DOI: 10.24996/ijs.2023.64.6.26

ISSN: 0067-2904

Z-Small Quasi-Dedekind Modules

Farhan Dakhil Shyaa*, Hawraa Abd Al-Sada

Department of Mathematics, College of Education, University of Al-Qadsiyah, Al-Qadsiyah, Iraq

Received: 2/4/2022 Accepted: 11/9/2022 Published: 30/6/2023

Abstract

In this paper, we define and study z-small quasi-Dedekind as a generalization of small quasi-Dedekind modules. A submodule A of R-module M is called z-small $(A \ll_z M)$ if whenever A+B=M, $Z_2(M)\subseteq B$, then B=M. Also, M is called a z-small quasi-Dedekind module if for all $f\in End_R(M)$, $f\neq 0$ implies $Kerf\ll_z M$. We also describe some of their properties and characterizations. Finally, some examples are given.

Keywords: Quasi-Dedekind module, Z-small quasi-Dedekind module, Second singular submodule.

المقاسات شبة الديكاندية الصغيرة من النمط 2

فرحان داخل شياع* ، حوراء عبدالساده

قسم الرباضيات، كلية التربيه، جامعة القادسيه، القادسيه ، العراق

الخلاصة:

في هذا البحث عرفنا ودرسنا المقاس شبه الديكاندي الصغير من النمط Z كاتعميم للمقاس شبه A+B=M , $Z_2(M)\subseteq B$ اذا كان Z اذا كان Z الديكاندي الصغير . Z للمقاس الجزئي الصغير من النمط Z اذا كان Z .

يقال للمقاس انه مقاس شبه ديكاندي صغير من النمط Z اذا كان لكل تشاكل $f \in End(M)$ فان نواة التشاكل تكون مقاس جزئى صغير من النمط Z. وإعطينا بعض خصائصها وتوصيفاتها وأمثلة عليها.

1. Introduction

Consider that R is a ring with identity and M is a unitary right module. A submodule of R is called a small submodule of M if M = W + U, where U is a submodule of M implies that U = M. It is known that a submodule A of an R-module M is said to be essential in M if $A \cap W \neq 0$ for every non-zero submodule W of M.

Recall that M is called a small quasi-Dedekind module if for all $f \in End_R(M)$, $f \neq 0$ implies $Kerf \ll M$ " [1]. Amina in [2] introduced the concept of z-small (briefy $A \ll_z M$) if whenever A + B = M, $Z_2(M) \subseteq B$, then B = M. $Z_2(M)$ is called the second singular

^{*}Email: farhan.shyaa@qu.edu.iq

submodule of M which is defined in [3] by $Z(\frac{M}{Z(M)}) = \frac{Z_2(M)}{Z(M)}$, where $Z(M) = \{x \in M : xI = 0 \text{ for some essentially ideal } I \text{ of } R\}$. Equivalently, $Z(M) = \{x \in M : ann_R(x) \leq_{ess} R\}$ M is called singular (non-singular) if Z(M) = M(Z(M)) = 0 [3]. Asgri [4] proved that $Z_2(M) = \{x \in M : xI = 0 \text{ , for some } t\text{-essentially ideal } I \text{ of } R\}$. Equivalently $Z_2(M) = \{x \in M : ann(x)_R \leq_{tes} R\}$. It is worth that a submodule N of M is called t-essentially in M, $N \leq_{tes} M$ if $N \cap W \subseteq Z_2(M)$, $N \leq_{tes} M$, then $N \subseteq Z_2(M)$ [4].

Note that every small submodule is z-small, however, the converse is not true.

This motivate us to introduce a generalization of small quasi-Dedekind, namely z-small quasi-Dedekind. A module M is called a z-small quasi-Dedekind module if for all $f \in End_R(M)$, $f \neq 0$ implies $Kerf \ll_z M$ (i.e. Kerf is a z-small submodule in M). Every small quasi-Dedekind R-module is a z-small quasi-Dedekind R-module . However, the converse is not true. Many characterizations of z-small quasi-Dedekind modules are given.

2. Z-Small Quasi-Dedekind Modules

First, we begin with the following lemma and remarks that we need throughout this work.

Lemma (2.1)

Let $f: M \to M$ be a monomorphism. Then $f(Z_2(M)) = Z_2(f(M))$.

