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Abstract  

      A numerical evaluation of the crucial physical properties of a 3D unsteady MHD 

flow along a stretching sheet for a Casson fluid in the presence of radiation and 

viscous dissipation has been carried out. Meanwhile, by applying similarity 

transformations, the nonlinear partial differential equations (PDEs) are transformed 

into a system of ordinary differential equations (ODEs). Furthermore, in the numerical 

solution of nonlinear ODEs, the shooting method along with Adams Moulton method 

of order four has been used. The obtained numerical results are computed with the 

help of FORTRAN. The tables and graphs describe the numerical results for different 

physical parameters which affect the velocity and temperature profiles. 

 

  Keywords: Magnetohydrodynamic, thermal radiation, Casson fluid, viscous 

dissipation, Adams-Moulton method.  

 

1. Introduction 

     During the past few decades, the boundary layer problems related to a stretching surface 

have attracted extensive attention of researchers, because the number of applications related to 

this area is found in engineering and industrial manufacturing processes. Actually, the boundary 

layer has a meaningful concept in physics and fluid mechanics, which is introduced as the layer 

of the fluid in the region of a bounded area where the effects of viscosity are powerful. 

Moreover, it is also a region in the flow field in which the fluid deforms with a relative velocity. 

Each primary fluid has some basic important properties which play an essential role in its 

dynamics. The stretching and cooling rates both are significant in the manufacturing process 

for the effective results of the final product. A speedy change in stretching damages the final 

product because of sudden solidification, so it is essential to maintain the stretching rate. The 

2D flow of an incompressible liquid within the boundary layer along the stretching surface was 

first presented by Crane [1]. Various researchers have studied the interesting fluid flow along a 

stretching sheet [2-5]. 

 

     Magnetohydrodynamics (MHD) is a combination of three words, magneto means magnetic 

field, hydro means water and dynamics means movements. Meanwhile hydromagnetic flow is 
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the analysis of the magnetic properties of an electrically conducting fluid. Plasmas, liquid 

metals, saltwater, and electrolytes are considered magneto fluids. MHD flow has a wide range 

of applications in engineering devices such as the design of heat exchanges, blood pumping 

machines and the MHD electric power generators. The main role of a magnetic parameter in 

the flow field is to produce a resistive force which maintains the flow and detains the boundary 

layer separation. A number of researchers investigated the flow models which contain the 

hydromagnetic effects. On top of that, Pavlov [6] examined the MHD flow of viscous fluids 

along a stretching sheet. Alfven [7] established the existence of electromagnetic-hydro-dynamic 

waves. Sarpakaya [8] studied the flow of specific types of fluids in the magnetic field. 

 

     The time-dependent flows are considered as unsteady flow. Wang [9] investigated the time 

dependent flow problems. Furthermore, various researchers considered the impacts of induced 

magnetic field on the time dependent MHD flow within the boundary layer region [10-12]. 

Ishak et al. [13] studied the heat transfer of a time dependent flow. The temperature variation 

between the surrounding and the ambient fluid, produce the radiation. 

 

     The complicated behavior of stress-strain can be found in a type of fluids which is called 

non-Newtonian fluids. Moreover, non-Newtonian fluids have earned considerable attention 

because a number of applications of these fluids are found in engineering and industry. The 

Casson fluid is one of the most important non-Newtonian fluids, which is used in metallurgy, 

food processing etc. Casson [14] introduced the Casson fluid model for the pigment-oil 

suspensions. Casson fluid exhibits the properties of yield stresses. Whenever the shear stress is 

greater than the yield stress, the fluid acts like a liquid. Likewise, if shear stress is less than the 

yield stresses the fluid acts like a solid. In the category of Casson fluids, Jelly, shampoo, 

toothpaste, ketchup, tomato sauce, honey, soup and juices are founded. Actually, yield stress 

analysis is important for all complex structured fluids. Dash et al. [15] examined the Casson 

fluid inside a pipe containing a porous medium Later on Eldabe et al. [16] investigated the 

hydromagnetic flow of a Casson fluid bounded between two cylinders in a rotating position. 

Later on, several researchers worked on the free convective electromagnetic flow of Casson 

fluid in various conditions [17-21]. Maleque [22] investigated the MHD flow of Casson liquid 

along with a rotating disk. Kataria and Patel [23] considered the ramped wall temperature with 

heat and mass transfer in the hydromagnetic flow of Casson liquid through a porous medium. 

