Shaheen and Taher

Iraqi Journal of Science, 2023, Vol. 64, No. 6, pp: 2973-2981 DOI: 10.24996/ijs.2023.64.6.25

Triple Γ –Homomorphisms and Bi - Γ -Derivations on Jordan Γ –algebra

Rajaa C. Shaheen, Hasan R. Taher*

Department of Mathematics, , College of Education, University of Al-Qadisiyah, Al-Qadisiyah, Iraq

Received: 23/3/2022 Accepted: 18/9/2022 Published: 30/6/2023

Abstract

In this paper, we introduce the concept of Jordan Γ –algebra, special Jordan Γ – algebra and triple Γ –homomorphisms. We also introduce Bi - Γ –derivations and Annihilator of Jordan Γ –algebra. Finally, we study the triple Γ –homomorphisms and Bi - Γ –derivations on Jordan Γ –algebra.

Keywords: Derivation, Jordan algebra, Triple homomorphism, Centroid.

تشاكلات كاما الثلاثية واشتقاقات كاما الثنائية على جوردان كاما الجبرا

رجاء جفات شاهين, حسن رمزي طاهر *

قسم الرياضيات , كلية التربية, جامعة القادسية , القادسية , العراق

الخلاصة

في هذا البحث ،قدمنا مفهوم جوردان كاما الجبرا ،تشاكلات كاما الثلاثية واشتقاقات كاما الثنائية وكذلك درسنا اشتقاقات كاما الثلاثية واشتقاقات كاما الثنائية على جوردان كاما الجبرا .

1. Introduction

In [1], Jordon studied quantum mechanics, he introduced the concept of Jordon algebra. Recall that a Jordan algebra \Im being an algebra over field \mathcal{F} satisfies

(i) $u \circ v = v \circ u$ for all $u, v \in \mathfrak{I}$,

(ii) $(u^2 \circ v) \circ u = u^2 \circ (u \circ v), u^2 = u \circ u$ for all $u, v \in \mathfrak{J}$.

In [2,3], Albert developed a successful structure theory on all fields from zero property and renamed them Jordan algebras. It is called perfect if $\Im \circ \Im = \Im$, see [4].

In [5], Jacobson introduced the concept of Jordan module as follows: A Jordan module is a system that consists of a Jordan algebra \Im , vector space V and two compositions a.b and b.a for all a in V and b in \Im where bi-linear check the following

1)
$$au = ua$$
,

 $2)(ua)(b \circ c) + (ub)(c \circ a) + (uc)(a \circ b) = (u(b \circ c))a + (u(c \circ a))b + (u(a \circ b))c,$

3) $(((ua)b)c) + (((uc)b)a + u(a \circ c \circ b) = (ua)(b \circ c) + (ub)(c \circ a) + (uc)(a \circ b),$

In [6], Hoque defined a centralizer as follows:

*Email: <u>hasan1982rmzi@gmail.com</u>

An additive mapping $\delta: \mathfrak{I} \to \mathfrak{I}$, is called a centralizer if

 $\delta(x \circ y) = x\delta(y)$ for all $x, y \in \mathfrak{I}$.

In [7], Zhou introduced the concept of triple homomorphism as follows:

Let Ω and Ω_1 be Lie algebras on an abelian ring R. An R-linear mapping $f : \Omega \to \Omega_1$ It is named a triple homomorphism of Ω to Ω_1 if f([x, [y, z]]) = [f(x), [f(y), f(z)]] for all $x, y, z \in \Omega$. Similarly, triple homomorphisms can be defined in Jordanian algebra.

In [8], Öztürk et.al. introduced the concept of bi-derivation on the Gamma ring as follows : Let $D(.,.): M \times M \to M$ be a bi-additive map which is called a bi-derivation if satisfy : $D(x\alpha y, z) = D(x, z)\alpha y + x\alpha D(y, z)$

for all x, y,
$$z \in M$$
 and $\alpha \in \Gamma$.

In [9], Rezaei and Davvaz introduced the concept of Γ -algebra as follows: Let *V* be a vector space on a field \mathcal{F} . *V* is said to be a Γ -algebra on \mathcal{F} if there is a binary operation (product) on *V*, .: $V \times \Gamma \times V \rightarrow V$ such that $(b, \alpha, c) \rightarrow a \alpha b, \alpha \in \Gamma, r \in \mathcal{F}$ which satisfies the following conditions :

1) $a \alpha (b + c) = a \alpha b + a \alpha c$, $(b + c) \alpha a = b \alpha a + c \alpha a$

2) $a(\alpha + \beta)b = a\alpha b + a\beta b$

3) $(ra)\alpha b = r(a\alpha b) = a\alpha(rb)$

The Γ -algebra V is commutative or abelian if $a \alpha b = b \alpha a, \forall a, b \in V, \alpha \in \Gamma$ and V is associative if $a\alpha(b \beta c) = (a \alpha b)\beta c, \forall a, b, c \in V, r \in \mathcal{F}, \alpha, \beta \in \Gamma$.