Proof

Let $y \in Z_2(f(M))$. Then y = f(M) and f(M)I = 0 for some $I \leq_{tes} R$. So f(MI) = 0 since f is one to one, this implies mI = 0. Hence, $m \in Z_2(M)$. Thus $y = f(m) \in f(Z_2(M))$, then we get $Z_2(f(M)) \subseteq f(Z_2(M))$.

Conversely, let $y \in f(Z_2(M))$, then y = f(x) and $x \in Z_2(M)$, that is xI = 0 for some $I \leq_{tes} R$. It follows that f(x)I = 0, i.e $y = f(x) \in Z_2(f(M))$. Thus, $f(Z_2(M)) \subseteq Z_2(f(M))$.

Proposition (2.2)

- 1) Let M be an R-module, $f \in End_R(M)$, there exists f which is monomorphism, $N \leq M$ if $f(N) \ll_Z f(M)$, then $N \ll_Z M$.
- 2) Let $f \in End_R(M)$, f is monomorphism if $N \ll_z f(M)$ then $f^{-1}(N) \ll_z M$.
- 3) Let $\frac{A}{C} \ll_z \frac{M}{C}$, $C \ll_z M$, then $A \ll_z M$.

Proof:

1) Let N+B=M, $B\supseteq Z_2(M)$. Then f(N)+f(B)=f(M) since $B\supseteq Z_2(M)$, we get $f(B)\supseteq f(Z_2(M))$. Hence, f(B)=f(M) by Lemma(2.1). Since $f(N)\ll_z f(M)$. But, f(B)=f(M) implies B=M since f monomorphism. Thus $N\ll_z M$.

2)Let $f^{-1}(N) + L = M$, $L \supseteq Z_2(M)$. Then $f(f^{-1}(N) + f(L) = f(M)$. As $L \supseteq Z_2(M)$, $f(L) \supseteq f(Z_2(M))$ and since f is monomorphism , $f(L) \supseteq Z_2(f(M))$. But $f(f^{-1}(N)) \subseteq N$ so that N + f(L) = f(M). As $N \ll_z f(M)$, f(L) = f(M). But f is a monomorphism , hence L = M. Thus, $f^{-1}(N) \ll_z M$.

monomorphism, hence L=M. Thus, $f^{-1}(N) \ll_{\mathbb{Z}} M$. 3)Let A+B=M, $B\supseteq Z_2(M)$. Then $\frac{A}{c}+\frac{B+C}{c}=\frac{M}{c}$. But $\frac{B+C}{c}\supseteq \frac{Z_2+C}{c}\supseteq Z_2(\frac{M}{c})$, since for any $y\in Z_2\left(\frac{M}{c}\right)$, y=m+c and (m+c)I=0 for some $I\le_{tes} R$. Hence mI=0 and so $m\in Z_2(M)$. Thus $m+c\in \frac{Z_2(M)}{c}$. It follows that $\frac{B+C}{c}=\frac{M}{c}$ since $\frac{A}{c}\ll_{\mathbb{Z}} \frac{M}{c}$. Thus B+C=M. But $C\ll_{\mathbb{Z}} M$ and $B\supseteq Z_2(M)$ so that B=M. Thus $A\ll_{\mathbb{Z}} M$.

Definition (2.3)

An R-module M is called a z-small quasi-Dedekind module if for all $f \in End_R(M)$, $f \neq 0$ implies that $Kerf \ll_z M$ (i.e. Kerf is a z-small submodule in M). Note*: M denoted z-small quasi-Dedekind module.

Remarks and Examples (2.4)

- 1) It is clear that every small quasi-Dedekind *R*-module is a z-small quasi-Dedekind *R*-module. But the converse is not true in general.
- 2) For example: Z_6 as Z-module is not small quasi-Dedekind, since there is, $f: Z_6 \to Z_6$ which is defined by $f(\overline{x}) = 3\overline{x}$, $\overline{x} \in Z_6$. So $f \neq 0$, but $Kerf = \{\overline{x} \in Z_6: f(\overline{x}) = \overline{x}\} = \{\overline{x} \in Z_6: 3\overline{x} = \overline{0}\} = (\overline{2})$ is not small in Z_6 . However, Z_6 is M Z-module. Since for each $f \in Z_6$, $f \neq 0$, $Kerf \leq Z_6$. But Z_6 as Z-module is singular, so $Z_2(Z_6) = Z_6$ and so $Kerf \ll_z Z_6$. 3) $Z \oplus Z$ is not M Z-module, $\exists f: Z \oplus Z \to Z \oplus Z \ni f(x,y) = (x,0); x,y \in Z$. So $f \neq 0$, but $Kerf = (0) \oplus Z$ is not $Z \to Smll Z \oplus Z$. Since $Kerf = 0 \oplus Z$ and $Z \to Smll Z \oplus Z$ and $Z \to Smll Z \oplus Z$.
- 4) If M = 0, then M is M in note *
- 5) Any integral domain R is an M R-module, but the converse is not true in general, for example:

 Z_4 as Z_4 -module is a M in note *, but it is not an integral domain.

Proposition (2.5)

Let M be an R-module. Then M is in note * if and only if Hom(M/N, M) = 0 for all $N \ll_{\mathbb{Z}} M$.

Proof

 \Rightarrow Suppose that there exists N which is not z-small of $M \ni Hom(M/N, M) \neq 0$, then there exists $\emptyset: M/N \to M, \emptyset \neq 0$. Hence, $\emptyset \circ \pi \in End_R(M)$, where $\emptyset \circ \pi \neq 0$ and π is the canonical projection which implies $Ker(\emptyset \circ \pi) \ll_z M$ but $N \subseteq Ker(\emptyset \circ \pi)$, so $N \ll_z M$ by [2] that is a contradiction.

 \Leftarrow Assume that there is $f: M \to M$, $f \neq 0 \ni Kerf$ is not z-small in M. Define $g: M / Kerf \to M$ by g(m + Kerf) = f(m), for all $m \in M$. So g is well-defined and $g \neq 0$. Hence, $Hom(M/Kerf, M) \neq 0$ that is a contradiction.

Proposition(2.6)

Let *I* is an ideal of $R \ni I \subseteq ann_R(M)$, *M* be an *R*-module and $\overline{R} = R/I$, then *M* in note * *R*-module iff *M* in note * \overline{R} -module.

Proof

 \Rightarrow We have $Hom_R(M/K, M) = Hom_{\overline{R}}(M/K, M)$, for all $K \leq M$, by [5, p.51]. Thus, if M is in note * R-module, then $Hom_R(M/K, M) = 0$ for all $K \nleq_{z-s} M$, so $Hom_{\overline{R}}(M/K, M) = 0$ for all $K \nleq_{z-s} M$, thus M is a z-small quasi-Dedekind \overline{R} -module. \Leftarrow By the way, the converse can be proved.

Proposition(2.7)

Let M_1 , M_2 be R-modules $\ni M_1 \cong M_2$. M_1 is M in note * R-module if and only if M_2 is M in note * R-module.

Proof

⇒Let: $M_2 oup M_2$, $f \neq 0$. To prove ker $f \ll_z M_2$. Since $M_1 \cong M_2$, there exists an isomorphism $g: M_1 oup M_2$. Consider the following: $M_1 \overset{g}{\to} M_2 \overset{g^{-1}}{\to} M_2 \overset{g^{-1}}{\to} M_1$. Hence, $h = g^{-1} \circ f \circ g \in End_R(M_1), h \neq 0$. So $Kerh \ll_z M_1$ (since M_1 is z-small quasi-Dedekind), then $g(Kerh) \ll_z M_2$ by [2, Proposition 2.15]. But, we can show that g(Kerh) = Kerf as follows: let $y \in g(Kerh)$, so $y = g(x), x \in Kerh$. So h(x) = 0; that is $g^{-1} \circ f \circ g(x) = 0$, then $g^{-1}f(y) = 0$, so $g^{-1}(f(y)) = 0$ and hence f(y) = 0, since g^{-1} is monomorphism, so that $y \in Kerf$, hence $g(Kerh) \subseteq Kerf$. Now, let $y \in Kerf$, then f(y) = 0, but $y \in M_2$, so there exists an $x \in M_1 \ni y = g(x)$, because g is onto. Hence, f(g(x)) = 0 and so $g^{-1}(f(g(x))) = 0$, that is h(x) = 0. Therefore, $x \in Kerh$. Hence, $y = g(x) \in g(Kerh)$. Therefore, $Kerf = g(Kerh) \ll_z M_2$, hence $Kerf \ll_z M_2$. \iff The proof of the converse of the proposition is similar.