The MHD Casson fluid with the effects of Hall, Dufour and thermal radiation was analyzed by 

Vijayaragavan and Karthikeyan [24]. G. Narender et al. [25] studied the impact of the radiation 

effects in the presence of heat generation/absorption and magnetic field on the 

magnetohydrodynamics (MHD) stagnation point flow over a radially stretching sheet using a 

Casson nanofluid. G. Narender et al. [26] examined the viscous dissipation and thermal 

radiation effects on the MHD mixed convection stagnation point flow of Maxwell nanofluid 

over a stretching surface. G. Narender et al. [27] explored the impacts of external magnetic field 

inclinations and viscous dissipation due to heat generation or absorption parameter on MHD 

mixed convective flow of Casson nanofluid. 
 
     The detailed review work of Parshu and Nankeolyar [28] is explained in this article and 

extended by considering viscous dissipation. The numerical solution of various parameters has 

been discussed which impact the skin friction coefficients, Nusselt number, velocity and 

temperature. Investigation of obtained numerical results is given through tables and graphs. 

 

2. Mathematical Modelling 

     A 3D time-dependent, magnetohydrodynamic flow of an incompressible Casson fluid along 

a linearly stretchable surface has been examined. Meanwhile, the surface is along the plane, 
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which means that 0y =  and the fluid confined along the positive direction of y −  axis has been 

considered. Furthermore, the sheet is considered to be stretched along x −  axis. The time 

dependent magnetic field has been assumed to act along y-axis which is normal to the surface 

of the sheet. The physical model of flow is given below in Figure 1. Here wu  is the stretching 

sheet velocity along the x − direction, the surface temperature is wT  and the disposition 

temperature is T . The system of equations describing the flow has been given below, which 

contains the PDEs of continuity equation, momentum, and energy transfer [28]. 

 

 

Figure 1: Schematic representation of physical model. 
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The associated boundary conditions can be written as: 
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     The Casson liquid parameter is denoted by  , the electrical conductivity by  , density by

 , the kinematic viscosity by  , Hall current by m , the temperature by T , the thermal 

diffusivity by .m

p

k

c



=  Furthermore the wall stretching velocity with time dependent by 



Reddy et al.                                              Iraqi Journal of Science, 2023, Vol. 64, No. 8, pp: 4018-4033 

4021 

( ),
1

w

ax
u x t
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=

−
[28] and the magnetic field with time dependent by ( ) ( )

1

2
0 1 ,B t B t

−
= − [28]  

where a  and   are constants and 0B  the magnetic strength.  

The radiative heat flux rq [28] can be written as 
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where the Stefan-Boltzmann constant is *  and the coefficient of Rosseland mean absorption 

is * . From (6), putting rq  into (4) and after a little simplification, we get 
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 (7) 

For the conversion of the mathematical model (2)-(4) into the dimensionless form, the following 

similarity transformation [28] has been introduced, 
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The final dimensionless form of the governing model, is 
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The associated BCs (5) shown as 
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Different parameters used in (9)-(11) are defined as follow [28]:
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      The skin friction coefficient along x −  direction, z −  direction and the local Nusselt number 

are defined as [28]: 
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Given below are the formulae for w , wq  and mq  [28]. 
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The transformation of the above formulae into the dimensionless form has been carried out as: 
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where,  wx   and wz  denotes the shear stress components, wq   by the heat transfer rate and  

Re w

x

xu


=  elucidates the local Reynolds number. 

 

3. Method of Solution 

     For the solution of ODEs (9)-(11), the shooting method has been used. The dimensionless 

equations (9) and (10) are coupled in f and g . These two equations will be solved separately 

by the shooting method. Later on, the solution of (9) and (10) will be used in (11) as a known 

input. The missing initial conditions (ICs) ( )" 0f  and ( )' 0g  are denoted by r  and s . For 

further improvement of the missing conditions, Newton's method will be used. Furthermore, 

the following notations have been incorporated. 
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     The above mathematical models (9)-(10), now be listed in the form of the following first 

order coupled ODEs. 



