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Abstract

The main objective of the research is to study the first natural triangular
representation of the symmetric groups over a field K of characteristic p# 2 which
deals with the partition A = (n — 4,3,1) of the positive integer n. Furthermore, this
work has proven that the S(n—4,3,1) is a submodule of F,. The F,=
KS, (XpX4XgX2 — X,X3XgX2 — X,X4XsX2 + X,X3XsX2) can be only split whenp|(n —
5).

Keywords: Exact sequence, Group algebra KS,, KS, —module, Symmetric group,
Spechet module.
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1. Preliminaries

Definition 1: LetS, be the set of all permutations Tt on the set {x;,x,,...,x,} and
K[x4,X5, ..., Xy ] be the ring of polynomials in x4,x,, ..., X, with coefficients in K. Then each
permutation t € S, can be regarded as a bijective  function from
K[x1, X3, ..., X] ONtO K[Xy, X5, .., x,] defined by (f(xy, x5, ..., xn)) = f(t(xq), T(X2), ..., T(Xn))
for all f(xq,%5,...,X,) € K[Xq,X5,...,X,]. Then KS,, forms a group algebra with respect to
addition of functions, product of functions by scalars and composition of functions which is
called the group algebra of the symmetric group S, [1].
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Definition 2: Let n be a positive integer then the sequence A = (n4,n,,...,n;) is called a
partition of n if n, >n, >:->n; >0 and n; + n, + -+ n; =n. Then the set D, =
{G,Nli=12,..,1<j<n;} is called A —diagram. In addition, any bijective function
t: Dy = {X1, Xy, ..., X, } is called a A-tableau. A A-tableau may be thought as an array consisting
of 1 row and n, columns of distinct variables t((i,j)) where the variables occur in the first n;
positions of the i row and each variable t((i,j)) occurs in the i" row and the j* column ((i, j)-
position) of the array. t((i,j)) will be denoted by t(i,j) for each (i,j) € D,. The set of all A-
tableaux will be denoted by T,. i.e. T, = {t|tisa A — tableau}. Then the function g: T, —

K[x1, Xz, ..., Xn] Which is defined by g(t) = ITi_; IT{, (tG, j))H,Vt €T, is called the row

position monomial function of Ty, and for each A-tableau t, g(t) is called the row position
monomial of t. So M(Q) is the cyclic KS,, —module generated by g(t) over KS, [2].

2. Introduction

It is well known that the purpose of representation theory is to discuss groups of
endomorphism G of a vector space V and the relation between the building of abstract group G
and the vector space. The concept of Specht polynomial was first initiated by Specht that proved
how a given polynomial can be written as a linear combination of other polynomials which was
the results of Specht study on representation theory of symmetric group. After that, he faced
the problem when the symmetric group acts, in natural way, as a tableau. However, the result
of permutation a standard tableau can be a nonstandard tableau and this nonstandard tableau
can be written as a linear combination of Specht polynomials [3]. Al-Butahi [4] has been studied
the third natural representation M(n-3,3) of the symmetric groups and proved that it is a split if

and only if pt m In this work, the authors have been shown the first natural triangular

representation of the symmetric groups over a field K of characteristic p# 2 and the variables
defined over K are commuting linearly independent.

w

. The First Natural Triangular Representation of S,
In this section, some notations will be defined as follows:
.Letoy(n) = X
. Let 05(n) =X1%icjen XiX;-
. Let o5(n) :Zrlnsi<j<k5n X{XjX.
Let 0,(n) =X 1<i<j< n k=1 XinXﬁ-
Ki,j

. Letos(n) :Z1si<j5n 2:11;_11( XinXlez'

*1,),

.Letc(n) =x <02(n) — Disi<jsn X| XjX1> ;1=1,2,...,n. Then YL, ¢; = o5(n).
ij£l

7.Let Uj(n) = ¢i(n) — ¢j(n); i,j = 1,2,...,n.

g B~ W DN PP

(o2}

We denote W to be the KS,-modules generated by c, (n) over KS, and W, to be the KS,-
submodule of W generated by U;,(n) over KS,,. Theset B = {c; (n)|i = 1,2, ..., n} is a K-basis
for W = KS,,c;(n) and dimgW = n.

Definition 3.1: The KS, —module M(n — (r + 3),r + 2,1) defined by M(n— (r + 3),r +

2,1) = KS,X;Xy ... Xp42X2, 3, is called the r'" —natural triangular representation of S,over K,
wherer > 0and n > 2r + 6.
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Lemma 3.2 [4]: The set B(n — 4,3,1) = {xixjxgx{:1 <i<j<k<n, 1<1<nl#ijk}is
a K-basis of M(n — 4,3,1) and dimgM(n — 4,3,1) = (3)(n —3);n > 7.

Theorem 3.3: The set By(n—4,3,1) = {Xixjxkxlz — X1 XX3X4|1<i<j<k<nl1<l<
nl=+1ijk(3,j k1) #(1,2,3,4)} is a K-basis of My(n — 4,3,1), and dimgMy(n — 4,3,1) =
(3)0-3)-1;n=7.

Proof: Since the KS,-module M,(n — 3,2,1) consists of all polynomials of the form

Yisicjc<ken 21=1 Kijil XiXXeX{ With X1 Xicicjeken Kijln = 0and kyjq € K.i.e.
1#i,j,k 1#i,j,k
Mo(n = 3,2,1) ={Z1cicjcken 2 =1 Kiji XiXjXX{ | D1<icjeken 21=1 Kijia = 0, Kijia € K}It
12i,j,k 12i,j,k
is clear that By(n —4,3,1) € My(n — 4,3,1). To prove that B,(n — 4,3,1) generates M,(n —
4,3,1) over K. Letx € My(n — 4,3,1).