In this paper, we introduce the concept of Jordan Γ –algebra, triple Γ –homomorphism and Bi – Γ –derivation on Jordan Γ –algebra. We also give some results about its on Jordan Γ -algebra. For more details, see [10,11,12,13].

We will write triple Γ –homomorphism with the symbol (t. Γ -hom.) and Jordan Γ -algebra with the symbol \Im . Γ -algebras

2. Triple Γ -homomorphism on Jordan Γ -algebra

In this section, we give a definition of Jordan Gamma algebra and study the concept of triple homomorphism on it.

Definition 2.1:-

A \mathfrak{J} . Γ -algebras \mathfrak{J} of real vector space V with a bi-linear product map $\mathcal{N} \times \Gamma \times V \to V$, where $\psi(u, \alpha, v) = u\alpha v$ satisfying the commutative law and the \mathfrak{J} . Γ -identity :

 $u\alpha v = v\alpha u \qquad (\text{commutative law}),$ $(u\lambda u\alpha v) \beta u = u\lambda u\alpha (v\beta u) \qquad (\text{Jordan } \Gamma\text{-identity}).$ $u, v \in \mathfrak{I}, \lambda, \alpha, \beta \in \Gamma$

Definition 2.2:-

Let $\mathfrak{J}_1, \mathfrak{J}_2$ be Jordan Γ –algebras on over field \mathcal{F} . A linear map $\mathfrak{f} : \mathfrak{J}_1 \to \mathfrak{J}_2$ is called a triple Γ -homomorphism of \mathfrak{J}_1 to \mathfrak{J}_2 if $\mathfrak{f}(x \circ_{\Gamma} (y \circ_{\Gamma} z)) = \mathfrak{f}(x) \circ_{\Gamma} (\mathfrak{f}(y) \circ_{\Gamma} \mathfrak{f}(z)) \forall$ $x, y, z \in \mathfrak{J}_1$. Suppose that \mathfrak{f} is (t. Γ –hom.) from \mathfrak{J}_1 to \mathfrak{J}_2 where \mathfrak{J}_1 and \mathfrak{J}_2 are $\mathfrak{J} \cdot \Gamma$ -algebras.

Define $A_{nnf}(\mathfrak{I}_2)$ as follows:

$$A_{nn\mathfrak{f}}(\mathfrak{I}_2) = \{a \in \mathfrak{I}_2 \ / \ a \ \circ_{\Gamma} \ \mathfrak{f}(x) = 0 \ , for \ all \ x \in \mathfrak{I}_1\}, \text{ where } x \ \circ_{\Gamma} \ y \ = \ \frac{1}{2}(x\alpha y \ + \ y\alpha x)$$

Lemma 2.3:-

Suppose \mathfrak{I}_1 is a perfect Jordan Γ -algebra over \mathcal{F} and \mathfrak{f} is (t. Γ -hom.) from \mathfrak{I}_1 to \mathfrak{I}_2 that satisfies $A_{nnf}(\mathfrak{I}_2) = \{0\}$, where \mathfrak{I}_2 be arbitrary $\mathfrak{I}.\Gamma$ -algebra over \mathcal{F} . There is \mathcal{F} -linear map $\psi_f : \mathfrak{I}_1 \to \mathfrak{I}_2$ such that for all $x \in \mathfrak{I}_1$ with

 $\mathbf{x} = \sum_{i \in I} (x_{1i} \circ_{\Gamma} x_{2i}) \quad \text{where } x_{1i}, x_{2i} \in \mathfrak{I}_1, \ \psi_f(\mathbf{x}) = \sum_{i \in I} (\mathfrak{f}(x_{1i}) \circ_{\Gamma} \mathfrak{f}(x_{2i})).$ **Proof**

It is sufficient to prove that $\sum_{i \in I} (f(x_{1i}) \circ_{\Gamma} f(x_{2i}))$ is independent of the expression of x. Assume that $x = \sum_{i \in I} (x_{1i} \circ_{\Gamma} x_{2i}) = \sum_{j \in H} (x_{1j} \circ_{\Gamma} x_{2j})$ Let $\Omega = \sum_{i \in I} (f(x_{1i}) \circ_{\Gamma} f(x_{2i}))$, $\Omega = \sum_{j \in H} (f(x_{1j}) \circ_{\Gamma} f(x_{2j}))$. For any $z \in \mathfrak{I}_1$, we have