Remark (2.8)

Suppose $N \le M$, $f \in End_R(M)$, $f \ne 0$, and $f(N) \ll_z f(M)$ then it is not necessarily $N \ll_z M$.

Proposition (2.9)

Let M be in note * R-module, $f \in End_R(M)$, $f \neq 0$, and $f(Z_2(M)) = Z_2(f(M))$, $N \leq M$. If $f(N) \ll_Z f(M)$ then $N \ll_Z M$.

Proof

Let $B \leq M$ and N+B=M and $B \supseteq Z_2(M)$ then f(N)+f(B)=f(M) $f(B) \supseteq f(Z_2(M))$ so $f(B) \supseteq Z_2(f(M))$ by hypothesis, since $f(N) \ll_z f(M)$ implies f(B)=f(M). Now, we can show that Kerf+B=M. Let $m \in M$, hence $f(m) \in f(M)=f(B)$. As a result, there is $b \in B \ni f(m)=f(b)$, hence $m-b \in Kerf$. It follows that m=(m-b)+b, thus $M \subseteq Kerf+B$. Thus Kerf+B=M, but M is a z-small quasi-Dedekind R-module, so $Kerf \ll_z M$ this indicates B=M. Therefore $N \ll_z M$.

Proposition (2.10)

Let Mbe note * R-module , $f \in End_R(M)$, $f \neq 0$, $N \leq M$. If $N \ll_z f(M)$ then $f^{-1}(N) \ll_z M$.

Proof

It is clear that $Kerf \subseteq f^{-1}(N)$, we will prove $\frac{f^{-1}(N)}{Kerf} \ll_Z \frac{M}{Kerf}$. Let $\frac{f^{-1}(N)}{Kerf} + \frac{L}{Kerf} = \frac{M}{Kerf}$, where $\frac{L}{Kerf} \le \frac{M}{Kerf}$. Then $f^{-1}(N) + L = M$, hence $f(f^{-1}(N)) + f(L) = f(M)$ but $f(f^{-1}(N)) \subseteq N$, then $f(M) = f(f^{-1}(N)) + f(L) \subseteq Nf(L)$, also, we have $N \subseteq f(M)$ and $f(L) \subseteq f(M)$, so $N + f(L) \subseteq f(M)$ and thus N + f(L) = f(M). Since $N \ll_Z f(M)$, and $L \supseteq Z_2(M) \Rightarrow f(L) \supseteq f(Z_2(M))$. Hence $f(L) \supseteq Z_2(f(M))$ by hypothesis then f(L) = f(M). We claim that L = M. Let $x \in M$, then $f(x) \in f(M) = f(L)$, hence f(x) = f(l) for some $l \in L$. Consequently $x - l \in Kerf \subseteq L$ and hence $x \in L$, so $M \subseteq L$. Thus M = L which implies $\frac{L}{Kerf} = \frac{M}{Kerf}$, so $\frac{f^{-1}(N)}{Kerf} \ll_Z \frac{M}{Kerf}$. But $Kerf \ll_Z M$, so by Proposition (2.2), $f^{-1}(N) \ll_Z M$.

Proposition (2.11)

Let M be in note * and quasi-injective R-module, $N \le M$ \exists for every $U \le N$, $U \ll_z M$ implies $U \ll_z N$. Then N is as in note * R-module.

Proof

Let $f: N \to N$, $f \neq 0$. To show $Kerf \ll_z N$. Since M is a quasi-injective R-module, there exists $g: M \to M \ni g \circ i = i \circ f$, where i is the inclusion mapping.

Then $g(N)=f(N)\neq 0$; that is $g\neq 0$. So that $Kerg\ll_z M$, since M is z-small quasi-Dedekind. But $Kerf\subseteq Kerg$, hence $Kerf\ll_z M$. On the other hand $Kerf\leq N$, so $Kerf\ll_z N$. Thus N is a R-module in note *.

Recall that a submodule N of a module M is called Z-coclosed in M(briefly $N \ll_{z-cc} M$, if whenever $H \le N$ with $\frac{N}{H} \ll_z \frac{M}{H}$ implies that N = H.[2]

Corollary(2.12)

Let M be quasi-injective R-module, let $N \le M$. If N is a z-coclosed submodule, then N is a z-small quasi-Dedekind R-module.