_ n 2., n — H H —
= X = Yisicj<ksn 2 1=1 Kijkl XiXjXkX] ; D1<icj<ksn X 1=1 Kijkt = 0 implies X =
1#1,j,k 11,k
Yi<icj<ken 2 1=1 Kijki (XinXkX12 — X1X,X3X3) with the term 1, 2, 3, and 4 excluded from the
1#i,j,k

double summation since K;,34 (X1X5X3X3 — X1X,X3x5 ) = 0. Thus, By(n — 4,3,1) generates
My(n — 4,3,1) over K. By(n — 4,3,1) is linearly independent since if

n 2 2\ —
Y1<i<j<ksn 2 1=1 Kijia (Xi%jXkX{ — X1X2X3%3)=0 =
1#i,j,k
(1ikD=(1,2,3,4)
n 2 __ — n H
Disi<j<ksn X 1=1 Kija Xi XjXpXj = 0,  where  Kyp34 = — Xi<icjeken 2 1=1 Kijul with
1#i,j,k 1#1,j,k
21Si<j<ksn Zn 1=1 kijkl = 0. Hence, kijkl =0,V i,j,k, L 1<i< ] <k<nl<l<
1#i,j,k

(LjkD#(1,2,3,4)
n,1 #1i,j,k. Thus, Bo(n — 4,3,1) is a K -basis of My(n — 4,3,1), and

—1)(n=2)(n- 4_gn3 2_gno
dimgMy(n —4,3,1) = (g)(n —3)—1= n-H(@-2)(-3) _, _ n*-6n’+1in’~6n-6

6 6

Theorem 3.4: W = KS, c,(n) and M(n — 1,1) are isomorphic over KS,,.

Proof: Let @: M(n — 1,1) - W be defined as follows: ¢(x;) = ¢;(n);i= 1,2, ...,n.

Then if T = (x;x;) € S, we get that @(tx;) = (p(x]-) = ¢j(n) and since tc;(n) = ¢;(n), then

@(tx;) = T@(X;). Therefore, ¢ is a KS, homomorphism. For any y € W we have y =
L, kici(n). Thus there exists w = YL ; k;x; € M(n — 1,1), such that: e(w) = @(QiL; kiX; )

=Y, okix) = XL ko(x) = XL kici(n) = w. Hence, @ is an epimorphism.

= dimg kerg = dimgM(n — 1,1) — dimgkW = 0 = ker ¢ = 0.

Hence, ¢ is monomorphism. Thus, ¢ is a KS,—isomorphism. Therefore, M(n — 1,1) and W are

isomorphic over KS,,.

Theorem 3.5: W, = KS,u;,(n) is irreducible submodule when p does not divide n.

Proof: From Theorem (3.4), we have a KS,—homomorphism ¢: M(n — 1,1) - W, such that
©(x;) = ci(n); i =1,2,...,n.Since My(n — 1,1) = KS,(x, —X;) € M(n — 1,1), thus @(x; —
X1) = @(x;) — @(x1) = ¢i(n) — ¢;(n) = vy (n) € Wp.

Let ¥ = @lmym-1,1)- Theny:My(n—1,1) > Wy, such that Y(x; —xq) =uj(n); i=
1,2,...,n is aKS,, —homomorphism. Also, for all u;; € Wy, there exists x; — X; € My(n —
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1,1), such thatllj(Xi - X]-) = ljJ(Xi — X1+ X1 — X]-) =y —xq) — 1]J(x]- - xl) =u;;(n) —
uj;(n) = ¢;(n) — ¢;(n) — ¢;(n) + ¢4 (n) = ¢i(n) — ¢;(n) = uy(n).

Since Y is an epimorphism, dimgMy(n — 1,1) =n — 1 and dimgW, = n — 1. Then we get
dimg ker ¢ = dimgMy(n — 1,1) — dimgW, = 0i.e. ker ¢y = 0. Hence, {s is monomorphism,
which implies that  is a KS, —isomorphism. Thus My(n — 1,1) and W, are isomorphic
overKS,. By [Peel:1979][5] we have My(n—1,1) is irreducible submodule whenp t n.
Hence, W, = KS,u;,(n) is irreducible submodule when p ¢ n.

Proposition 3.6: The submodule W, = KS,u;,(n) has the following composition series when
p divides n.

0 c Ko; Cc W,
Proof: Since W= KS,c;(n) and o5(n)=X{L, ¢; (n), then the sum of the coefficient is equal to

n and os(n) € W which implies that Ko € W. Then Kos(n) € Wyand 1‘2’7" is an irreducible
5

module over KS, when p divides n. Therefore, W, has the following composition series0 c
KO_S (e Wo.

Proposition 3.7: If p  n, then W(n) = W,(n)®Kos(n).

Proof: By implementing Theorem (3.5) we have W, = M,(n—1,1), and irreducible
submodule over KS, when ptn and os(n) € Wy(n) when p t n since the sum of the
coefficients of the c;(n) in os(n) is n. Since Kog(n) is irreducible submodule over
KS,. Hence,W,(n) N Kos(n) = 0, Kos(n) € W(n) and Wy(n) € W(n). But, dimgW,(n) +
dimgKos(n) =n—1+ 1 =n = dimgW(n). Hence W(n) = W,(n)®Kos(n) when p t n.

