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Abstract

In this paper, we define and study z-small quasi-Dedekind as a generalization of
small quasi-Dedekind modules. A submodule A of R-module M is called z-small
(A «, M) if whenever A+ B=M,Z,(M) € B ,then B =M. Also, M is called a
z-small quasi-Dedekind module if for all f € Endg(M), f #+ 0 implies Kerf <, M
. We also describe some of their properties and characterizations. Finally, some
examples are given.

Keywords: Quasi-Dedekind module, Z-small quasi-Dedekind module, Second
singular submodule.
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1. Introduction

Consider that R is a ring with identity and M is a unitary right module. A submodule of R is
called a small submodule of M if M = W + U, where U is a submodule of M implies that U =
M. It is known that a submodule A of an R-module M is said to be essential in M if ANW # 0
for every non-zero submodule W of M.

Recall that Mis called a small quasi-Dedekind module if for all f € Endg (M),f #0
impliesKerf «< M”[ 1]. Amina in [2] introduced the concept of z-small (briefy A <, M) if
whenever A+ B =M,Z,(M) < B , then B=M. Z,(M) is called the second singular
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submodule of M which is defined in [3] by Z(%) = ZZZ(%) ,where Z(M) ={x € M : xI =

0 for some essentially ideal I of R}. Equivalently, Z(M) = {x € M: anngz(x) <.sc R} M is
called singular (non-singular) if Z(M) = M(Z(M)) = 0 [3]. Asgri [4] proved that Z,(M) =
{x e M:xI =0 , for some t-essentially ideal I ofR}. Equivalently Z,(M)={x¢€
M: ann(x)g <;es R}. It is worth that a submodule N of M is called t-essentially in M
N <(os Mif NOW € Z,(M),W < M ,then W S Z,(M) [4].

Note that every small submodule is z-small, however, the converse is not true.
This motivate us to introduce a generalization of small quasi-Dedekind, namely z-small quasi-
Dedekind. A module M is called a z-small quasi-Dedekind module if forall f € Endg(M), f #
0 implies Kerf «, M (i.e Kerf isa z-small submodule in M). Every small quasi-Dedekind
R-module is a z-small quasi-Dedekind R-module . However, the converse is not true. Many
characterizations of z-small quasi-Dedekind modules are given.

2. Z-Small Quasi-Dedekind Modules
First, we begin with the following lemma and remarks that we need throughout this work.

Lemma (2.1)
Let f:M — M be a monomorphism. Then f(Z,(M)) = Z,(f(M)).

Proof

Lety € Z,(f(M)). Then y = f(M) and f(M)I = 0 for somel <;.c R. S0 f(MI) =0
since f isone to one, this implies ml = 0. Hence, m € Z,(M). Thus y = f(m) € f(Z,(M))
, then we get Z,(f (M) S f(Z,(M)).
Conversely, lety € f(Z,(M)) , then y = f(x) and x € Z,(M) , that is xI = 0 for some
I <(es R. It follows that f(x)I =0, i.e y=f(x)€Z,(f(M)). Thus, f(Z,(M))<
Z,(f (M)).

Proposition (2.2)

1) Let M be an R-module, f € Endzr(M) , there exists f which is monomorphism, N < M
if f(N) <<, f(M),then N <, M.

2) Letf € Endg(M), f is monomorphism if N <, f(M) then f~1(N) <, M.

3) Let 2, = ,C <, M, then A <, M.

Proof:

1) Let N+B=M,B22Z,(M). Then f(N)+ f(B) = f(M) since B2 Z,(M) , we get
f(B) 2 f(Z,(M)). Hence, f(B)=f(M) by Lemma(2.1). Since f(N) <, f(M). But,
f(B) = f(M) implies B = M since f monomorphism. Thus N <, M.

Qlet fY(N)+L=M,L2Z,(M). Then f(f*(N)+f(L)=fM). As L2
Z,(M), f(L) 2 f(Z,(M)) and since f is monomorphism , f(L) 2 Z,(f(M)). But
f(fTYN)) SN so that N+ f(L) =f(M). As N <, f(M),f(L) = f(M). But f is a
monomorphism , hence L = M. Thus, f~1(N) «, M.

