

ISSN: 0067-2904

Semi-Essentially Compressible Modules and Semi-Essentially Retractable Modules

Mohammed Bager Hashim Al Hakeem*, Nuhad Salim Al-Mothafar

Department of Mathematics, college of Science, Baghdad University, Baghdad, Iraq

Received: 5/4/2022 Accepted: 19/8/2022 Published: 30/4/2023

Abstract:

Let R be a commutative ring with 1 and M be a left unitary R-module. In this paper, the generalizations for the notions of compressible module and retractable module are given.

An $R-module\ M$ is termed to be semi-essentially compressible if M can be embedded in every of a non-zero semi-essential submodules. An $R-module\ M$ is termed a semi-essentially retractable module, if $Hom_R(M,N) \neq 0$ for every non-zero semi-essentially submodule K of an $R-module\ M$. Some of their advantages characterizations and examples are given. We also study the relation between these classes and some other classes of modules.

Keywords: Compressible module, Retractable module, Essential compressible module, Essential retractable module, Semi- essential compressible, Semi- essential retractable.

مقاسات قابلة للانضغاط شبة جوهرية ومقاسات قابلة للسحب شبة جوهرية

محمد باقر هاشم الحكيم * ، نهاد سالم المظفر

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

لتكن R حلقة إبداليه ذات عنصر محايد ولتكن M مقاس ايسري ذات عنصر محايد. بحثنا هذا هو إعمامات لمفهوم المقاسات القابلة للضغط والمقاسات القابلة للانسحاب. المقاس M يسمى مقاس قابل للانضغاط شبة جوهرية إذا اغمرت M في جميع المقاسات الجزئية شبة جوهري غير الصفري. يسمى المقاس M قابل للانسحاب شبة جوهري أذا كان $0 \neq (M,K)$ + لمقاسات الجزئية K شبة جوهري غير الصفري. سنعطي في هذا البحث بعض الخواص والامثلة والعلاقة بين هذه المقاسات وأنواع من المقاسات الأخرى.

1.Introduction:

Let R be a commutative ring with 1 and M be a left unitary R-module. A non-zero submodule K is termed to be an essential submodule of M if $K \cap L \neq 0$ for every non-zero submodule L of M [1]. In [2], the authors introduced and studied the notion of semi-essential

*Email: mbhmsc2015110@gmail.com

submodules. Recall that a non-zero submodule N of an R —module M is termed to be a semiessential submodule ($N \leq_{s.e} M$), if $N \cap P \neq 0$ for every non-zero prime submodule P of M. A submodule P of M is termed to be prime if P is a proper and whenever $rx \in P$ for every $r \in R$, $x \in M$ up to either $x \in P$ or $r \in [P:M]$, where $[P:M] = \{r \in R: rM \subseteq P\}[3]$.

An R – module M is termed to be compressible if M can be embedded in every of it is a non-zero submodule. In this work, the notion of a semi-essentially compressible module as a generalization of compressible module is introduced and studied. Further, some of their advantages characterizations and examples are given. Also, we view that below definite terms semi-essentially compressible, semi-uniform, essentially compressible and compressible modules are equivalent. In[4], the author defined a semi-essentially compressible as an $R-module\ M$ is a semi-essentially compressible module if for every essential submodule Nof M, he found a monomorphism $\theta: M \to N^{(I)}$ for some set I. In this work, we give another definition for semi-essentially compressible, namely an R -module M is termed to be semi-essentially compressible module, if M can be embedded in every of it is nonzero semi-essentially submodules. An M is also called semi-essentially compressible, if one can find a monomorphism $f: M \to N$ whenever N is a non-zero semi-essentially submodule of M. Moreover, we introduce the notion of a semi-essentially retractable module as a generalization of a retractable module . Finally, we study the relations between semiessentially compressible modules and some of the other modules as semi-essentially retractable.

2. Semi-Essentially Compressible Modules:

An R-moduleM is termed to be a compressible module, if M can be embedded in every of it is a non-zero submodule of M. Equivalently, M is compressible if one can find a monomorphism $f: M \to N$ whenever $0 \neq N \leq M$ [5].

A ring R is termed compressible if the R-module is compressible [5]. That is R can be embedded in any of it is non-zero ideal.