Proposition 3.8: If p does not divide n, then W has the following two composition series
0 € Wy(n) € W(n) and 0 € Kos(n) € W(n).

Proof: Since p t n, then by means of Proposition (3.7) we have
W=W,(n)®Kos, and by using Theorem (3.5) we have Wy(n) = My(n — 1,1) and W, (n) is
W Wy(n)®Kos(n)

irreducible submodule when p + n. Hence Koo = ( )Kcs(n() ) = W, (n). Thus (n) IS
. . _ Wy(n)®Kos(n ~
irreducible module when p + n. Moreover Wo = Welo) = Kos(n). Hence —( 5 is

irreducible module over KS,,. So we get the following two composite series 0 € Wy(n) € W

and 0 c Kog(n) € W.

Theorem 3.9: The following sequence of KS, —modules is exact
O—>Kerd—>M(n—431)—>M(n—33)—>0 (1D

over a field K with p # 2.

Proof Letd: M (n — 4, 3, 1) — M (n — 3, 3) be a map defined in terms of the partial operators

by d (x;xjxix{) = Xa- 1a ; (xixjxx{). It is clear that the map d is KS,~homomorphism.

Moreover it is onto map since V Y1 <icj<ken Kijk XiXjxx € M(n —

3,3),3 - (21<1<]<k<n Kijk XiX; kal) € M(n — 4,3,1) for somel (1 # 1,j,k) such that

d(g (lei<j5n kijk XiXjXkX] )) = lei<j5n kijk XiX;Xk-
Since the inclusion map i is 1-1 and Im i = ker d. Hence, the sequence (1) is exact.
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Theorem 3.10: If p # 2, then sequence (1) is split if and only if p  (n — 3).

Proof: Assume p does not divide (n-3). We can define a function

@: M(n—3,3) > M(n —4,3,1) by (p(xix]-xk) Z 1 1 X x]xkxl which is a KS;-

Z(n 3) £ijk

homomorphism. Since for any T€S, then ¢ (T(XinXk)) =@ (r(xi)r(xj)r(xk)) =

1
le lllkt(x )T(x])r(xk)xl1 where 1(x;) = Xil,T(X]-) = Xj,, T(XK) = Xy,
1
= @(T(xiXjXg)) = —_r(xixjxkxlz) = (Z(n 3)2 =1 Xj XJXkXI )=T0@ (X X]Xk) and d
1#i,j,k
1
(‘p (XinXk) = 2(1‘1 3)2 1=1 XX]Xle) 2(n 3)2 I=1 d(X X]kal ) 2(11—3) (2(11 -

#ijk 1,k
3)XiXjXk) = XiXjXg. Then ]d(p =Ion M(n — 3,3).]Hence, the sequence (1) is split. Thus,
M(n —4,3,1) = L & kerd, where L = cp(M(n — 3,3)).

Now assume that the sequence (1) is split. Then there exist a KS,-homomorphism

Y:M(n — 3,3) — M(n — 4,3,1) such thatd y = 1 on M(n — 3,3), i.e. d Y(xiXjXg) = X;X;jX -
Then Y has the form Yi(x;, Xj Xk,) = Y1<icj<ken & 1=1 kijklxixjxkxlz, 1<i;<j; <k; <n

1#i,j,k
Therefore, we get d(x;, Xj, Xk,) = d <lei<j<ksn Y1 KijaXiXiXieX; ) =
1#i,j,k
21<1<]<k<n(22 I=1 kl]kl)Xl Xk = Xj, Xj, Xk,
1#i,j,k
0,if (4,j,k) # (iy,j1, kK1)

which implies that 2 k {

p (Zlqltl]lk llkl) 1; lf( 1, ]l k) - (llllllkl)

Moreover, if 1= (xXs)€ Sy;1<r<s<n suchthatt (xillexkl) = Xi, Xj, Xk, - 1 hen
(T (%4, Xj, X, ) = W (Xq, Xj, X, ) = TP (X4, Xj, Xk, ) = P (X, X5, Xk, ) — T (X4, X, X)) = 0

n 2 n 2|
= Dis<i<j<ken 2 1=1 KijkXiXjXpX[ — T<215i<j<kSnZ 1=1 Kijkl XinXkX1> =0
1#ijk 11,k
n 2 2 —
= lei<j<ksn2 1=1 (kijklxi XjXRX] — kijkl T(Xinkal )=0=
1#ij,k
n 2 n 2
Yr<j<ksn 2 1=1 (Kejki — Kejk)XrXjXk X[ + Xs<jeken 2 121 Ksji—Krjr)XsXjXk ) +
j#s l#1,5,j,k l#1,5,j,k
n 2 n 2
Yisicr<ksn 2 1=1 (Kirki — Kisk)XiXeXg X{ + Xisics<ksn X 1=1 (Kiski — Kirk)XiXsXg X[ +
k#s 1#i,r,s,k i#r 1#i,r,s,k
n 2 n 2
Yisicj<r 2 1=1 Kijrn — Kijs)XiXXe X[ + Xisicj<s 2 121 Kijst — Kijr)XiXjxs X{ +
1#i,j,r,s Lj#r 1#i,j,r,s
2 2
Disi<j<ksn(Kijkr — Kijks)Xi Xj XkXr + Xisicj<ksn(Kijks — Kijkr)XiXj XkXs +
ijk#r,s i,jk#r,s
n n n 2
Yhest1 2 1=1 Rrsia — Kor)XeXeXi X{ + X554 1 Xa1 (Rrjst — Ksjr)XeXjXs X +
l#r,s,k I#r,j,s
2 r-1vyn
Zs<j<k5n(ksjkr - krjks)Xsz XpXp + Zr<j<k5n(krjks - SJkr)XrX Xsz + Z 1=1 (kirsl -
jk#s l#i,r,s
2 r—-1xn 2 2
kisrl)XinXs X] + Zi:l Zk=r+1(kirks - kiskr)XinXk Xs + lei<j<r(kijrs - kijsr) XiXj XrXs +
k#s
s—1yn 2 . 2
Zi:l Zk=5+1(kiskr - kirks)XiXst Xy + 2151,]<s(kijsr - kijrs) XjXj XsXr =0.
Lj#r
n n 2 2 n
= Yr<j<ksn 2 1=1 (Krjia — Kejr) eXXp Xp — XsXjXg X)) + Disicr<ksn X 121 (Kirla —
j#s 1#1,s5,j,k k=s 1#i,r,s,k
Kisk1) (XiXr Xk X{ — XiXsXk X{) + Dicicjer 2 121 (Kijr — Kijs1) (XiXjXe X{ XXX X{) +
1#i,j,r,s
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2
Yasicj<ksn(Kijir — Kijks) (XiXj XiXF — XiXj XX3) + Dhosir 21=1 Krsia — Kori) XpXeXi X{ +