3)Let A+B=M,B2Z,(M). Then Z+2= == But == 2
y € Z, (%)y =m+cand (m+c)l =0 for some [ <;,s R. Hence m/ =0 and so m €
Z,(M). Thus m+c € @ It follows that % = % since % K, % Thus B+ C = M. But

C K, Mand B2 Z,(M)sothat B =M. Thus A <, M.

Z,+C

27, (%) , since for any
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Definition (2.3)

An R-module M is called a z-small quasi-Dedekind module if forall f € Endz(M),f # 0
implies that Kerf <«, M(i.e Kerf isaz-small submodule in M).
Note*: M denoted z-small quasi-Dedekind module.

Remarks and Examples (2.4)

1) Itis clear that every small quasi-Dedekind R-module is a z-small quasi-Dedekind R-module.
But the converse is not true in general.

2) For example: Zg as Z-module is not small quasi-Dedekind, since there is, f:Z; — Zg
which is defined by f(x) =3X,x € Zs. SO f # 0, butKerf ={x € Zg: f(x) =x} ={x €
Zg:3%x = 0} = (2) is not small in Z,. However, Zg is M Z-module. Since for each f €
Ze,f #0,Kerf < Zs.But Zgas Z-module is singular,so Z,(Z;) = Zgandso Kerf «, Z.
3)Z@Zisnot M Z-module ,3f: ZDZ — ZDZ 3 f(x,y) = (x,0);x,y € Z .So f # 0, but
Kerf = (0)®Z isnot z—smll Z&Z. Since Kerf = 0®Z and (0BZ) + (ZP0) =ZBZ
and Z&(0) 2 Z,(Z®Z) = 0, but Z&(0) # ZPZ.

4)If M =0, then M is M in note *

5) Any integral domain R is an M R-module, but the converse is not true in general, for
example:

Z,as Z,-moduleisa M innote *, but it is not an integral domain.

Proposition (2.5)
Let M be an R-module. Then M is in note * if and only if Hom(M/N,M) = 0 for all
N «, M.

Proof

=Suppose that there exists N which is not z-small of M 3 Hom(M /N ,M) # 0, then there
exists @:M/N — M,@ # 0. Hence, @ om € Endg(M), where @om# 0 and m is the
canonical projection which implies Ker(@eom) <<, M but N € Ker(@om), so N <K, M
by[2] that is a contradiction.

<Assume that thereis f:M — M , f # 03 Kerf isnot z-small in M. Define g:M / Kerf —
M by gim+ Kerf) = f(m), for all me M. So g is well-defined and g # 0. Hence,
Hom(M /Kerf ,M) =+ 0 that is a contradiction.

Proposition(2.6)
Let I isanideal of R 31 € anngz(M), M be an R-module and R = R/I, then M in note *
R-module iff M in note * R-module.

Proof

=We have Homz(M/K,M) = Homz(M /K ,M) ,forall K < M ,by [5, p.51]. Thus, if M is
in note * R-module , then Homz(M/K,M) =0 forall K £, ¢ M,so Homz(M/K,M) = 0
forall K %,_ M ,thus M is a z-small quasi-Dedekind R-module.

< By the way, the converse can be proved.

Proposition(2.7)
Let M;, M, be R-modules > M; = M, .M; is M in note * R-module if and only if M, is
M innote * R-module.

Proof
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=>let:M, — M, ,f # 0.Toproveker f <<, M, .Since M; = M, ,there exists an isomorphism

-1
g:M; — M, . Consider the following: M; A M, Z> M, 7, M; . Hence, h=g lofoge€
Endr(M;),h#0 . So Kerh &, M; (since M; is z-small quasi-Dedekind), then
g(Kerh) <, M, by [2, Proposition 2.15]. But, we can show that g(Kerh) = Kerf as follows:
let y € g(Kerh), so y = g(x),x € Kerh . S0 h(x) =0 ; thatis g=1o f o g(x) = 0, then
g f(y)=0,s50 g~(f(y)) = 0 and hence f(y) =0, since g~! is monomorphism , so
that y € Kerf , hence g(Kerh) € Kerf .Now, let y € Kerf ,then f(y) =0,but y € M,
, SO there exists an x € M; 3y = g(x) , because g is onto. Hence, f(g(x)) =0 and

s0 g~1(f ((g(x))) =0, that is h(x) = 0. Therefore, x € Kerh .Hence, y = g(x) €

g(Kerh). Therefore, Kerf = g(Kerh) <, M, , hence Kerf <, M,.
< The proof of the converse of the proposition is similar.