$$\begin{split} \mathfrak{f}(z) \circ_{\Gamma} (\Omega - \Omega) &= \mathfrak{f}(z) \circ_{\Gamma} (\sum_{i \in I} (\mathfrak{f}(x_{1i}) \circ_{\Gamma} \mathfrak{f}(x_{2i})) - \sum_{j \in H} (\mathfrak{f}(x_{1j}) \circ_{\Gamma} \mathfrak{f}(x_{2j}))) \\ &= \mathfrak{f}(z) \circ_{\Gamma} (\sum_{i \in I} (\mathfrak{f}(x_{1i}) \circ_{\Gamma} \mathfrak{f}(x_{2i})) - \mathfrak{f}(z) \circ_{\Gamma} \sum_{j \in H} (\mathfrak{f}(x_{1j}) \circ_{\Gamma} \mathfrak{f}(x_{2j}))) \\ &= \sum_{i \in I} (\mathfrak{f}(z) \circ_{\Gamma} (\mathfrak{f}(x_{1i}) \circ_{\Gamma} \mathfrak{f}(x_{2i})) - \sum_{j \in H} (\mathfrak{f}(z) \circ_{\Gamma} (\mathfrak{f}(x_{1j}) \circ_{\Gamma} \mathfrak{f}(x_{2j})) \\ &= \sum_{i \in I} \mathfrak{f}(z \circ_{\Gamma} (x_{1i} \circ_{\Gamma} x_{2i}) - \sum_{j \in H} \mathfrak{f}(z \circ_{\Gamma} (x_{1j} \circ_{\Gamma} x_{2j}))) \\ &= \mathfrak{f}(z \circ_{\Gamma} (\sum_{i \in I} (x_{1i} \circ_{\Gamma} x_{2i})) - \mathfrak{f}(z \circ_{\Gamma} (\sum_{j \in H} (x_{1j} \circ_{\Gamma} x_{2j}))). \\ &= \mathfrak{f}(z \circ_{\Gamma} x) - \mathfrak{f}(z \circ_{\Gamma} x) = 0. \end{split}$$

Thus, we have

 $\Omega - \Omega = 0$, *i.e.* $\Omega = \Omega$. The proof is completed.

Theorem 2.4:-

Assume that \mathfrak{I}_1 is a perfect \mathfrak{I} . Γ -algebra on \mathcal{F} and \mathfrak{f} is $(\mathfrak{t}, \Gamma$ -hom.) from \mathfrak{I}_1 to \mathfrak{I}_2 that satisfies $A_{nnf}(\mathfrak{I}_2) = \{0\}$. where \mathfrak{I}_2 be arbitrary \mathfrak{I} . Γ -algebra on \mathcal{F} . Then $\mathfrak{f}(x\alpha x) = \mathfrak{f}(x)\alpha\mathfrak{f}(x)$ or $\mathfrak{f}(x\alpha x) = -\mathfrak{f}(x)\alpha\mathfrak{f}(x)$ for all $x \in \mathfrak{I}_1$, $\alpha \in \Gamma$.

Proof

For any, $y \in \mathfrak{J}_1$, we have $\mathfrak{f}((x\alpha x) \circ_{\Gamma} y) \circ_{\Gamma} \mathfrak{f}(x) = \psi_{\mathfrak{f}}((x\alpha x) \circ_{\Gamma} y) \circ_{\Gamma} x) = \psi_{\mathfrak{f}}(x\alpha x) \circ_{\Gamma} (y \circ_{\Gamma} x)) =$ $\mathfrak{f}(x\alpha x) \circ_{\Gamma} \mathfrak{f}(y \circ_{\Gamma} x)$ On the other hand, $\mathfrak{f}(x\alpha x) \circ_{\Gamma} y) \circ_{\Gamma} \mathfrak{f}(x) = ((\mathfrak{f}(x) \circ_{\Gamma} \mathfrak{f}(x)) \circ_{\Gamma} \mathfrak{f}(y)) \circ_{\Gamma} \mathfrak{f}(x) = (\mathfrak{f}(x) \circ_{\Gamma} \mathfrak{f}(x)) \circ_{\Gamma} (\mathfrak{f}(y) \circ_{\Gamma} \mathfrak{f}(x)).$ then, we have $\mathfrak{f}(x\alpha x) \circ_{\Gamma} \mathfrak{f}(y \circ_{\Gamma} x) = (\mathfrak{f}(x) \circ_{\Gamma} \mathfrak{f}(x)) \circ_{\Gamma} (\mathfrak{f}(y) \circ_{\Gamma} \mathfrak{f}(x)).$ Especially, take x = y, then we have $\mathfrak{f}(x\alpha x) \alpha \mathfrak{f}(x\alpha x) = (\mathfrak{f}(x) \circ_{\Gamma} \mathfrak{f}(x)) \alpha (\mathfrak{f}(x) \circ_{\Gamma} \mathfrak{f}(x))$

Which implies that

 $f(x\alpha x) = f(x)\alpha f(x)$ or $f(x\alpha x) = -f(x)\alpha f(x)$.