i,jk#r,s l#r,s,k
s—1 n 2 2 2
i=r+1 1=1 (krjsl - ksjrl)XerXs X] + Zr<j<k5n(krjks - ksjkr) (Xer XkXs — XsX; Xer) +
I#r,j,s jk#s
r—-1y'n 2 2 r—1yn 2
Zi:l Zk=r+1(kirks - kiskr) (XinXk Xs — XjXsXk Xr) + Zi:l 1=1 (kirsl - kisrl)XinXs X] +
k#s 1#i,r,s

Y1<icjerKijrs — Kijsr) (XiXj X X¢ — X;Xj XsX7) = 0.

Then by equalling the coefficient of the above equation we get for any r,s; 1 < r < s < n that

krjkl = Kisa = ksjkl = Kjpa = kijrl = kijsl = Kpsk = Ko = krjsl = ksjrl = krjks = ksjkr =

Kirks = Kiskr = Kirsi = Kijsr = k forany i, j, k, 1. But, we have

YM=1 Kija = 01if (i,j,k) # (i1,j1, kq), thus ¥"—; k= 0 which implies that (n-3) k=0 =
1#i,j,k 1#i,j,k

pl(n—3)or k=0.

From other side, we get for any r,s;1 <r <s < nthat ki, = kjjxs = ky. But we have

YM=1 Kiju = Iwhen (i,j, k) = (iy,j1,k;) which implies that ¥"_; Ky = X"=1 k; = L.ie.
1#i,j,k 1#i,j,k 1#i,j,k

(n—3)k;, =1=p+(n—3)andk; # 0.Hence,wegetthatp+ (n—3),k; # 0 andk =0.

i.e. if the sequence (1) is split, then p + (n — 3).

Proposition 3.11: S(n — 4,3,1) is a proper submodule of ker d.

Proof: Since S(n — 4,3,1) = KS,A(X1, X5, X3)A(X4, X5)A(Xg, X7).

Let y = A(Xq,X2,X3)A(X4, X5)A(X6, X7) = (X3 — X1) (X3 — X2) (X2 — X1) (X5 — X4) (X7 — X6).
Then y € kerd. But the dimension of kerd over K of the KS,homomorphism d: M (n —

4,3,1) >M(n—3,3) is 20 D@DO ony Gim, S(n — 4,3,1) = L-D@=9@6)

6 8
n(n-1)(n-2)(n-4)

6
Hence S(n — 4,3,1) is a proper submodule of ker d.

Corollary 3.12: The following sequence of KS,,-modules

d
0 - Kerd - My(n —4,3,1) > My(n — 3,3) = 0 (2)
is exact over a field K with p # 2.

Proof: Since My(n — 4,3,1) € M(n — 4,3,1) and the K-basis of My(n — 4,3,1) is { Xinkalz -
X1XX3X5] 1 €i<j<k<nl1<1<nl#ijkjkD # (1,234} thus dxxxex{ —
X1XpX3X5) = 2XiXjXg — 2X1X,X3 € Mg(n — 3,3). Hence, d|My(n —4,3,1): My(n — 4,3,1) -
My(n —3,3). Let d =d|My(n—4,3,1), then d:My(n —4,3,1) - Mg(n — 3,3) such that
(_l(xix]-xkxlz — X XpX3X2) = 2XiXjXg — 2X1XpX3. Then d is onto map since V (XXX —
X1XyX3) € My(n — 3,3),3 % (Xixjxkxlz — X1XX3X3) € My(n — 4,3,1) such

thata(% (XiXjXX{ — X1X,X3X5)) = a(X;XjXk — X1XX3); a € K. Thus the following sequence
0 - Kerd — My(n—4,3,1) > My(n —3,3) > 0

is exact sequence since the inclusion map is one-to-one and Kerd = Imi. Since d =

d|My(n — 4,3,1), then Ker d c Ker d. But dimgKer d = dimgM,(n — 4,3,1) — dimgM,(n —