Definition (2.1): An $R-module\ M$ is termed to be a semi-essentially compressible module if M can be embedded in every nonzero semi-essential submodule. Equivalently, M is a semi-essentially compressible, if one can find a monomorphism $f: M \to N$ whenever N is a nonzero semi-essential submodule of M.

A ring R is termed to be a semi-essentially compressible, if R is a semi-essentially compressible as R —module.

Remarks and Examples(2.2):

- 1. Z as Z-module is a semi-essentially compressible module, because $nZ \leq_{s.e} Z$, $\forall n \in N$ and there exists a monomorphism $f: Z \longrightarrow nZ$.
- 2. Q as Z module is not a semi-essentially compressible module, because there is no monomorphism from Q to nZ, where $nZ \leq_{s.e} Q$.
- 3. It is obvious that every compressible module is a semi-essentially compressible module, but the converse is not true in general for example Z_6 as Z-module is semi-essentially compressible module because Z_6 is the only semi-essential submodule of Z_6 , but it is
- 4. Every simple R-module is semi-essentially compressible module, however, the converse is not true, because Z as Z-module is a semi-essentially compressible module but it is not simple.
- 5. Z_4 as Z-module is not semi-essentially compressible. Because Z_4 can not be embedded in $\langle \overline{2} \rangle$ and $\langle \overline{2} \rangle \leq_{s.e} Z_4$.

- 6. A homomorphic image of a semi-essentially compressible *module* needs not be semi-essentially compressible in general. For example, Z as Z m odule is a semi-essentially compressible module and $\frac{z}{4z} \simeq z_4$ is not a semi-essentially compressible module by (5).
- 7. If M is a semi-simple module, then M is a semi-essentially compressible module, since M is the only semi-essential submodule of M, see Example (2) (2) [2].

Recall that a non-zero $R-module\ M$ is termed to be semi-uniform, if every non-zero submodule of an R-module is semi-essential, see Definition(1) [2].

Proposition(2.3): If M is a semi-uniform R-module, then M is a compressible module if and only if M is semi-essentially compressible module.

Proof: Suppose that M is semi-essentially compressible module. Let N be a non-zero submodule of M because M is semi-uniform, then N is semi-essential submodule in M. But M is semi-essentially compressible module, then M can be embedded in N for every $0 \neq N \leq_{s.e} M$. Thus, M is compressible. Conversely, it is obvious, by Remarks and Examples (2.2) (3).

Proposition(2.4): If M is a semi-essentially compressible R-module in which all submodule of M contains a non-zero semi-essential submodule of M, then M is a compressible module.

Proof: Let $0 \neq N \leq M$. By assumption found a semi-essential submodule $0 \neq K \leq N$, then $K \leq_{s.e} M$. Because M is semi-essentially compressible, then there exists a monomorphism $f: M \to K$ and $i: K \to N$ is an inclusion monomorphism. Hence, $i \circ f: M \to N$ is a monomorphism. Therefore, M is compressible.

Proposition(2.5): A *module M* is a semi-essentially compressible module if and only if M can be embedded in R_x for every $0 \neq x \in M$ and $R_x \leq_{s,e} M$.

Proof: The first direction is obvious by Definition (2.1). Conversely, let $0 \neq x \in N \leq_{s.e} M$, then $0 \neq R_x \leq_{s.e} N$ Corollary(6)[2]. Consider $i: R_x \to N$ is the inclusion homomorphism by assumption R_x is semi-essentially submodule in M, there exists a monomorphism $f: M \to R_x$, then $i \circ f: M \to N$ is a monomorphism. Therefore, M is semi-essentially compressible.

Corollary (2.6): A semi-essentially compressible $module\ M$ is compressible if every cyclic submodule of M is semi-essential in M.

Proof: The result is obviously obtained by Proposition 2.5.

Proposition(2.7): A semi-essential submodule of a semi- essentially compressible module is also a semi- essentially compressible module.

Proof: Let $0 \neq K \leq_{s.e} M$ and M be a semi-essentially compressible module. Let $0 \neq L \leq_{s.e} K \leq_{s.e} M$, by Proposition(1.5)[7] $L \leq_{s.e} M$. Because M is semi-essentially compressible, so there exists a monomorphism $f: M \to L$ and $i: K \to M$ is the inclusion monomorphism, then $f \circ i: K \to L$ be a monomorphism. Therefore, K can be embedded in L.