Corollary 2.5:-

Suppose that \mathfrak{I}_1 be perfect $\mathfrak{I}.\Gamma$ -algebra on \mathcal{F} and \mathfrak{f} is (t. Γ -hom.) \mathfrak{I}_1 to \mathfrak{I}_2 that satisfies $A_{nnf}(\mathfrak{I}_2) = \{0\}$ where \mathfrak{I}_2 be an arbitrary $\mathfrak{I}.\Gamma$ -algebra on \mathcal{F} . Hence \mathfrak{f} is a homo. if and only if $\mathfrak{f}(x\alpha x) = \mathfrak{f}(x)\alpha\mathfrak{f}(x), \ \forall x \in \mathfrak{I}_1, \ \alpha \in \Gamma$ when char $\mathcal{F} \neq 2$

Proof:

Assume that f is a Γ – hom. Hence, for any $x, y \in \mathfrak{I}_1$, we have $\mathfrak{f}(x \circ_{\Gamma} y) = \mathfrak{f}(x) \circ_{\Gamma} \mathfrak{f}(y)$. Especially, take x = y, we have

$$f(x\alpha x) = f(x) \circ_{\Gamma} f(x) = f(x)\alpha f(x)$$

Now, suppose that

 $f(x\alpha x) = f(x)\alpha f(x)$, for all $x \in \mathfrak{I}_1$, $\alpha \in \Gamma$. Replace *x* by x + y where $\in \mathfrak{I}_1$. So we have

 $f((x + y)\alpha(x + y)) = f(x + y) \circ_{\Gamma} f(x + y),$ $f(x\alpha x) + 2f(x \circ_{\Gamma} y) + f(y\alpha y) = f(x) \circ_{\Gamma} f(y) + 2f(x) \circ_{\Gamma} f(y) + f(y) \circ_{\Gamma} f(y),$

Since char $F \neq 2$, we have

$$f(x \circ_{\Gamma} y) = f(x) \circ_{\Gamma} f(y),$$

Therefore, f is a hom.

Definition 2.6:-

Assume that $\mathfrak{I}_1, \mathfrak{I}_2$ are $\mathfrak{I}. \Gamma$ -algebra on \mathcal{F} and $\mathfrak{f}.\mathfrak{I}_1 \to \mathfrak{I}_2$ is (t. Γ -hom.) then \mathfrak{f} is called a special (t. Γ -hom.). if $\mathfrak{f}(\mathfrak{I}_1) = 0$, where \mathfrak{I}_1 denotes all elements of type $(x \circ_{\Gamma} y) \circ_{\Gamma} z \, x, y, z \in \mathfrak{I}_1$.

It is obvious that every (t. Γ –hom.) $f:\mathfrak{I}_1 \to \mathfrak{I}_2$ satisfies $(\mathfrak{I}_1) \subseteq \mathfrak{I}_2$. Thus, we have (t. Γ – hom.) $f:\mathfrak{I}_1 \to \mathfrak{I}_2$ by restricting f to \mathfrak{I}_1 .

Theorem 2.7:-

Let \mathfrak{I}_1 , \mathfrak{I}_2 be $\mathfrak{I}.\Gamma$ -algebra on \mathcal{F} .

1) Up to a special (t. Γ -hom.) any (t. Γ -hom.) f from \mathfrak{I}_1 to \mathfrak{I}_2 can be extended from unique (t. Γ -hom.) of \mathfrak{I}_1 to \mathfrak{I}_2 .

2) If \mathfrak{I}_1 is perfect, then there is no non-zero distinct (t. Γ –hom.) of \mathfrak{I}_1 to \mathfrak{I}_2 where \mathfrak{I}_2 is an arbitrary $\mathfrak{I}.\Gamma$ -algebra.

Proof

1– Assume that f_1 , f_2 are two (t. Γ –hom.) from f_1 to f_2 such that $f_1 = f_2$. let $f = f_1 - f_2$ then we have

$$f(\mathfrak{I}_1 \overset{''}{}) = (\mathfrak{f}_1 - \mathfrak{f}_2)(\mathfrak{I}_1 \overset{''}{}) = (\mathfrak{f}_1 - \mathfrak{f}_2)(\mathfrak{I}_1 \overset{''}{}) = 0$$

This means that f is a special (t. Γ –hom.).