3,3) = dimgM(n — 4,3,1) — dimgM(n — 3,3) = dimgKer d which implies that Kerd =

Ker d. Thus, we get the following sequence

d
0 - Kerd — My(n —4,3,1) » My(n — 3,3) — 0 is exact.
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Corollary 3.13: The sequence (2) is split if and only if p + (n-3) over a field K with p # 2.
Proof: Assume pt (n-3). By utilizing Theorem (3.10) we have a KS,-homomorphism

@:M(n—33) > M(n—431) such that @(xxjx) = ﬁznm XiXjXiX{.  Then
1#1j,

j,k
e f— el .Y —_— = 1 n - X 2_
(p(XIX]Xk X1X2X3) = (p(XlX]Xk) @(X1X2X3) 2(n-3) Zl;ii:jlleX]Xle 2(n-3)
1 _
Yot XqXpXg X[ = (O XinXkXIZ'Zn I=1 X1XpX3X{) € Mo(n—4,3,1). Let =

1#1,2,3 2(n=3) 1#i,j,k 1£1,2,3

©|My(n —4,3,1), then @: My(n — 3,3) - My(n — 4,3,1) which is a KS,,-homomorphism such

J= _ 3 1 n 2 n 2\ |=
that AP (xiX;Xi — X1X,X3) = d 23) (Z 1=1 XiXjXiXi — 2 1= X1X2X3X1> =
11,3,k 1#1,2,3

1
2(n-3)

(AE"= xixxixf — XM ia1 X1XpXsX())= 2(n1_3) (2(n = 3)x;x;x — 2(n —
1=Lj,k 1#1,2,3 N

3)X1x2x3) = XjXjXk — X1X2X3. Hence, d@ = I on My(n — 3,3). Thus, the sequence (2) is split
andM,(n — 4,3,1) = Ker d®Ly; Ly = My(n — 3,3). Now, assume the sequence (2) is split.
Then there exists a KS,-homomorphism § = {|My(n — 3,3) where { as it is define in
Theorem (3.9) such thatdy =1 Thus x;Xjxx — XXXz = dP(XiXjXK — X1XpX3) =
A (XXX — X1X2X3) = dP(x;x;Xi) — dP(X1Xp%3) = d(X")2) XiXjXpxi) —

1£Ljk
d(X™ o) X XpX3xP) = 2(n — 3)kx;xjxx — 2(n — 3)k;X1X,x3. By equaling the coefficients
1+1,2,3
we get that 2(n — 3)k = 1 and 2(n — 3)k; = 1 which implies that p { (n-3).

Theorem 3.14: The following sequence

i f
0 - My(n—43,1) —»M(n—431)—K- 0 3)

is split if and only if pt n(n—1)(n6—2)(n—3) .

Proof: It is clear that the inclusion map is one-to-one and for any k € K we have

n 2\ _ n — H
f<215i<j<k5n2 1=1 kijkIXinXkX1> = Yi1cicj<ksn 2 1=1 Kiju =k Is onto map.
11,k 1#1,j,k

Moreover,ker f = Imi, thus the sequence (3) is exact.
n(n-1)(n—-2)(n-3) . .
If pt we can define a function h:K—- M(n—4,3,1) by h(k) =
6kos(n)
n(n-1)(n-2)(n-3)’

_ 6kos(n) )_ 6rtkos(n) )
Lres, ITh(K) = Yres, 1T (n(n—l)(n—z)(n—3) = Laes, n(n—-1)(n-2)(n-3)
6rkos(n)

Tresy W = ¥, th() = h(Tees, 1K)=h(Tees, 1K), T(K) =k and

tog(n) = o5(n),  then  h(tk) = th(k).  Moreover, h(k) = f(n(n_f)k(fli(;‘))(n_3)) -

where h is a KS,,-homomorphism since

6kf(o5(n)) _ 6k n(n-1)(n-2)(n-3) _ _
D2 (D)~ ne D) - = k. Hence, fh = I on K, thus the sequence
(3) is split.

Now assume the sequence (3) is split. Then there exist a KS,,-homomorphism g: K - M(n —

4,3,1) such that fg = I on K.

Let g(1) = Yicicjeken =1 KijaXiXjxix?, then g(1) = g(t(1)) = tg(1); = (X,xs), 1 <
1=i,jk

r<ss=n, thus g(1) —tg(1) = 0.1 e-Zs<j<k5n IR (krjkl - ksjkl)XerXk Xl2 +
l#1,s,j,k
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2 2
Yasicr<ksn 2 1=1 (Kirki — Kisk)XiXeXk X{ + Dicicjer 121 Kijrl — Kijs)XiXjXp X| +

k#s 1#i,r,s,k 1#i,j,r,s
2 n n 2
Z1Si<]'<k5n(kijkr - kijks)Xi Xj XgXr + 2k=s+12 1=1 (Rrski — Ksria) XeXsXg X{ +
ij,k=#r,s 1#r,s,k
s—1 n 2 2
j=r+1z 1=1 (krjsl - ksjrl)XerXs Xp + Zr<i<k5n(krjks - ksjkr) XrXj XkXs +
l#r1,j,s jk#s
r-1yn 2 r—-1yn 2
i=1 1=1 (kirsl - kisrl) XiXrXs X] + Zi:l 2k=r+1(kirks - kiskr‘)XinXk Xs +
1#i,r,s k+#s

lei<j<r(kijrs - kijsr) XiX;j Xxg = 0.
By equalling the coefficients, one can obtain for anyr,s; 1 <r <s <n and any i,j,k,1 that

krjkl =Kijgu = ksjkl = Kira = kijrl = kijsl = Krsia = Kgria = krjsl = ksjrl = krjks = ksjkr =
— — — — — n 2 _
Kirks = Kiskr = Kirst = Kijsr = k. Then g(1) = Xi<icjeken 2 1=1 KijuXiXjXeX) = kog(n).
1#ij,k

Since fg = I, then we have

1= fg(1) = f(kos(n)) = kf(zlsiq«sﬂznl:l xixjxkx%>:k REDR-B0=D which implies
1#i,j,k

that p){ n(n—l)(n6—2)(n—3).