Proposition(2.8): Let M be a fully prime R-module, then M is a semi- essentially compressible module if and only if M is an essentially compressible module, where an $R-module\ M$ is termed to be fully prime if every proper submodule of M is a prime submodule [9].

Proof: Because M is fully prime, then by proposition(2.1)[7] every semi-essential submodule is an essential submodule, hence every essential compressible is semi-essentially compressible. Conversely, see Remarks and Examples (2.2) (3).

Remark(2.9): Let L be any R –submodule of M containing a submodule N of M such that $\frac{L}{N}$ is a semi-essentially of $\frac{M}{N}$, then L is a semi-essentially submodule of M.

Proof: The same proof of Proposition(1.4) [9].

Proposition(2.10): Let M be a semi- essentially compressible R -module and N be a submodule of M such that N contains in the inverse image of R -monomorphism of N, then $\frac{M}{N}$ is a semi-essentially compressible R -module.

Proof: Let $\frac{L}{N}$ be a semi-essential submodule of $\frac{M}{N}$, then by Remark(2.9) L is a semi-essential submodule of M and M be a semi-essentially compressible R-module. Thus, there exists a monomorphism $h: M \to L$. Now define $\Psi: \frac{M}{N} \to \frac{L}{N}$, by $\Psi(m+N) = h(m) + N$, for all $m \in M$. Because a homomorphism $h: M \to L$ is well-define, then $\Psi: \frac{M}{N} \to \frac{L}{N}$ is well-define. Let $\Psi(m_1 + N) = \Psi(m_2 + N)$, then $h(m_1) + N = h(m_2) + N$, thus $h(m_1) - h(m_2) \in N \le Ker h$, then $h(m_1) = h(m_2)$, but h is a monomorphism, then $m_1 + N = m_2 + N$. Therefore, $\frac{M}{N}$ is a semi-essential compressible R-module.

Proposition(2.11): If M_1 and M_2 are isomorphic R-modules, then M_1 is a semi-essentially compressible if and only if M_2 is a semi-essentially compressible.

Proof: Suppose that M_1 is a semi-essentially compressible and let $\phi: M_1 \to M_2$ be an isomorphism. Let $0 \neq N \leq_{s.e} M_2$, then $0 \neq \phi^{-1}(N) \leq_{s.e} M_1$. Put $K = \phi^{-1}(N)$, so $\alpha: M_1 \to K$ is a monomorphism, let $g = \phi \mid g$, then $g: K \to M_2$ is a monomorphism. $g(K) = \phi(\phi^{-1}(N)) = N$, hence we have a composition. Let $k = g \circ \alpha \circ \phi^{-1}$, hence $k: M_1 \to N$ is a monomorphism. Therefore, M_2 is semi-essentially compressible module. Recall that an R - module M subisomorphism to an R - module M', if there exists $R - monomorphism \phi: M \to M'$ and $M' \to M$. In this case, we say that R - module M and $M' \to M'$ are subisomorphic [10].

Proposition(2.12): The following statements are equivalent for $R-module\ M$:

- (1)M is a semi-essentially compressible *module*.
- (2)M is subisomorphic to a semi-essentially compressible *module*.
- (3) M contains a semi-essentially compressible submodule N such that there exists a monomorphism $\varphi: M \to N$.

Proof: (1) \Rightarrow (2) because M is a semi-essentially compressible , then there exists a monomorphism $f: M \to N$, for all $N \leq_{s.e} M$ and there exists $i: N \to M$; i is an inclusion

monomorphism, then by Proposition (2.7) M is subisomorphic to a semi-essentially compressible module.

- (2) \Rightarrow (3) Suppose that M is subisomorphic of a semi-essentially compressible $module\ B$ and one can find a monomorphisms $\psi: M \to B$ and $\phi: B \to M$. Let $L = \phi(B) \leq_{s.e} M$, then by Proposition(2.7) L is a semi-essentially compressible submodule of M. Thus, $\phi \circ \psi: M \to L$ is a monomorphism. Therefore, M contains a semi-essentially compressible submodule L.
- (3) \Rightarrow (1) Let L be any semi-essential submodule of M, then $L \cap N \leq_{s.e} N$ so by(3) there exists a monomorphism $f: N \to L \cap N$ and there exists a monomorphism $\varphi: M \to N$ also $i: L \cap N \to L$, is the inclusion monomorphism, thus $i \circ f \circ \varphi: M \to L$ is a monomorphism. Therefore, M is semi-essentially compressible.