2- Assume that f is a special (t. Γ -hom.) from \mathfrak{I}_1 to \mathfrak{I}_2 i.e., $f(\mathfrak{I}_1) = 0$, where \mathfrak{I}_1 is perfect, then we get $f(\mathfrak{I}_1) = f(\mathfrak{I}_1) = 0$.

This implies that f is zero homomophism.

3. Bi $-\Gamma$ –derivation on Jordan Γ –algebra

In this section, we shall study the concept of $\text{Bi} - \Gamma$ –derivation on Jordan Γ –algebra. First, we shall introduce the definition of \mathfrak{I} . Γ –module as follows:

Definition 3.1: -

A \mathfrak{J} . Γ -module be a system Consists of a \mathfrak{J} . Γ -algebra \mathfrak{J} , vector space V and two compositions $a \cdot b$ and $b \cdot a$ for a in V and b in \mathfrak{J} such that they are bi-linear and the following conditions are satisfied

1) $a\alpha u = u\alpha a$, 2) $(u\alpha a)\beta(b\circ_{\Gamma} c) + (u\alpha b)\beta(c\circ_{\Gamma} a) + (u\alpha c)\beta(a\circ_{\Gamma} b) = (u\alpha(b\circ_{\Gamma} c))\beta a + (u\alpha(c\circ_{\Gamma} a))\beta b + (u\alpha(a\circ_{\Gamma} b))\beta c$, 3) $(((u\alpha a)\beta b)\Lambda c) + (((u\alpha c)\beta b)\Lambda a + u\alpha(a\circ_{\Gamma} c\circ_{\Gamma} b) = (u\alpha a)\beta(b\circ_{\Gamma} c) + (u\alpha b)\beta(c\circ_{\Gamma} a) + (u\alpha c)\beta(a\circ_{\Gamma} b)$.

Definition 3.2:-

Let \mathfrak{I} be \mathfrak{I} Γ -algebra on field \mathcal{F} where $\acute{M} a \mathfrak{I} - \Gamma$ -module, which is a subset S of \mathfrak{I} , the collection $A_{nn}\acute{M}(S) = \{v \in \acute{M}: S \alpha v = 0\}$ Now, we shall introduce the definition of Bi- Γ - derivation on Jordan Γ –algebra as follows

Definition 3.3:-

A bi- Γ - derivation from a \mathfrak{J} . Γ -algebra \mathfrak{J} on Γ -module \check{M} being abilinearly mapping $\psi : \mathfrak{J} \times \mathfrak{J} \to \check{M}$ such that the following conditions are satisfied (*i*) ψ ($x \circ_{\Gamma} y, \alpha, z$) = $x \alpha \psi$ (y, z) + $y \alpha \psi$ (x, z), (*ii*) ψ ($x, \alpha, y \circ_{\Gamma} z$) = $y \alpha \psi(x, z) + z \alpha \psi(x, y)$. If Ψ satisfies ψ (x, α, y) = ψ (y, α, x), $\forall x, y \in \mathfrak{J}, \alpha \in \Gamma$ then ψ is called a symmetric bi- Γ -derivation. If Ψ satisfies ψ (x, α, y) = $-\psi(y, \alpha, x)$, $\forall x, y \in \mathfrak{J}, \alpha \in \Gamma$, then ψ is called a skew-symmetric bi- Γ -derivation.

Definition 3.4:-

An associatively Γ – algebra *B* with the multiplication defined by $x \circ_{\Gamma} y = \frac{1}{2}(x\alpha y + y\alpha x)$ makes up a \Im . Γ -algebra, which is referred to B^+ . This type from Jordan algebras is called the distinct \Im . Γ -algebra.

Lemma3.5:-

Let *B* anassociative Γ -algebra where B^+ acorresponding distinct \Im . Γ -algebra where $u \circ v = \frac{1}{2}(u\alpha v + v\alpha u)$, for all $u, v \in B$, $\alpha, \beta \in \Gamma$. Suppose that $: B \times \Gamma \times B \to B$, is bi- Γ -Derivation on *B* then ψ is bi- Γ -Derivation on B^+ .

Proof: $\forall u, v, z \in B^+$

 $\psi(uov, \beta, z) = \psi(\frac{1}{2}(u\alpha v + v\alpha u), \beta, z)$ $\psi(uov, \beta, z) = \psi(\frac{1}{2}u\alpha v + \frac{1}{2}v\alpha u, \beta, z)$ $= \frac{1}{2}\psi(u\alpha v, \beta, z) + \frac{1}{2}\psi(v\alpha u, \beta, z)$ $= \frac{1}{2}(\psi(u, \beta, z)\alpha v + u\alpha\psi(v, \beta, z)) + \frac{1}{2}(\psi(v, \beta, z)\alpha u + v\alpha\psi(u, \beta, z))$ $= \frac{1}{2}(\psi(u, \beta, z)\alpha v + v\alpha\psi(u, \beta, z)) + \frac{1}{2}(u\alpha\psi(v, \beta, z) + \psi(v, \beta, z)\alpha u)$ $= \psi(u, \beta, z) \circ_{\Gamma} v + u \circ_{\Gamma} \psi(v, \beta, z)$ Similarly, we have $\psi(u, \beta, v \circ_{\Gamma} z) = \psi(u, \beta, v) \circ_{\Gamma} z + v \circ_{\Gamma} \psi(u, \beta, z).$