Corollary 3.15: My(n — 4,3,1) is not a direct summand of M(n — 4,3,1) when p divides
n(n-1)(n-2)(n-3)
< :

Proof: Assume My(n —4,3,1) is a direct summand of M(n—4,3,1) when p divides
n- D203 Then there exists a KS,-submodule F of the KS,-module M(n — 4,3,1) s.t.

6
M(n —4,3,1) = My(n — 4,3,1)®F, which implies that the sequence (2) is split and this is
contradiction. Hence, M,(n — 4,3,1) is not a direct summand of M(n — 4,3,1) when p divides
n(n-1)(n-2)(n-3)

< :

Theorem 3.16: If p # 2,3 and p|(n — 1), then we have a series of submodules of M(n-4,3,1)
as in figure (1) in the appendix.

Proof: If p # 2,3 and p|(n — 1), then p + (n — 3). Thus, by Corollary (3.12) one can reach to
obtain My(n —4,3,1) = Ker d®L,; Ly = My(n—3,3). Since W =KS,c,(n);c;(n) =
Y 1<i<j<ken xix]-xkxf, then the sum of coefficients is 22203 \yhich implies that c;(n) €
Mo(n — 4,3,1) since p|(n — 1). Moreover, d(c;(n)) = 2 X1 cicj<ken XiXjXk # 0.
Hence,c;(n) ¢ kerd.i.e. W N kerd = 0 thus W c L. Also since p|(n — 1), then p 4 n and
by Proposition (3.8) W has the following two composition series

1) 0 € Wy(n) € W(n).

2) 0 € Kog(n) € W(n).

Moreover, we have S(n—4,3,1) c kerd, then S(n—4,3,1)®L, < ker d®L, = My(n —
4,3,1). Therefore, we get the proof.

Theorem 3.17: If p # 2,3 and p|(n — 3), then we have a series of submodules of M(n-4,3,1)
as in Figure (2) in the appendix.
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Proof: Since W = KS,c;(n); ¢;(n) = lei<j<ksnxixjxkx§, then the sum of coefficients

r=DO=D07D — 0 (mod p) which implies that W < Mo(n — 4,3,1). But we have S(n —

4,3,1) c kerd c My(n —4,3,1) and d(c;(n)) = 2 ¥; cicjcken XiXjXk # 0.
Hence W n ker d = 0. Moreover, since p # 2,3 and p|(n — 3), then p + n. Thus, we obtain
the proof.

Corollary 3.18: If p # 2,3 and p|(n — 1) then one can achieve a series of submodules of M(n-
4,3,1), where F, = KS; (Xy,Xs, X, Xs — Xr, Xs,Xt, XA — X, Xs, X¢, Xm + Xp, X5, X¢, Xm) and F3 =
KS,, (X XsXX2 — X,XsX¢X5) , Where n = m. As shown in figure (3) in the appendix.

Proof: Using definition of F, and F3, we obtain thatF,, F; € My(n — 4,3,1). Moreover, F,,
F3 c kerd. Sincex, Xs X Xa — Xr,Xs,Xt,Xa — Xr,Xs,Xt,Xm T Xr, Xs,Xt, Xgn = (Xp, Xs, X¢, X4 —
Xr, Xs, Xt,Xm) — (Xr,Xs,Xt,Xn — Xr, Xs,Xt,Xm) € F3, then F, € F5. Thus if p # 2,3 and p|(n —
1), by using Theorem (3.17) one can get a series of submodules of M(n-4,3,1) as shown in
Figure (3) in the appendix.

Corollary 3.19: If p # 2,3 and p|(n — 1), then one can obtain a series of submodules of M(n-
4,31), where K, = KS;(Xy,Xs, X, X5 — Xp, Xs, Xt Xa + Xp, Xs, X, X4 — Xp,Xs, X, X5 ), Kz =
KSn (Xr, Xs, Xt,Xa — X, Xs,Xt,Xa + Xp,Xs, X, Xos — Xp, Xs, Xt, Xa + X, Xs,Xt,Xn — Xr,Xs, X, X +
Xr,Xs,Xt,Xn — Xr, Xs,Xt,Xa)  and K, = KS; (Xy, Xs, X¢, X3 — Xp,Xs, X, X + Xp, Xs, Xt,Xa —
Xr,Xs,Xt,Xn T Xr,Xs, Xt, X — Xr,Xs,Xe, Xin + XryXs, Xt,Xm — Xr,Xs,Xt,Xm). As itis displayed in
Figure (4) in the appendix.