Reddy et al.                                              Iraqi Journal of Science, 2023, Vol. 64, No. 8, pp: 4018-4033 

4023 

( )

( )

( ) ( )

( )

( ) ( )

( )

( )

'

1 2 1

'

2 3 2

' 2

3 2 3 1 3 2 2 4 32

'

4 5 4

'

5 4 5 4 2 1 5 2 4 52

'

6 7 6

'

7 8 7

'

8 7 8

, 0 0,

, 0 1,

, 0 ,
1 2 1

, 0 0,

, 0 ,
1 2 1

, 0 0,

, 0 0,

1 2

h h h

h h h

M
h A h h h h h h mh h r

m

h h h

M
h A h h h h h h mh h h s

m

h h h

h h h

h A h h

 



 



 



= =

= =

  
= + − + + + =  + +  

= =

  
= + + − − − =  

+ +  

= =

= =

 
= + 

+  
( ) ( )

( )

( ) ( )

( )

( )

1 8 3 6 2 7 7 9 82

'

9 10 9

'

10 9 10 4 7 9 2 1 10 6 5 7 9 102

'

11 12 11

'

12 13 12

'

13 12 13 1 13 3 11 2

2 , 0 1,
1

, 0 0,

, 0 0,
1 2 1

, 0 0,

, 0 0,

2
1 2

M
h h h h h h h mh h

m

h h h

M
h A h h h h h h h h h h mh h h

m

h h h

h h h

h A h h h h h h h h

 



 



 
− − + + + = 

+ 

= =

  
= + + + − − − − =  + +  

= =

= =

 
= + − − + 

+  
( ) ( )

( )

( ) ( )

12 12 14 132

'

14 15 14

'

15 14 15 4 12 14 2 1 15 11 5 12 14 152

, 0 0,
1

, 0 0,

, 0 1,
1 2 1

M
h mh h

m

h h h

M
h A h h h h h h h h h h mh h h

m

 



 
+ + = 

+ 

= =

  
= + + + − − − − =  

+ +  

 

     The above IVP will be solved numerically by the Adams-Moulton method. To get the 

approximate solution, the domain of the problem has been taken as  0,  instead of  )0, , 

where    is an appropriate finite positive real number. In the above system of equations, the 

missing conditions r  and s , must be chosen in such a way that   
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For the improvement of the missing condition, Newton's method has been implemented which 

is conducted by the following iterative scheme: 
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The following steps are involved for the accomplishment of the shooting method. 

( )i  Choice of the guesses ( )0
r r=  and 

( )0
s s= . 

( )ii  Choice of a positive small number  . 

If ( ) ( ) 2 4max 0 , 0 ,y y   − −  the process is terminated, otherwise go to ( )iii . 
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( )iii  Compute ( )1k
r

+
 and 

( )1
, 0,1,2,3,...........,

k
s k

+
= by using (19). 

( )iv  Repeat ( )i  and ( )ii . 

In a similar manner, the ODE (11) along with the associated BCs can be solved by considering 

f as a known function. 

 

4. Representation of Graphs and Tables  

     The physical impacts of significant parameters on the skin friction coefficients and Nusselt 

number have been explained through graphs and tables. Prashu and Nankeolyar [28] used the 

spectral Quasilinearization method (SQLM) for the numerical solution of the discussed model. 

In the present survey, the shooting method along with Adams-Moulton Method has been opted 

for reproducing the solution of [28]. The results discussed in Table 4.1, reflect the impacts of 

significant parameters on the skin friction coefficients 

1

2RefxC−  and 

1

2RefzC− .  

 

     The results are compared with those of Prashu and Nankeolyar [28] showing an excellent 

agreement. For the rising values of the ,M skin friction coefficient increases in both x  and z  

direction. The skin friction coefficient decreases in both x  and z  direction due to ascending 

values of the   Casson parameter. Furthermore, the accelerating values of m  Hall current 

decrease the 

1

2RefxC−  and increase 

1

2RefzC− . Likewise, by increasing the values of 

unsteadiness A , there is a marginal increment in the skin friction coefficient along the x  axis 

and a decrement along the z  axis.  

Table 4.1: Results of the 

1

2Ref xC−  and 

1

2Ref zC− for various parameters. 