Remark (2.8)
Suppose N <M , f € Endg(M),f # 0, and f(N) <, f(M) then it is not necessarily
N «, M.

Proposition (2.9)
Let M be in note * R-module, f € Endg(M),f # 0, and f(Z,(M)) = Z,(f(M)),N <
M. If f(N) <, f(M)then N <, M.

Proof

Let B<M and N+B=M and B2Z,(M) then f(N)+f(B)=f(M) f(B)=2
f(Z,(M))so f(B) 2 Z,(f(M)) by hypothesis, since f(N) <, f(M)implies f(B) = f(M).
Now, we can show that Kerf + B = M. Let m € M, hence f(m) € f(M) = f(B). As a
result, thereis b € B 3 f(m) = f(b), hence m — b € Kerf. It follows that m = (m — b) +
b,thus M € Kerf + B. Thus Kerf + B = M, but M is a z-small quasi-Dedekind R-module
, S0 Kerf <, M this indicates B = M. Therefore N <, M.

Proposition (2.10)
Let Mbe note * R-module , f € Endg(M),f#0,N<M. If N «, f(M) then
f7Y(N) <, M.

Proof

1 »
Itis clear that Kerf < f~1(N), we will prove L W) il rrmw, Lo M

Kerf Z Kerf ' Kerf Kerf  Kerf
, where %Tf < KeMrf. Then f~X(N)+L=M , hence f(f 1(N))+ f(L)=f(M) but
FUFTEN)) € N, then f(M) = F(F71(N)) + f(L) € Nf(L), also, we have N < f(M) and
f(LyYcf(M),so N+ f(L) € f(M) and thus N + f(L) = f(M). Since N «, f(M), and
L2Z,(M) = f(L) 2 f(Z,(M)). Hence f(L)2Z,f(M)) by hypothesis then f(L) =
f(M).Weclaimthat L = M. Let x € M ,then f(x) € f(M) = f(L), hence f(x) = f(l) for
some [ € L.Consequently x —l € Kerf € L and hence x €L ,so M < L. Thus M =1

which implies KL M L)) &, —— . But Kerf <«, M, so by Proposition( 2.2),

erf - Kerf’ Kerf Z Kerf
fI(N) «, M.

Proposition (2.11)
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Let M be in note * and quasi-injective R-module, N < M 3forevery U< N,U K, M
implies U «, N.Then N isas in note * R-module.

Proof
Let f:N — N,f #0.Toshow Kerf «, N.Since M is a quasi-injective R-module ,
there exists g:M — M 3 goi=io f,h where iistheinclusion mapping .

Then g(N) = f(N) # 0;thatis g # 0. Sothat Kerg «, M, since M is z-small quasi-
Dedekind. But Kerf < Kerg , hence Kerf <, M .On the other hand Kerf <N , so
Kerf <, N.Thus N isa R-module in note *.

Recall that a submodule N of a module M is called Z-coclosed in M(briefly N «<,_.. M,
if whenever H < N with % K, % implies that N = H.[2]

Corollary(2.12)
Let M be quasi-injective R-module, let N < M. If N is a z-coclosed submodule, then N
is a z-small quasi-Dedekind R-module.

Proof
Let N be z-coclosed for all U < N,U <, M implies U «, N. [2, Reamers and
examples 2.2(5)]. Then the result follows by Proposition (2.11).

Corollary(2.13)
Let M be an R-module, there exist M is a in note * quasi injective R-module , and for all
U<M,U <, Mimplies U <, M. Then M isa R-module in note *.

Proof

Since M is a R-module in note * and quasi-injective R-module, then M is a R-module in
note * by Proposition 2.11.

Proposition(2.14)
Let M be an R-module in note * . Then anngz(N) = anng(M) for all N is not z-small of
M.