Proof

Let N be z-coclosed for all $U \le N$, $U \ll_z M$ implies $U \ll_z N$. [2, Reamers and examples 2.2(5)]. Then the result follows by Proposition (2.11).

Corollary(2.13)

Let M be an R-module, there exist \overline{M} is a in note * quasi injective R-module, and for all $U \leq M$, $U \ll_{\mathbb{Z}} \overline{M}$ implies $U \ll_{\mathbb{Z}} M$. Then M is a R-module in note *.

Proof

Since \overline{M} is a R-module in note * and quasi-injective R-module, then M is a R-module in note * by Proposition 2.11.

Proposition(2.14)

Let M be an R-module in note * . Then $ann_R(N) = ann_R(M)$ for all N is not z-small of M.

Proof

Since M is an R-module in note *, so by Theorem(2.5), $Hom(^M/_N, M) = 0$ for all N is not z – small of M which implies N is a quasi-invertible submodule for all N is not z-small in M. Thus by [1, Proposition 0.1.3 $ann_R(N) = ann_R(M)$ for all N not z-small in M.

Proposition(2.15)

Let M be an R-module $\ni M/U$ is projective for all U is not z-small in M. If M is an R-module in note *, then M/U is R-module in note * $\forall N \leq M$.

Proof

Let K/N is not z-small in M/N, so by [1, Corollary 2.1.4], K is not z-small in M. Suppose that $Hom(\frac{M/N}{K/N},\frac{M}{N})\neq 0$, but $Hom(\frac{M/N}{K/N},\frac{M}{N})\cong Hom(\frac{M}{K},\frac{M}{N})$, so there exists $f\colon M/K\to M/N$, $f\neq 0$. Since M/K is projective, then there exists $g\colon M/K\to M\ni \pi\circ g=f$, where π is the canonical projection.

Hence $\pi \circ g(^M/_K) = f(^M/_K) \neq 0$, so $g \neq 0$, but $g \in Hom(^M/_K, M)$, Ks not z-small in M. Thus $Hom(^M/_K, M) \neq 0$, Ks not z-small in M; that is M is not K-module in note *, that is a contradiction. Hence, $M/_N$ is an K-module note *.

Let M and P be modules, then M is called P-projective in the case for all $N \le P$ and any homomorphism $h: M \to P/N$, there exists a homomorphism $g: M \to P \ni \pi \circ g = h$ where π is the natural epimorphism. Hence, the following diagram is commutive, [6].

An *R*-module *M* is called quasi-projective if, *M* is *M*-projective; that is for each $N \le M$ and every homomorphism $h: M \to M/N$, there exists a homomorphism $g: M \to M \ni \pi \circ g = h$, where π is the natural epimorphism[7].

Proposition(2.16)

Let M be a quasi-projective R-module and $N \leq M \ni g^{-1}(N) \ll_z M$ for each $g \in End_R(M)$, then M/N is a z-small quasi-Dedekind R-module.

Proof

Assume $f: {}^M/_N \to {}^M/_N \ni f \neq 0$, because M is quasi-projective, there exists a homomorphism $g: M \to M \ni \pi \circ g = f \circ \pi$ (π canonical projection).

Let
$$Kerf = L/N = \{x + N : f(x + N) = N\}$$

$$= \{x + N : f \circ \pi(x) = N\} = \{x + N : \pi \circ g(x) = N\}$$

$$= \{x + N : g(x) + N = N\} = \{x + N : g(x) \in N\}$$

$$= \{x + N : x \in g^{-1}(N)\}.$$
 Thus $Kerf = \frac{g^{-1}(N)}{N}$, but $g^{-1}(N) \ll_z M$, so by [2,Corollary 2. 4], $\frac{g^{-1}(N)}{N} \ll_z M/N$; that is $Kerf \ll_z M/N$.

Corollary(2.17)

Let M be a quasi-projective R-module \exists for each $N \leq M$, $N \ll_z h(M)$ for all $h \in End_R(M)$. Then M is R-module in note * iff M/N is a z-smallquasi-Dedekind R-module.

Proof

 \Rightarrow If N = (0), we get the result.

 \Leftarrow By Proposition 2.6, $N \ll_z h(M)$ implies that $h^{-1}(N) \ll_z M$. As a result, the following is the result: by the previous theorem.

an *R*-submodule *N* of an *R*-module *M* is invariant if $f(N) \subseteq N$ for each $f \in End_R(M)$. A fully invariant submodule is a term used by authors to describe an invariant submodule [8].