M  m  A    

1

2Ref xC−  

1

2Ref zC−  

[28] Present [28] Present 

6 0.1 0.1 0.3 5.51874456 5.518748000 0.23905696 0.239053200 

2    3.63997437 3.640760000 0.12517671 0.124864700 

8    6.24973648 6.249738000 0.27988605 0.279885500 

 0.5   5.15310039 5.153086000 1.03810463 1.038099000 

 1.0   4.47154368 4.471480000 1.50968576 1.509767000 

  0.13  5.52749427 5.527499000 0.23866458 0.238661000 

  0.15  5.53332180 5.533327000 0.23840377 0.238400300 

   0.5 4.59187303 4.591874000 0.19890741 0.198907200 

   0.6 4.32925941 4.329258000 0.18753170 0.187531600 

 

In Table 4.2, the effects of the significant parameters on Nusselt number 

1

2RexNu
−

  have been 

discussed. The growing pattern is found in the 

1

2RexNu
−

 due to the accelerating values of m , 

Prandtl number Pr  and temperature ratio tr , while the magnetic parameter M , unsteadiness 

parameter A  and Casson parameter   cause a decrement in the Nusselt number. 
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Table 4.2: Results of the 

1

2RexNu
−

 for various parameters. 

M  m  A  Nr  tr    Pr  

1

2RexNu
−

 

[28] Present 

6 0.1 0.1 2 1 0.3 10 2.68073953 2.680741 

2       2.85395341 2.853843 

8       2.61197510 2.611977 

 0.5      2.70970177 2.709705 

 1.0      2.76677553 2.766787 

  0.13     2.64303470 2.643035 

  0.15     2.61732067 2.617321 

   4    2.44614512 2.446145 

   6    2.35862695 2.358628 

    2   3.86324873 3.863249 

    3   5.08255834 5.082558 

     0.5  2.57918784 2.575941 

     0.6  2.54083532 2.537679 

      15 3.39809230 3.398094 

      20 4.00188854 4.001891 

 

      Figures 4.2 – 4.4 shows the effects of different parameters on the velocity and temperature 

respectively. Figure 4.2 shows the decreasing behavior of velocity along the x  direction, due 

to rising values of the   and the M . Actually, the   reveals the properties of yield stress. 

Stabilization effects are also found by extending the yield stress. The impacts of applied 

magnetic field give rise to a resistive force in flow field called the Lorentz force. Figure 4.3 

reflects that the increasing values of the Casson parameter   and the magnetic field M , the 

velocity profile along the z − axis increases near the boundary surface and then starts reducing 

away from the boundary surface. The temperature profile accelerates due to rising values of the 

  and M  which is illustrated in Figure 4.4.  

 

     Furthermore, the effects of significant parameters, the Hall Current m  and the unsteadiness 

A  on the velocity behaviors and the temperature profile are illustrated in Figures 4.5 – 4.7 when 

the power of the magnetic field is strong then no one can neglect the effect of Hall current 

because the utilization of the magnetic field with electrically conducting fluid produces Hall 

current m . Figures 4.5 (a) and (b) illustrate the effects of the m  and the A  on the velocity 

profile along the x  direction. By ascending values of m , the velocity profile is also increased, 

while increasing values of the unsteadiness A , there is a marginal decay in the velocity profile. 

Figures 4.6 (a) and (b) show the effects of the m  and the A  on the velocity profile along the z  

direction. The increasing values of the m , there is a significant rise in the velocity profile, while 

for the increasing values of the A , there is a marginal decrement in the velocity profile within 

boundary layer region. Figures 4.7 (a) and (b) show the impact of the m  and the A  on the 

temperature. Meanwhile the temperature is a reducing function of the Hall current m  and by 

increasing the values of the unsteadiness A , there is a marginal enhancement in the temperature 

behavior. By ascending values of the Hall current m , are found to enhance the thickness of the 

momentum boundary layer. However, by accelerating values of the unsteadiness A , the thermal 

boundary layer becomes thick.  
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     The influence of the significant parameters on the temperature behavior is shown in Figures 

4.8–4.11 respectively. In Figure 4.8, the rising values of radiative parameter Nr , the 

temperature is reduced because the temperature distribution is inversely proportion to the Nr . 