Remark(2.13): The direct sum of a semi-essentially compressible *module* needs not to be semi-essentially compressible. Consider the following example let $Z_4 \simeq Z_2 \oplus Z_2$ as Z-module . Z_2 is a semi-essentially compressible module, but Z_4 is not a semi-essentially compressible module.

Proposition(2.14): Let $M = M_1 \oplus M_2$ be an R -module such that $ann_R M_1 \oplus ann_R M_2 = R$. If M_1 and M_2 are semi-essentially compressible modules, then M is semi-essentially compressible.

Proof: Let $0 \neq N \leq_{s.e} M$. Then by Proposition (2.5)[11]. $N = K_1 \oplus K_2$ for some $0 \neq K_1 \leq M_1 \leq M$ and $0 \neq K_2 \leq M_2 \leq M$, so by [7] K_1 and K_2 semi-essential. But M_1 and M_2 semi-essentially compressible, so \exists a monomorphisms $f: M_1 \to K_1$ and $g: M_2 \to K_2$. Define $f: M \to N$ by f(a, b) = (f(a), g(b)), it can be readily to show that f(a) is a monomorphism. Therefore, f(a) is a semi-essentially compressible.

3. Semi-Essentially Retractable Modules:

An $R-module\ M$ is termed to be a retractable if $Hom(M,N) \neq 0$ for every non-zero submodule N of M. [8]

A ring R is termed to be retractable if the $R-module\ R$ is retractable. [8]

Definition (3.1): An R – $module\ M$ is termed to be a semi-essentially retractable module, if $Hom(M,N) \neq 0$ for every nonzero semi-essentially submodule N of M.

An R – $module\ M$ is termed to be essentially retractable if $Hom_R(M,N) \neq 0$ for every non-zero essential submodule N of M.

A ring R is termed to be essentially retractable if the R-module R is essentially retractable. That is $Hom_R(R, I) \neq 0$ for every nonzero small ideal I of a ring R[12]

Remarks and Examples (3.2):

- 1. Z_n as Z module is a semi- essentially retractable module for all $n \in Z^+$.
- 2. Q as Z module is not a semi- essential retractable module, because Hom(Q, Z) = 0 and $Z \leq_{s.e.} Q$
- 3 . Z as Z module is a semi-essentially retractable module, because, $nZ \leq_{s.e} Z$ for all $n \in N$, then there exists a homomorphism $f: Z \to nZ$.

- 4. Every semi-essentially compressible module is a semi-essential retractable module, but the converse is not true in general. For example, Z_4 as Z module is a semi-essential retractable module, however, it is not semi-essentially compressible module.
- 5. Every semi-essentially retractable module is an essentially retractable module
- 6. Every retractable *module* is a semi-essentially retractable *module*.
- 7. Every semi-simple R-module is a semi-essentially retractable because it is retractable.
- 8. Every compressible *module* is a semi-essential retractable *module*, however, the converse is not true for example Z_{12} as Z-module is a semi-essential retractable module, then there exists a honomorphism $f: Z_{12} \to (\overline{3})$ by $f(\overline{x}) = 3\overline{x}$, which is not monomorphism.

Proposition(3.3): If M is a semi-uniform R-module, then M is a retractable module if and only if M is semi-essentially retractable module.

Proof: Suppose that M is semi-essentially retractable module. Let N be a non-zero submodule of M because M is semi-uniform, then N is semi-essential submodule in M. But M is semi-essentially retractable module. Thus, $Hom(M, N) \neq 0$. Therefore, M is retractable. Conversely, it is obvious by Remarks and Examples (3.2) (5).

Proposition(3.4): Let M be a fully prime R-module, then M is a semi-essentially retractable module if and only if M is an essentially retractable module.