Corollary 3.6:-

Let *B* be an acommutative anassociative Γ -algebra where ψ asymmetric bi- Γ -derivation on *B* satisfies $\psi(u\alpha v, \beta, z) = z\alpha \psi(u, \beta, v), \forall u, v, z \in B, \alpha, \beta \in \Gamma$, then

 $\psi(\mathbf{u} \circ_{\Gamma} \mathbf{v}, \beta, \mathbf{z}) = \mathbf{z} \circ_{\Gamma} \psi(\mathbf{u}, \beta, \mathbf{v}), \forall \mathbf{u}, \mathbf{v}, \mathbf{z} \in \mathbf{B}^{+}, \alpha, \beta \in \Gamma$

Proof :For all $u, v, z \in B^+$ we have

$$\psi(\mathbf{u} \circ_{\Gamma} \mathbf{v}, \beta, \mathbf{z}) = \psi\left(\frac{1}{2}(\mathbf{u}\alpha\mathbf{v} + \mathbf{v}\alpha\mathbf{u}), \beta, \mathbf{z}\right)$$
$$= \psi\left(\frac{1}{2}\mathbf{u}\alpha\mathbf{v} + \frac{1}{2}\mathbf{v}\alpha\mathbf{u}, \beta, \mathbf{z}\right)$$
$$= \frac{1}{2}\psi\left(\mathbf{u}\alpha\mathbf{v}, \beta, \mathbf{z}\right) + \frac{1}{2}\psi(\mathbf{v}\alpha\mathbf{u}, \beta, \mathbf{z})$$
$$= \frac{1}{2}\mathbf{z}\alpha\psi\left(\mathbf{u}, \beta, \mathbf{v}\right) + \frac{1}{2}\mathbf{z}\alpha\psi\left(\mathbf{v}, \beta, \mathbf{u}\right)$$
$$= \frac{1}{2}\mathbf{z}\alpha\psi\left(\mathbf{u}, \beta, \mathbf{v}\right) + \frac{1}{2}\psi\left(\mathbf{u}, \beta, \mathbf{v}\right)\alpha\mathbf{z}$$
$$= \mathbf{z} \circ_{\Gamma}\psi\left(\mathbf{u}, \beta, \mathbf{v}\right).$$

Definition 3.7:-

A \mathfrak{T} -module \acute{M} of \mathfrak{T} . Γ -algebra \mathfrak{T} who be referring to $Cent(\acute{M})$ as a linearly mapping : $\mathfrak{T} \to \acute{M}$, refer $Cent(\acute{M})$ if for all $x, y \in \mathfrak{T}$, $\delta(x \circ_{\Gamma} y) = x\alpha \,\delta(y)$.

Theorem 3.8:-

Let \mathfrak{I} be perfect \mathfrak{I} . Γ -algebra on \mathcal{F} where \check{M} is $\mathfrak{I} - \Gamma$ -module checking $A_{nn}\check{M}(\mathfrak{I}) = \{0\}$. Let $\psi: \mathfrak{I} \times \Gamma \times \mathfrak{I} \to \check{M}$ be asymmetric bi $-\Gamma$ -derivation and γ belong on

 $A_{nn}M(\mathfrak{I}) = \{0\}$. Let $\psi:\mathfrak{I} \times \mathfrak{I} \times \mathfrak{I} \to \mathfrak{M}$ be asymmetric bi- Γ -derivation and γ belong on $cent(\mathfrak{M})$. Thus, the equivalence of the following equations is achieved.

$$\psi(\mathbf{w}, \alpha, \mathbf{u} \circ_{\Gamma} \mathbf{v}) = \mathbf{w}\alpha\psi(\mathbf{u}, \mathbf{v}) \cdot \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathfrak{I} \dots \dots \dots \mathfrak{I}$$
$$z\alpha\delta(\mathbf{x} \circ_{\Gamma} \mathbf{y}) = \mathbf{x}\alpha\delta(\mathbf{y} \circ_{\Gamma} \mathbf{z}) + \mathbf{y}\alpha\delta(\mathbf{x} \circ_{\Gamma} \mathbf{z}) \cdot \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathfrak{I} \dots \dots \dots \mathfrak{I}$$

Proof:

Suppose that $\psi:\mathfrak{I} \times \Gamma \times \mathfrak{I} \to M$ is asymmetric bi $-\Gamma$ -derivation checking (1). Defining $\delta : \mathfrak{I} \to M$ as a linearly mapping by $\delta(\mathbf{x} \circ_{\Gamma} \mathbf{y}) = \psi(x, \alpha, y), \forall \mathbf{x}, \mathbf{y} \in \mathfrak{T}$ Suppose $\sum_i x_i \circ_{\Gamma} y_i = 0$ then we have $0 = \psi(u, \alpha, \sum_{i} x_{i} \circ_{\Gamma} y_{i}) = \sum_{i} \psi(u, x_{i} \circ_{\Gamma} y_{i})$ $= \sum_{i} u \alpha \psi(x_i \circ_{\Gamma} y_i) = u \alpha(\sum_{i} \psi(x_i, y_i))$ Since $A_{nn}\dot{M}(\mathfrak{I}) = \{0\}, \sum_{i}\psi(x_{i}, \alpha, y_{i}) = 0$ Hence δ is well–define $\forall u, v \in \mathfrak{I}$, suppose $v = \sum_i x_i \circ_{\Gamma} y_i$ then we have $\psi(u, \alpha, v) = \psi(u, \sum_i x_i \circ_{\Gamma} y_i)$ $= \sum_{i} \psi(u, \alpha, x_i \circ_{\Gamma} y_i) = \sum_{i} u \alpha \psi(x_i \circ_{\Gamma} y_i)$ $= \sum_{i} u \alpha \delta(x_i \circ_{\Gamma} y_i) = u \alpha(\sum_{i} \delta(x_i \circ_{\Gamma} y_i))$ $= u\alpha\delta(\sum_i x_i \circ_{\Gamma} y_i) = u\alpha\delta(v) \,.$ Then we have $\delta(x \circ_{\Gamma} y) = \psi(x, \alpha, y) = x\alpha\gamma(y)$. This implies that $\delta \in cent(M)$. For all $x, y, z \in \mathfrak{J}$. $z\alpha\delta(x \circ_{\Gamma} y) = z\alpha\psi(x, \alpha, y) = \psi(x \circ_{\Gamma} y, \alpha, z)$ $=x\alpha\psi(y,\alpha,z) + y\alpha\psi(x,\alpha,z)$ $=x\alpha\delta(y\circ_{\Gamma} z) + y\alpha\delta(x\circ_{\Gamma} z)$ This means that δ satisfies (2) Now, we assume that δ belongs to *cent*(\dot{M}) and satisfying (2). And define : $\Im \times \Gamma \times \Im \to M$ is being a bi-linearly mapping by $\psi(x, \alpha, y) = \delta(x \circ_{\Gamma} y)$, for all $x, y, z \in \mathfrak{J}$. $\psi(\mathbf{x} \circ_{\Gamma} \mathbf{y}, \alpha, \mathbf{z}) = \delta((\mathbf{x} \circ_{\Gamma} \mathbf{y}) \circ_{\Gamma} \mathbf{z}) = \delta(\mathbf{z} \circ_{\Gamma} (\mathbf{x} \circ_{\Gamma} \mathbf{y})) = \mathbf{z}\alpha\delta(\mathbf{x} \circ_{\Gamma} \mathbf{y})$ $= x\alpha\delta(y\circ_{\Gamma} z) + y\alpha\delta(x\circ_{\Gamma} z) = x\alpha\psi(y,z) + y\alpha\psi(x\circ_{\Gamma} z)$ Hence, ψ is symmetric bi $-\Gamma$ –derivation satisfying (1) **Corollary 3.9:-**

If \mathfrak{T} is perfect $\mathfrak{T}.\Gamma$ -algebra and checks that $A_{nn}(\mathfrak{T}) = \{0\}$. Hence, all symmetric $bi-\Gamma$ -derivation ψ on \mathfrak{T} satisfies (1) is of the from $\psi(u, \alpha, v) = \delta(u \circ_{\Gamma} v)$, where $\delta \in cent(\mathfrak{T})$ such (2) satisfies.