Proof
Since M is an R-module in note *, so by Theorem( 2.5), Hom(M/N,M) = 0 for all

N is not z — small of M which implies N is a quasi-invertible submodule for all N is not z-
small in M. Thus by [1, Proposition 0.1.3 anng(N) = anng(M) for all N notz —
small in M.

Proposition(2.15)
Let M be an R-module 3 M/U is projective for all U is not z-small in M. If M is an R-

module in note *, then M/N is R-module in note * YN < M.

Proof
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Let K/N is not z-small in M/N , S0 by [1, Corollary 2.1.4 ], K is not z-small in M. Suppose
that Hom(m ®y+0 , but Hom(M %y = HomE %) | so there exists f:M/,, —
K/n' N ’ K/ N7 T K’N7 - /K

M/N ,f # 0. Since M/K is projective, then there exists g:M/K — M3mog=f,where
is the canonical projection.

Hence mo g(M/ ) = f(M/i) #0,s0g =0, but g € Hom(M/,, M), Ks not z-small
in M. Thus Hom(M/K,M) # 0, K snotz-small in M; that is M is not R-module in note *,
that is a contradiction. Hence, M/N Is an R-module note *.

Let M and P be modules, then M is called P-projective in the case forall N < P and any
homomorphism h: M — P/N , there existsa homomorphism g:M — P 3w o g = h where
7 is the natural epimorphism. Hence, the following diagram is commutive , [6].

M

P T P/N > 0

An R-module M is called quasi-projective if , M is M-projective; that is for each N < M
and every homomorphism h:M — M/N, there exists a homomorphism g:M — M 3o
g = h, where m is the natural epimorphism[7].

Proposition(2.16)
Let M be a quasi-projective R-module and N <M 3 g 1(N) «, M for each g €
Endz (M) , then M/N is a z-small quasi-Dedekind R-module.

Proof
Assume f: M/N — M/N 3 f #0, because M is quasi-projective, there exists a
homomorphism g:M — M 3w o g = f o m ( canonical projection).

Let Kersz/Nz{x+N:f(x+N) = N}
={x+N:forn(x) =N}={x+N:mog(x) =N}
={x+N:glx)+ N=N}={x+ N:g(x) € N}
={x+N:x € g~ (N)}.

-1 -1
Thus Kerf = 9 (N)/N, but g~1(N) «<, M , so by [2,Corollary 2. 4], 9 (N)/N L, M/N;
thatis Kerf «, M/,

Corollary(2.17)
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Let M be a quasi-projective R-module 3for each N <M ,N <, h(M) for all h e
Endr(M). Then M is R-module in note * iff M/N is a z-smallquasi-Dedekind R-module.

Proof

=>If N = (0), we get the result.

&By Proposition 2.6, N <, h(M) implies that h~1(N) «, M. As a result, the following is
the result: by the previous theorem.

an R-submodule N of an R-module M isinvariantif f(N) € N foreach f € Endgz(M).
A fully invariant submodule is a term used by authors to describe an invariant submodule [8].

Proposition(2.18)

Let M be an R-module .Then M is R-module in note * if and only if there exists
N <, M, N isfull invariant such that foreach f € Endg(M),f #0,f(M) ¢ N and M/N
is in note *.

Proof

=Choose N = (0) implies N «, M and N is fully invariant and for all f € Endz(M), f +
0, hence f(M) ¢ (0) =N and M/N = M/(O) = M is z-small quasi-Dedekind.

<If N = 0,then M isinnote *. Assume that N # (0),N <,_; M. Let f € Endg(M), f # 0.
To prove Kerf «, M. Define g:M/y — M/\ by g(m+N) = f(m)+N for all me
M. g is well-defined , since if my + N = m, + N where my,m, € M , then m;y —m, €N
and f(my; —my)f(N) € N, since N is fully invariant. This implies f(m;) — f(m,) € N,
that is:

f(my) + N = f(m,) + N, thus

g(m; + N) = g(m, + N).g # 0, because if g =0 then g(M/N) =N = Omy, . Hence,
f(M) + N = N, itfollows that f(M) S N which is a contradiction with the hypothesis. Thus,
Kerg <, M/N , since M/N is a z-small quasi-Dedekind R-module. Assume that Kerg =

Ly <« M/ but N <, M, soby [Remark 2.2(3)], L <, M. Itis easy to prove the other

direction to see that Kerf € L ,so Kerf <, M ,hence M isan R-module in note *.
Recall that an R-module M is called multiplication if for each submodule N of M, there
exists an ideal I of R suchthat N = MI

Corollary(2.19)

If M a multiplication R-module. Then M is R-module in note * if and only if there
exists N «<, M such thatforall f € Endg(M),f #0,f(M) ¢ N and M/N is R-module in
note *.

