + 16𝐴4(𝑞𝑛))

∞

𝑛=1
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                           ≡ 1 + ∑(8𝐴(𝑞𝑛) + 24𝐴2(𝑞𝑛) + 16𝐴4(𝑞𝑛)) (𝑚𝑜𝑑 32)

∞

𝑛=1

≡ 1 + ∑(8𝐴(𝑞𝑛) + 8𝐴2(𝑞𝑛) + 16𝐴2(𝑞𝑛) + 16𝐴4(𝑞𝑛))  (𝑚𝑜𝑑 32)

∞

𝑛=1

≡ 1 + ∑(8σ(𝑛)𝑞𝑛 + 16σ(𝑛)𝑞2𝑛)     (𝑚𝑜𝑑 32).                                        

∞

𝑛=1

(4) 

 

Note that  

                                    16 ∑ σ(𝑛)𝑞2𝑛

∞

𝑛=1

≡ 16 ∑(𝑞2𝑛2
+ 𝑞4𝑛2

)  (𝑚𝑜𝑑 32)

∞

𝑛=1

.                     (5) 

 

Thus, by plugging (5) in (4), we obtain 

𝑃4(𝑞) ≡ 1 + ∑(8σ(𝑛)𝑞𝑛 + 16𝑞2𝑛2
+ 16𝑞4𝑛2

)  (𝑚𝑜𝑑 32)

∞

𝑛=1

.                □ 

 

The following result was proved by Wang [15], however, we give a different proof which 

involves recalling Theorem 2.1.  

 

Theorem 2.3 (Wang, [15]). For all positive integers 𝑛, we have 

 

𝑝
3

(𝑛) = {

10   𝑖𝑓 𝑛 𝑖𝑠 𝑡𝑤𝑖𝑐𝑒 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒,
 8    𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑠𝑞𝑢𝑎𝑟𝑒,

   6    𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑠𝑞𝑢𝑎𝑟𝑒,
0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

       (𝑚𝑜𝑑 16) 

 

Proof. By the help of Theorem 2.1 and equation (2), we get  

 

              𝑃3(𝑞) =  
𝑃(𝑞)4

𝑃(𝑞)
≡

1 + 8 ∑ (𝑞𝑛2
+ 𝑞2𝑛2

)∞
𝑛=1

𝑃(𝑞)

≡ (1 + 8 ∑(𝑞𝑛2
+ 𝑞2𝑛2

)

∞

𝑛=1

) (1 + 2 ∑ 𝑞4𝑛2

∞

𝑛=1

+ 14 ∑ 𝑞(2𝑛−1)2

∞

𝑛=1

)

≡ 1 + 2 ∑ 𝑞4𝑛2

∞

𝑛=1

+ 14 ∑ 𝑞(2𝑛−1)2

∞

𝑛=1

+ 8 ∑ 𝑞𝑛2

∞

𝑛=1

+ 8 ∑ 𝑞2𝑛2

∞

𝑛=1

 (𝑚𝑜𝑑 16). 

 

Expanding the exponents into even and odd integers in the following series  

∑ 𝑞𝑛2

∞

𝑛=1

= ∑ 𝑞4𝑛2

∞

𝑛=1

+ ∑ 𝑞(2𝑛−1)2

∞

𝑛=1

, 

we obtain the following congruence modulus 16, 

𝑃3(𝑞) ≡ 1 + 6 ∑ 𝑞(2𝑛−1)2

∞

𝑛=1

+ 8 ∑ 𝑞2𝑛2

∞

𝑛=1

+ 10 ∑ 𝑞4𝑛2

∞

𝑛=1

. 

Extracting all terms of the form 𝑞(2𝑛−1)2
, we get 

𝑝
3

((2𝑛 − 1)2) ≡ 6 (𝑚𝑜𝑑 16). 
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Similarly, extracting all terms of the forms 𝑞4𝑛2
 and 𝑞2𝑛2

, we find 

𝑝
3

(4𝑛2) ≡ 10  (𝑚𝑜𝑑 16), 

𝑝
3

(2𝑛2) ≡ 8  (𝑚𝑜𝑑 16). 

The final case of 𝑞𝑛 is not among the forms 𝑞(2𝑚−1)2
, 𝑞4𝑚2

, 𝑞2𝑚2
 which provides  

𝑝
3

(𝑛) ≡ 0  (𝑚𝑜𝑑 16). 

By combining all the previous cases, the proof is completed.                                   □ 

 

The next result yields an infinite family of congruences modulo 32 for overpartition triples. 

 

Theorem 2.4. For all integer𝑘, 𝑛 ≥ 0, we have  

𝑝
3

(2𝑘(8𝑛 + 7)) ≡ 0   (𝑚𝑜𝑑 32). 

 

Proof. By the help of Theorem 2.2 and equation (3), thus the modulus 32, 

𝑃3(𝑞) =
𝑃(𝑞)4

𝑃(𝑞)
 

 ≡ (1 + 8 ∑ σ(𝑛)𝑞𝑛

∞

𝑛=1

+ 16 ∑(𝑞2𝑛2
+ 𝑞4𝑛2

)

∞

𝑛=1

) (1 + 2 ∑ 𝑞4𝑛2

∞

𝑛=1

+ 30 ∑ 𝑞(2𝑛−1)2

∞

𝑛=1

) 

    ≡  1 + 8 ∑ σ(n)qn

∞

n=1

+ 16 ∑(q2n2
+ q4n2

)

∞

n=1

+ 2 ∑ q4n2

∞

n=1

+ 30 ∑ q(2n−1)2

∞

n=1

+ 16 ∑ ∑ σ(𝑛)𝑞𝑛+4𝑚2

∞

𝑚=1

∞

𝑛=1

+ 16 ∑ ∑ σ(𝑛)𝑞𝑛+(2𝑚−1)2

∞

𝑚=1

∞

𝑛=1

 (𝑚𝑜𝑑  32). . . . (6) 