Proof: Because M is fully prime, then by Proposition(2.1)[7] every semi-essential submodule is essential submodule, hence every essential retractable is semi-essentially retractable. Conversely, see Remarks and Examples(3.2) (5).

Proposition(3.5): A semi-essential submodule of a semi- essentially retractable *module* is also a semi-essentially retractable module.

Proof: Let $0 \neq K \leq_{s.e} M$. Let $0 \neq L \leq_{s.e} K \leq_{s.e} M$, by Proposition(1.5) [7] $L \leq_{s.e} M$, M is a semi-essentially retractable, then there exists a homomorphism $f: M \to L$ and $i: K \to M$ is the inclusion homomorphism. Therefore, $Hom(K, L) \neq 0$.

Proposition(3.6): If M is a semi-essentially retractable R-module in which every submodule of M contains a non-zero semi-essentially submodule of M, then M is a retractable module.

Proof: Let $0 \neq N \leq M$ and $K \leq N$, $K \leq_{s.e} M$. Because M is a semi-essentially retractable module, then there exists a homomorphism $f: M \to K$ and $i: K \to N$ is inclusion homomorphism. Hence, $i \circ f: M \to N$ is a homomorphism. Therefore, M is retractable.

Proposition(3.7): If M_1 and M_2 be isomorphic R —modules, then M_1 is a semi-essentially retractable module if and only if M_2 is a semi-essentially retractable module.

Proof: Suppose that M_1 is a semi-essentially retractable *module* and $\phi: M_1 \to M_2$ is an isomorphism . Let $N \leq_{s.e} M_2$, then $\phi^{-1}(N) \leq_{s.e} M_1$ see Proposition(13)[2], thus $Hom(M_1,K) \neq 0$; $K = \phi^{-1}(N) \leq M_1$, hence there exists $f: M_1 \to K$. put $= \phi \mid_K$, so $g: K \to M_2$, then $g(K) = \phi(\phi^{-1}(N)) = N$, then $g \circ f \circ \phi^{-1}: M_2 \to N$. Therefore, $Hom(M,N) \neq 0$.

References

- [1] Haithab A.Shahad and Nuhad S.Al-Mothafar "On P-Essential Submodules", *Iraqi Journal of Science*, vol.62, no.12, pp. 4916-4922, 2021.
- [2] Ali. S. Mijbass and Nada. K. Abdullah. "Semi-Essentially Submodule and Semi-Uniform Modules", *Journal of Kirkuk University-Scientific studies*, vol. 4, no.1, pp. 48-58, 2009.
- [3] Nuhad S. Al-Mothafar Mohammed B. H. Alhakeem. "Nearly Semiprime submodules", *Iraqi Journal of Science*, vol.56, no.4, pp: 3210-3214, 2015.
- [4] M. Baziar . " Semi-Essentially Compressible Modules and Rings", *International J.* of Algebra, vol.3, no. 14, pp. 401-408, 2009.
- [5] J. M. Zelmanowitz. "An Extension of the Jacobson Density Theorem", Bulletin of the American Mathematical Society, vol. 82, no.4, pp. 551-553, 1976.
- [6] Israa. H. Muslem. (2016)"Some types Of Retractable and Compressible Modules" M.Sc.thesis. College of Education for pure Science, University of Baghdad.
- [7] Muna ,A. Ahmed and maysaa R. Abbas. "On Semi-Essentially Submodules", *University of Baghdad, Ibn Al-Haitham Journal for Pure and Appl. Sci*, vol. 28, no.1, 2015.
- [8] S. M. Khuri. "Endomorphism rings and lattice isomorphism", *Journal of Algebra*, vol.59, pp. 401-408, 1979.
- [9] R. L. McCasland and PF. Smith. "Prime Submodules of Noetherian Modules", *The Rocky Mountain Journal of Mathematics*, vol.23, pp. 1041-1062, 1993.
- [10] P. F. Smith and M. R. Vedadi. "Essentially Compressible Modules and Rings", *Journal of Algebra*, vol.304, pp. 812-83, 2006.
- [11] M. S. Abbass. "On fully stable Modules", Ph. D. Thesis, University of Baghdad Iraq, 1990.
- [12] M. R. Vedadi. "Essentially Retractable Modules", *journal of Sciences*, Islamic republic of Iran, vol.18, pp. 355-360, 2007.