Proof: By utilizing definition of K,, K5 and K, we get K,, K3, K, € My(n — 4,3,1). Moreover,
we have K3 K, cK, since Xy Xg X¢ XA — Xp Xs,Xt,Xa + Xr,Xs, X, X — Xp,Xs, X¢, X +
Xr,Xs, Xt,Xa — Xp,Xs,Xt, X2 + Xp X X, X2 — Xp, Xg, Xp,Xa = (Xp, Xs, X¢, X2 — Xp,Xs, X, X2 +
Xr,Xs, Xt,Xp — XFZXSZXtZXrZI) + (Xr,Xs,Xt,Xn — Xr, Xs, Xt, XA + Xp,Xs, X, Xp — Xp,Xs, Xt, Xp) €
K,, and Xr,Xs, Xt,Xn — Xr, Xs,Xt,Xa T Xr,Xs, Xt,Xn — Xp,Xs,Xt, X + Xr, Xs, Xt, Xy —
Xr,Xs,Xt, Xm T Xr, Xs, Xt,Xm — X, Xs,Xt,Xm = (Xr,Xs, X, X5 — Xp, Xs,Xt, Xn + Xr, X, Xt,Xp —
Xr,Xs,Xt,Xn) T (Xr,Xs, X¢, X — Xr,Xs,Xt,Xm + Xr, Xs, Xe, Xm — Xr,Xs,Xt,Xm) € K,. Moreover,
d(xr, Xs, Xt,X& — Xy, Xs,X¢, XA + XrZXslthszl_— Xr,Xs,Xt,Xa) = 2(Xp,Xs,Xt, — Xr,Xs,Xt, +
Xr,Xs,Xt, — Xr,Xs,Xt,) # 0, thus K, N ker d = 0 which implies that K, c L. From definition
of the submodule K, and the submodule W, one can obtain that K, N W = 0. Then if p #
2,3 and p|(n — 1) we achieve the proof.

Corollary 3.20: If p # 2, then the following sequence of KS,-modules

0 - Kerd, —1>F1(i1>F—>O (4)
issplitifand only if p + (n — 5), where F = KS,, (X,X,Xg — X5X3Xg — X2X4Xs + XX3X5) and
F; = KS, (XpX4XeX2 — XpX3XgX2 — XpX4XsX2 + X5X3X5X2).

Proof: Using definition of F; we get that F; € My(n — 4,3,1).Since d:My(n —4,3,1) —
M, (n — 3,3) is onto map and

d(X,X4XgX2 — XpX3XgX2 — XpX4XsX2 + XpX3XsX2) = 2(XpX4Xg — XpX3Xg — XpXaXs +
X2X3Xs), Where (X,X4Xg — XpX3Xe — XpX4X5 + X2X3Xs) is a generator of F, thus d|F, : F; > F
is onto map. Let d; = EllF1 then d, is onto map. It is clear that the inclusion map i is one-to-
one and Ker d; = Imi. Hence, the sequence (4) is exact. Now, assume that p + (n — 5). Let
U: F = F; such that (X XXy — XpXsXt — XXy X] + XpXX]) =
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1
2(n-5)

Y kel (XeXeXeXE — XpXgXeXE — XXy XX + XXX XE ), then for any T €S, we get
k#r,s,v 1t

lIJ(T(XrXth — XrXyXt — XrXsX] + XerXl)) = qJ(T(Xr)T(Xs)T(Xt) — T(x)T(xXy)T(Xe) —
T(xXp)T(x)T(X1) + T(Xr)T(XV)T(Xl)) = lp(xrlxslxtl — Xp, Xy, Xy, — X, X5, X1, T Xrlxlell) =

1 2 2 2 2
2(n—5)zn k=1 (Xr, Xs, X, Xk, — Xr, Xv, Xt; Xk, — Xr, Xs, X1, Xk, T Xr, Xv, X1, Xk, ) where
klirl,sl,vl,tl,ll
T(Xp) = Xp, T(Xs) = X6, T(Xe) = X, T(Xy) =Xy, and t(x) = x,.  Hence, Y(x xgX —

XpXyXe — XpXsX] + X XyX]) = T P(X XX — X XyXe — XpXsX] + XpXyX)). Thus ¢ is a KS,-
homomorphism. Moreover, we have
di U(XrXsXe — XpXyXe — XpXsX] + XpXy X)) =
3 1 n 2 2 2 2)\ —
dl (Z(n—S) Z k=1 (XrXthXk — XXy X Xg — XXX Xy + XrXVXIXk)) -
k#r,s,v,1t

n 1

> k=1 2( XpXsXe — XpXyXp — XpXgX] + XpXyX]) = —
2(n-5)

k#r,s,v,Lt _
XrXyXe — XpXsX] + XpXyX)) = (XXXt — XpXyXe — X XsX] + X XyX). Hence, d; =1 on F and
the sequence (4) is splitwhen p t+ (n — 5) andF; = Kerd; @ F.
Now if the sequence (4) is split. Then there exists a KS,-homomorphism ¢:F —
Fi suchthatd;p =TonF.i.e. did(XXsXi — X XyXt — XpXsX] + X XyX]) = (XXX —
XrXyXe — X XsX] + XpXyX1). Then ¢ has the form
d)(xrlxslxtl - Xr1XV1Xt1 - Xr1X51X11 +

— n 2 2 2
Xr1Xv1X11)_ler<s,v<t,1sn Z k=1 krsvtlk(XrXthXk — XpXyXeXg — XXX Xg T
k#r,s,v,Lt

X XyX(Xe); 1 <1 <s1,vp <tg,]; <n.
Since d; ¢ = I. Hence, dlqb(xrlxslxt1 — Xp, Xy, Xt, — Xp, Xs, X, + Xr1XV1X11) =

n 2 2 2
dl (ler<s,v<t,lsn Z k=1 krsvtlk(XrXthXk — X XyXiXg — XXX Xk +
k#r,s,v,1,t

1
2(n-5)

(Z(H - 5) (XrXth -

2N \— n —
XerXle) )_ler<s,v<t,15n <2 Z k=1 krsvtlk > (XrXth — XpXyXt — XpXsX] + XerXl) -
k#r,s,v,1,t