We observe that 

∑ ∑ σ(𝑛)𝑞𝑛+4𝑚2

∞

𝑚=1

∞

𝑛=1

+ ∑ ∑ σ(𝑛)𝑞𝑛+(2𝑚−1)2

∞

𝑚=1

∞

𝑛=1

= ∑ ∑ σ(𝑛)𝑞𝑛+𝑚2

∞

𝑚=1

∞

𝑛=1

 

≡ ∑ ∑ 𝑞𝑛2+𝑚2

∞

𝑚=1

∞

𝑛=1

+ ∑ ∑ 𝑞2𝑛2+𝑚2

∞

𝑚=1

∞

𝑛=1

( 𝑚𝑜𝑑 2). 

 

       Because the number of ways of representing n as a sum of two squares is even where 

𝑛 = 𝑥2 + 𝑦2 = 𝑦2 + 𝑥2 counted as two different representations, we obtain 

16 ∑ ∑ 𝑞𝑛2+𝑚2

∞

𝑚=1

∞

𝑛=1

+ 16 ∑ ∑ 𝑞2𝑛2+𝑚2

∞

𝑚=1

∞

𝑛=1

≡ 16 ∑ 𝑞2𝑛2

∞

𝑛=1

+ 16 ∑ ∑ 𝑞2𝑛2+𝑚2

∞

𝑚=1

∞

𝑛=1

(𝑚𝑜𝑑 32)                                          . . . . (7) 

By plugging (7) in (6), we get 

𝑃3(𝑞) ≡ 1 + 8 ∑ σ(𝑛)𝑞𝑛

∞

𝑛=1

+ 18 ∑ 𝑞4𝑛2

∞

𝑛=1

+ 30 ∑ 𝑞(2𝑛−1)2

∞

𝑛=1

+ 16 ∑ ∑ 𝑞2𝑛2+𝑚2

∞

𝑚=1

∞

𝑛=1

   (𝑚𝑜𝑑 32).  

 

       Note that it is easy to show that 2𝑘(8𝑛 + 7) is not a square or twice a square. Also, by the 

three-squares theorem, no number of the form 4𝑘(8𝑛 + 7) = 22𝑘(8𝑛 + 7) is a sum of three 
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squares. Indeed, we only need to show that 22𝑘−1(8𝑛 + 7) is not of form  2𝑥2 + 𝑦2. Suppose 

not, thus for some x and y, 22𝑘−1(8𝑛 + 7) = 2𝑥2 + 𝑦2 which provides that y must be even 

and so we rewrite the last equation as 22𝑘−1(8𝑛 + 7) = 2𝑥2 + 4𝑦2 which implies 4𝑘−1(8𝑛 +

7) = 𝑥2 + 2𝑦2 contradicting the three-squares theorem. Thus, the terms of the form 𝑞2𝑘(8𝑛+7) 

can be extracted only from the series 

∑ σ(𝑛)𝑞𝑛

∞

𝑛=1

. 

      Together with the multiplicative property of σ(𝑛) and σ(8𝑛 + 7) ≡ 0 (𝑚𝑜𝑑 4), we obtain  

  𝑝
3

(2𝑘(8𝑛 + 7)) ≡ 8σ(2𝑘(8𝑛 + 7)) = 8σ(2𝑘)σ(8𝑛 + 7) ≡ 0 (𝑚𝑜𝑑 32).         □ 

 

By setting 𝑘 = 1 in Theorem 2.4, we obtain a theorem that is proved by L. Wang [15] as 

follows. 

 

Corollary 2.5 ([15], Theorem 2.2).  For any integer 𝑛 ≥ 0, we have 

𝑝
3

(16𝑛 + 14) ≡ 0 (𝑚𝑜𝑑 32). 

 

3. Final Remarks and Conclusions 

       In a recent study, the first author has studied a two-dimensional generalized concept of 

overpartitions, named k-rowed plane overpartitions [12] where the number of rows is bounded 

by k. In terms of overpartition triples, the 3-rowed plane overpartition generating formula is as 

follows: 

∑ 𝑝𝑙
3

(𝑛)𝑞𝑛

∞

𝑛=0

= (
(1 − 𝑞)2(1 − 𝑞2)

(1 + 𝑞)2(1 + 𝑞2)
) ∑ 𝑝

3
(𝑛)𝑞𝑛

∞

𝑛=0

, 

where 𝑝𝑙
3

(𝑛) denotes the number of 3-rowed plane overpartitions of n. The link between 

these two generating functions may lead to the discovery of new congruences modulo powers 

of 2 for 𝑝𝑙
3

(𝑛) using the same technique adopted in this study.  

 

      Although the same procedures may be extended to a greater power of 2, the results gained 

in this study are limited to small powers of 2. Also, identities modulo powers of odd primes 

involving the overpartition function 𝑝(𝑛) and the sum of divisors function σ(𝑛) would be 

interesting to find. There are also divisor functions that are similar to σ(𝑛), such as the sums 

of odd, even, and proper divisors in which other sorts of overpartitions, such as overpartitions 

with distinct parts or odd parts, may be linked to such functions. Many questions remain 

unanswered to have a better understanding of the overpartition function, and its connection 

related to squares and sum of squares that often appear in overpartition congruences modulo 

powers of two.  

 

       The literature on overpartition congruences is highly rich, and several overpartition-type 

functions have been introduced including the powers of overpartition function to achieve a 

larger class and more generalized findings. Thus, this paper will be followed by a few 

publications that will investigate various types of overpartition-type functions modulo small 

powers of two. 
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