Proposition(2.18)

Let M be an R-module .Then M is R-module in note * if and only if there exists $N \ll_Z M$, N is full invariant such that for each $f \in End_R(M)$, $f \neq 0$, $f(M) \not\subset N$ and M/N is in note *.

Proof

⇒Choose N = (0) implies $N \ll_z M$ and N is fully invariant and for all $f \in End_R(M)$, $f \neq 0$, hence $f(M) \not\subset (0) = N$ and $M/N = M/(0) \cong M$ is z-small quasi-Dedekind.

 \Leftarrow If N=0, then M is in note *. Assume that $N\neq (0), N\leq_{z-s}M$. Let $f\in End_R(M), f\neq 0$. To prove $Kerf\ll_z M$. Define $g\colon M/_N\to M/_N$ by g(m+N)=f(m)+N for all $m\in M.g$ is well-defined , since if $m_1+N=m_2+N$ where $m_1,m_2\in M$, then $m_1-m_2\in N$ and $f(m_1-m_2)f(N)\subseteq N$, since N is fully invariant. This implies $f(m_1)-f(m_2)\in N$; that is:

 $f(m_1) + N = f(m_2) + N$, thus

 $g(m_1+N)=g(m_2+N)$. $g \neq 0$, because if g=0 then $g(^M/_N)=N=0_{M/_N}$. Hence, f(M)+N=N, it follows that $f(M)\subseteq N$ which is a contradiction with the hypothesis. Thus, $Kerg \ll_z {}^M/_N$, since ${}^M/_N$ is a z-small quasi-Dedekind R-module. Assume that $Kerg=L/_N \ll_z {}^M/_N$, but $N \leq_{z-s} M$, so by [Remark 2..2(3)], $L \ll_z M$. It is easy to prove the other direction to see that $Kerf \subseteq L$, so $Kerf \ll_z M$, hence M is an R-module in note *.

Recall that an R-module M is called multiplication if for each submodule N of M, there exists an ideal I of R such that N = MI

Corollary(2.19)

If M a multiplication R-module. Then M is R-module in note * if and only if there exists $N \ll_Z M$ such that for all $f \in End_R(M)$, $f \neq 0$, $f(M) \not\subset N$ and M/N is R-module in note *.

Proof

Since *M* is a multiplication *R*-module, every proper submodule of *M* is fully invariant. As a consequence, the result is attained by Theorem 2.14.

Proposition(2.20)

Every direct summand of an M is an R- module in note *.

Proof

Let $M = N \oplus K$ such that M is R-module in note *. To prove that K is a z-small quasi-Dedekind R-module. Let $f: K \to K$, $f \neq 0$. Consider that $M \xrightarrow{\rho} K \xrightarrow{f} K \xrightarrow{i} M$, where ρ is the natural projection , and i is the inclusion mapping. So $h = i \circ f \circ \rho \in End_R(M)$, $h \neq 0$ since there exists $y \in K$, $f(y) = x \neq 0$. Hence for each $z \in N$ then $h(z + y) = i \circ f \circ \rho(z + y) = i \circ f(y) = i(f(y)) = i(x) = x \neq 0$. Hence $Kerh \ll_z M$, since M is z-small quasi-Dedekind. But $Kerf \subseteq Kerh$, so $Kerf \ll_z M$. On the other hand $Kerf \subseteq K$ implies by [2, Remark and Examples 2.2(5)]. $Kerf \ll_z K$. Thus K is R-module in note *.

Proposition(2.21)

If M an R-module, and $N, L \le M \ni N + L = M$, and $\frac{M}{N \cap L}$ is a z-small quasi-Dedekind R-module, then $\frac{M}{N}$ and $\frac{M}{L}$ are an R-modules in note *.

Proof

Since
$$\frac{M}{N \cap L} = \frac{N+L}{N \cap L} = \frac{N}{N \cap L} \oplus \frac{L}{N \cap L}$$
. Hence, by Theorem 2.20, $\frac{N}{N \cap L}$ and $\frac{L}{N \cap L}$ are an R -modules in note *. But, $\frac{N}{N \cap L} \cong \frac{N+L}{L} = \frac{M}{L}$, also $\frac{L}{N \cap L} \cong \frac{N+L}{N} = \frac{M}{N}$. So $\frac{M}{N}$ and $\frac{M}{L}$ are R -modules in note *.