In Figure 4.9 shows that the greater values of Prandtl number Pr  has shrink the temperature 

profile. However, Pr is the ratio of the viscous diffusion to the thermal diffusion. Figure 4.10 

portrays that the increasing values of temperature ratio tr, the temperature profile shows a 

growing behavior. Actually, tr  is a ratio between temperature behavior at the surface to the 

temperature behavior beyond the surface. Further, Figure 4.11 is delineated to show the impact 

of Ec  on the temperature field ( )  . This graph exhibits that by enhancing the estimations of 

Ec , the temperature field ( )  is also increased. 
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Figure 4.2: Change in ( )"f   for rising values of   and M . 

 

 

 

 

 

A = 0.1,M = 6,m = 0.1, Nr = 2, Pr = 10, tr = 1, Ec = 0.5
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A = 0.1, β = 0.3,m = 0.1, Nr = 2, Pr = 10, tr = 1, Ec = 0.5

M=2,6,10
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Figure 4.3: Change in ( )g   for rising values of   and M . 
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A = 0.1,M = 6,m = 0.1, Nr = 2, Pr = 10, tr = 1, Ec = 0.5

β= 0.3,0.5,0.6

A = 0.1, β = 0.3,m = 0.1, Nr = 2, Pr = 10, tr = 1, Ec = 0.5

M=2,6,10

A = 0.1,M = 6,m = 0.1, Nr = 2, Pr = 10, tr = 1, Ec = 0.5

β= 0.3,0.5,0.6
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Figure 4.4: Change in ( )   for rising values of   and M . 
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Figure 4.5: Change in ( )"f   for rising values of m  and A . 

A = 0.1, β = 0.3,m = 0.1, Nr = 2, Pr = 10, tr = 1, Ec = 0.5

M=2,6,10

A = 0.1,M = 6, β = 0.3, Nr = 2, Pr = 10, tr = 1, Ec = 0.5

m= 0.1,0.5,1.0

m = 0.1,M = 6, β = 0.3, Nr = 2, Pr = 10, tr = 1, Ec = 0.5

A= 0.1,0.13,0.15
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Figure 4.6: Change in ( )g   for rising values of m  and A . 
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A = 0.1,M = 6, β = 0.3, Nr = 2, Pr = 10, tr = 1, Ec = 0.5

m= 0.1,0.5,1.0

m = 0.1,M = 6, β = 0.3, Nr = 2, Pr = 10, tr = 1, Ec = 0.5

A= 0.1,0.13,0.15

A = 0.1,M = 6, β = 0.3, Nr = 2, Pr = 10, tr = 1, Ec = 0.5

m= 0.1,0.5,1.0
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Figure 4.7: Change in ( )   for rising values of m  and A . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Change in ( )    for ascending values of Nr . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Change in ( )   for ascending values of  Pr . 

m = 0.1,M = 6, β = 0.3, Nr = 2, Pr = 10, tr = 1, Ec = 0.5

A= 0.1,0.13,0.15

m = 0.1,M = 6, β = 0.3, A = 0.1, Pr = 10, tr = 1, Ec = 0.5

Nr= 2,4,6

m = 0.1,M = 6, β = 0.3, A = 0.1, Nr = 2, tr = 1, Ec = 0.5

Pr= 10,15,20
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Figure 4.10: Change in ( )   for ascending values of  tr . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Change in ( )   for ascending values of  Ec . 

 

5.  Conclusion 

Some interesting findings have been listed below. 

 

▪ Due to the rising values of the magnetic parameter M , the velocity behavior decreases along 
x −  axis in Casson fluid. 

▪ Due to the ascending values of the magnetic parameter M , the temperature behavior also 

increases in Casson fluid. 

▪ Due to the accelerating values of Hall current m , the velocity rise in z − axis and marginal 

increment found in x  direction. While the marginal decrement found in the temperature profile 

in Casson fluid. 

▪ Decrement is observed in the velocity behavior due to the rising values of the unsteadiness 

A . However, no significant change is prominent in the velocity profile along x  direction in 

Casson fluid. 

m = 0.1,M = 6, β = 0.3, A = 0.1, Nr = 2, Pr = 10, Ec = 0.5

tr= 1,1.1,1.2

m = 0.1,M = 6, β = 0.3, A = 0.1, Nr = 2, Pr = 10, tr = 1

Ec= 0.5,1,2
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▪ An increment is observed in the temperature behavior due to the rising values of the 

unsteadiness A  in Casson fluid. 

▪ The fluid flow model presented in the paper has applications in silicon suspensions, blood 

flow, polymer engineering, and the printing industry. 
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