(Xr1X51Xt1 — Xp, Xy, Xt, — Xp, Xs, X1, + Xrlxlell).
Thus, we obtain
23" Koy = {(1) %f (r,s,v,t,1) = (ry,s1,vy,t1, 1)

Kersvlt , if (r,s,v,t,1) # (ry,s1, vy, t1,11)
For t= (xixj) €Sy, 1<i<j<n such that ‘t(xrlxslxt1 — Xp, Xy, X, — Xr, X5, X1, +
xrlxlell) = (Xr1X51Xt1 — Xp, Xy, Xt, — X, Xs, X1, xrlxlell) which implies that
¢(XF1XS1Xt1 — Xp, Xy, Xy, T X, Xs X, Xr1XV1X11) =¢ (T(XF1XS1Xt1 ~ Xry Xvy Xy T
Xp, Xs, X1, + Xrlxlell))' By equalling the coefficients of the above equation and for any t =
(xix;) € Sy, 1 <1< j < nwe obtain
Kisviik = Kjsvilk = Krivik = Krjvik = Krsitik = Krsjik = Krsvilk = Krsvjik = Krsvtik =
k1"svtjk = kisvtlj = kjsvtli = krivtlj = krjvtli = krsitlj = krsjtli = krsvilj = krsvjli = krsvtij =
Kesviji = Kijvak = Kjivak = Kisjuk = Kjsitik = Kisvjik = Kjsviik = Kisvtjk = Kjsvtik = Krijux =
Krjiak = Krivilk = Krjvilk = Krivijk = Krjvtik = Kesijik = Krsjilk = Krsitjk = Krsjik =
b for any 1, s, v, t, 1, k. But we have

Y1 Kesvuxk= 0 when (1,s,v,t,1) # (ry,sq, vy, ty, ). Hence,
k#r,s,v,1t

Y =1 Kesvak =20 k=1 b =0 which impliesthat b(n—5) =0 = b =0orp |(n—5).
k#r,s,v, It k#r,s,v, It

From other side, we get for any i,j; 1 <i <j < nthat Kysu; = Krsynj = by But we have
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X" k=1 Kesvak= 1 when (s, vt ) = (s, vty ) = X ket Kesyuk =
k#r,s,v, Lt k#r,s,v, Lt

Y1 by=1=(m—-5b;=1=b; #0andpt (n—>5). Hence, we obtain that b =
k#r,s,v, Lt

0,b; # 0and p t (n — 5). Thus, if the sequence (4) is splitthen p t (n — 5).

Proposition 3.21: S(n — 4,3,1) is a KS,-submodule of F;.

Proof: Since S(n — 4,3,1) = KS,A(X4, X5, X3)A(X4, X5)A(Xg, X7).

Lety = A(Xq, X2, X3)A(X4, X5)A (X6, X7) = (X3 — X1) (X3 — X2) (X2 — X1) (X5 — X4) (X7 — Xg) =
XyXeX7X5 — XpX4X7X3 + X1 X4X7X5 — X1 X5X7X3 + X1 XsX7X5 — X1 X4X7X5 + X3X4X7X5 —
X3X5X7X5 + X3XsX7X2 — XpXsXyX5 + XpXsX7X5 — X3X4X7X2 — XpXsXeX5 + XpX4XgX5 —
X1X4XeX3 + X1 XsXX5 — X1 XsXgX5 + X1X4XgX5 — X3X4XeX5 + X3X5XgX2 + XpX5XX2 —
X3XsXeX2 + X3X4XgXe — XpXaXeX? = (XpXs5X7X3 — XpX4X7X5 — XpXsXgX2 + XpX4XeX3) +
(X1X4X7X§ - X1XsX7X§ - X1X4X6X§ + X1X5X6X§) + (X1X5X7X% - X1X4X7X% _X1X5X6X% +
X1X4X6X%) + (X3X4X7X% - X2XsX7X% _X3X4X6X% + X2X5X6X§) + (X3X5X7X% - X3X4X7X% -
X3XsXeX? + X3X4XgX2) + (XpX4X7X3 — XpXsX7X5 — XpX4XeX2 + XpXsXgX2) € F.

Hence, S(n — 4,3,1) c F,.

7. Conclusions and discussion

This work presents the definition of the r'"—natural triangular representation of S,overk,
wherer > 0 and n > 2r + 6 that deals with whenr = 1. The authors have been proved the
following:

1. Each M(n — 4,3,1) and My(n — 4,3,1) are split when pt (n — 3).
2. My(n —4,3,1) is not a direct summand of M(n — 4,3,1) when pt
3. F; = KS,(XpX4XgX2 — XpX3XeX2 — XpX4XsX2 + X,X3XsX2) is split when pt (n — 3) and p#
2.

4. S(n — 4,3,1) is a KS,-submodule of F,.

Based on the good results that are achieved in the present work, it has encouraged the
forthcoming work to focus on developing and starting to work on the second triangular

representation M(n,,6,3,2,1) on symmetric group. This will be a key issue in our subsequent
works.

n(n-1)(n-2)
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Figure 2- Schematic diagram of submodules of M(n-4,3,1) when p|(n — 3) of theorem (3.17)
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Figure 3: Schematic diagram of submodules of M(n-4,3,1) when p|(n — 1) of corollary (3.18)
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Figure 4: Schematic diagram of submodules of M(n-4,3,1) when p|(n — 1) of corollary (3.19)
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