Proof
Since M is a multiplication R-module, every proper submodule of M is fully invariant. As
a consequence, the result is attained by Theorem 2.14.

Proposition(2.20)

Every direct summand of an M is an R- module in note *.
Proof
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Let M = N®K such that M is R-module in note *. To prove that K is a z-small quasi-

Dedekind R-module. Let f: K — K, f # 0. Consider that M 5k Z> KSM , where p is the
natural projection , and i is the inclusion mapping. SO0 h =io f o p € Endg(M), h # 0 since
there exists y € K, f(y) = x # 0. Hence foreach z € Nthen h(z+y) =iofop(z+y) =
iof(y)=i(f(y)) =i(x) = x # 0.Hence Kerh <, M,since M is z-small quasi-Dedekind.
But Kerf < Kerh,so Kerf <, M.Ontheotherhand Kerf < K implies by [2, Remark and
Examples 2.2(5)]. Kerf <, K.Thus K is R-module in note *.

Proposition(2.21)
If Man R-module,and N,L<M3N+L =M, and Nim is a z-small quasi-Dedekind R-

M M .
module, then 5 and —arean R-modules in note *.

Proof
. M N+L N L N L
Since AL AL NnLEBNn .Hence, by Theorem 2.20, oL and ~oLarean R-modules
. N N+L M L N+L M M M -
innote *. But, — = —=—,also — = — = —.So —and — are R-modules in note *.
NNL L L NNL N N N L

Definition(2.22)
Let M,N be R-modules. M is said to be an R-module in note *relative to N if , for all
f € Hom(M,N), f # 0 implies Kerf <, M.

Remarks and Examples(2.23)

1) M is R- module in note * if and only if M is R-module in note * relative to M.

2) Z isnot module in note * relative to Z, , because thereexists f:Z — Z,3 f(x) =xVx €
Z.ltisclearthat f + 0, but Kerf =4Z ££, 7

Proposition(2.24)
Let M;,M, be R-modules and let M = M,;@®M,. If M is a z-small quasi-Dedekind R-
module, then M; is a module in note * relative to M; forall i,j = 1,2.

Proof

Since M = M;®M, is a Module in note *, so by Proposition 2.20, M; and M, are z-small
quasi-Dedekind. Hence, by Remarks and Examples 2.23(1), M,is a z-small quasi-Dedekind
relative to M,, and M, is a z-small quasi-Dedekind relative to M,. Now, to prove that M1IS a

z-small quasi-Dedekind relative to M,. Assume f:M; — M, ,f+0and M 5 M; —> M, S M
, p natural projection, i inclusion mapping.

Leth =iofop € Endg(M),since f # 0, thereexists 0 = x € M; and f(x) # 0. Thisimplies
0# (x,00)eM and h(x,0) =h(x,0) =iofop(x,0)=iof(x) =1f(x) #0, thus h=+0. It
follows that Kerh «, M = M;®M, , since a z-small quasi-Dedekind R-module . But
Kerf@®(0) < Kerh . since for (x,0) € Kerf®(0) implies h(x,0) =iofop(x,0) =iecf(x) =
f(x) = 0so (x,0) € Kerh, thus Kerf®(0) «, M = M;®M, , and hence by [2, Proposition
2.7] Kerf «, My, s0 M, is a module in note * relative to M,.

In general, the converse of Proposition 2.24 is not true, consider the following example.

Example(2.25)

Z as Z-module is in note *,s0 Zisa M in note *relative to Z. But M = Z&Z is not as Z-
module ,see Remarks and Examples 2.2(3).
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Conclusions:

In this work, A z-small quasi-Dedekind as a generalization of small quasi-Dedekind
modules is defined and studied. In addition, some of their properties and characterizations are
described. Finally, some examples and significant results are given.
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