Definition(2.22)

Let M, N be R-modules. M is said to be an R-module in note *relative to N if, for all $f \in Hom(M,N)$, $f \neq 0$ implies $Kerf \ll_z M$.

Remarks and Examples(2.23)

- 1) M is R- module in note * if and only if M is R-module in note * relative to M.
- 2) Z is not module in note * relative to Z_4 , because there exists $f: Z \to Z_4 \ni f(x) = \overline{x} \ \forall \ x \in Z$. It is clear that $f \neq 0$, but $Kerf = 4Z \le Z$.

Proposition(2.24)

Let M_1 , M_2 be R-modules and let $M = M_1 \oplus M_2$. If M is a z-small quasi-Dedekind R-module, then M_i is a module in note * relative to M_i for all i, j = 1, 2.

Proof

Since $M = M_1 \oplus M_2$ is a Module in note *, so by Proposition 2.20, M_1 and M_2 are z-small quasi-Dedekind. Hence, by Remarks and Examples 2.23(1), M_1 is a z-small quasi-Dedekind relative to M_1 , and M_2 is a z-small quasi-Dedekind relative to M_2 . Now, to prove that M_1 is a z-small quasi-Dedekind relative to M_2 . Assume $f: M_1 \to M_2$, $f \neq 0$ and $M \to M_1 \to M_2 \to M$, ρ natural projection, i inclusion mapping.

Let $h = i \circ f \circ \rho \in End_R(M)$, since $f \neq 0$, there exists $0 = x \in M_1$ and $f(x) \neq 0$. This implies $0 \neq (x,0) \in M$ and $h(x,0) = h(x,0) = i \circ f \circ \rho(x,0) = i \circ f(x) = f(x) \neq 0$, thus $h \neq 0$. It follows that $Kerh \ll_z M = M_1 \oplus M_2$, since a z-small quasi-Dedekind R-module. But $Kerf \oplus (0) \subseteq Kerh$. since for $(x,0) \in Kerf \oplus (0)$ implies $h(x,0) = i \circ f \circ \rho(x,0) = i \circ f(x) = f(x) = 0$ so $(x,0) \in Kerh$, thus $Kerf \oplus (0) \ll_z M = M_1 \oplus M_2$, and hence by [2, Proposition 2.7] $Kerf \ll_z M_1$, so M_1 is a module in note * relative to M_2 .

In general, the converse of Proposition 2.24 is not true, consider the following example.

Example(2.25)

Z as Z-module is in note * , so Z is a M in note *relative to Z. But $M = Z \oplus Z$ is not as Z-module ,see Remarks and Examples 2.2(3).

Conclusions:

In this work, A z-small quasi-Dedekind as a generalization of small quasi-Dedekind modules is defined and studied. In addition, some of their properties and characterizations are described. Finally, some examples and significant results are given.

References

- [1] Ghwi.T.Y, . H, "Some Generalization of Quasi-Dedekind module".M.Sc. Thesis, Colleg of Education Ibn Al-Haitham, University of Baghdad, 2010.
- [2] Amina T. Hamad and Alaa A. Elewi . "Z-Small Submodules and Z-Hollow Modules". *Iraqi Journal of Science*, vol. 62, no. 8, pp. 2708-2713, 2021.
- [3] Goodearl, K. R. Ring Theory, Nonsingular Rings and Modules, Marcel Dekkel, Inc. New Yourk And Basel, 1967.
- [4] Asgari, Sh., Haghany, A. "t-Extending modules and t-Baer modules", *Comm.Algebra*, vol. 39, pp.1605-1623, 2011.
- [5] Kash.F., Modules and ring, Academ press. London, 1982.
- [6] Azumaya G., Mbuntum, F, . and Varadarajan, K. "On M-projective and M-injective Modules", *J. Math*, vol. 95, pp. 9-16, 1975.
- [7] Mohamed S. H., Muller B.J. Continuous and discrete Modules London Math, Soc, LNC,147 Cambridge univ. press, Cambridge, 1990.
- [8] Faith C. Rings, Modules and Categories, Springer-Verlag, Berlin, Heidelberg, Newyork, 1973.