Remark 3.10:-

Assume that $\Im a \ \Im. \Gamma$ -algebra, clear that $\psi.\Im \times \Gamma \times \Im \to A_{nn}(\Im)$ with $\psi(\Im, \alpha, \Im') = 0$ be a symmetric bi $-\Gamma$ -derivation over \Im and call it trivial bi-derivation. Let $\psi: \Im \times \Gamma \times \Im \to \Im$ be an optional symmetric bi $-\Gamma$ -derivation for all $u, v \in \Im, z \in A_{nn}(\Im)$, we have got $0 = \psi(z \circ_{\Gamma} u, \alpha, v) = z \circ_{\Gamma} \psi(u, \alpha, v) + u \circ_{\Gamma} \psi(z \circ_{\Gamma} v) = u \circ_{\Gamma} \psi(z, \alpha, v)$. Hence, $\psi(z(\Im), \Im) \subseteq A_{nn}(\Im)$. As a result, setting $\Im = \Im / A_{nn}(\Im)$, then we can define a symmetric bi $-\Gamma$ -derivation $\bar{\psi}: \Im \times \bar{\Gamma} \times \bar{\Im} \to \Im$ By $\bar{\psi}(\bar{u}, \bar{\alpha}, \bar{v}) = \overline{\psi(u, \alpha, v)}$ where $\bar{u} = u + A_{nn}(\Im) \in \bar{\Im}$ for $\in \Im$.

Lemma 3.11:-

Let \mathfrak{T} be a \mathfrak{T} -algebra be trivial bi $-\Gamma$ -derivation over \mathfrak{T} . The map $\psi \to \overline{\psi}$ be 1–1 map of symmetric bi $-\Gamma$ -derivation satisfying (1) over \mathfrak{T} of symmetric bi $-\Gamma$ -derivation checking (1) over $\overline{\mathfrak{T}}$.

Proof

Assume ψ_1, ψ_2 be symmetric bi $-\Gamma$ -derivation on \mathfrak{I} such that $\overline{\psi_1} = \overline{\psi_2}$, then $\psi = \psi_1 - \frac{\psi_2}{\psi_1}$ is asymmetric bi $-\Gamma$ -derivation on \mathfrak{I} . since $\overline{\psi_1} = \overline{\psi_2}$ then $\overline{\psi_1}(\overline{\mathfrak{I}}) = \overline{\psi_2}(\overline{\mathfrak{I}})$ Subsequently $\overline{\psi_1}(\mathfrak{I}) - \overline{\psi_2}(\mathfrak{I}) = \overline{\psi_1}(\mathfrak{I}) - \overline{\psi_2}(\mathfrak{I}) = \overline{\psi_1}(\overline{\mathfrak{I}}) - \overline{\psi_2}(\overline{\mathfrak{I}}) = 0$, Which implies $\psi_1(\mathfrak{I}) - \psi_2(\mathfrak{I}) \in A_{nn}(\mathfrak{I})$ *i.e.* $\psi(\mathfrak{I}, \alpha, \mathfrak{I}) \subseteq A_{nn}(\mathfrak{I})$ moreover, we have $\psi(\mathfrak{I}, \alpha, \mathfrak{I}) = \psi(\mathfrak{I}, \alpha, \mathfrak{I}o\mathfrak{I}) = \mathfrak{I}o\psi(\mathfrak{I}, \alpha, \mathfrak{I}) = 0$ So, ψ is a trivial bi $-\Gamma$ -derivation on \mathfrak{I} .

Definition 3.12

let \mathfrak{I} be a \mathfrak{I} . Γ -algebra. A special bi $-\Gamma$ -derivation be a symmetric bi $-\Gamma$ -derivation $\psi:\mathfrak{I} \times \mathfrak{I} \to \mathfrak{I}$ such that 1) $\psi(\mathfrak{I}, \mathfrak{I}) = 0$ 2) $\psi(\mathfrak{I}, \mathfrak{I}) \subseteq A_{nn\mathfrak{I}}(\mathfrak{I})$. Every symmetric bi $-\Gamma$ -derivation $\psi:\mathfrak{I} \times \mathfrak{I} \to \mathfrak{I}$ satisfying $\psi(u, x \mathfrak{e}_{\tau}, v) = x \mathfrak{e}_{\tau} \psi(u, v) + v \mathfrak{e}_{\tau} \psi(u, r) \in \mathfrak{I}$

$$\psi(u, x \circ_{\Gamma} y) = x \circ_{\Gamma} \psi(u, y) + y \circ_{\Gamma} \psi(u, x) \in \mathfrak{T} \quad \dots \dots \dots (3)$$

For all $u, x, y \in \mathfrak{J}$. Thus, we have a symmetric bi $-\Gamma$ -derivation $\psi': \mathfrak{I} \times \Gamma \times \mathfrak{I} \to \mathfrak{I}$ by restricting ψ over $\mathfrak{I} \times \Gamma \times \mathfrak{I}$

Lemma 3.13

Let \Im is \Im . Γ -algebra where satisfies $A_{nn}(\Im) = \{0\}$

1) Up to a specific bi $-\Gamma$ -derivation, all symmetric bi $-\Gamma$ -derivation ψ satisfying (1) on \mathfrak{I} is an extension from a single symmetry bi $-\Gamma$ - derivation checking (1) over \mathfrak{I} .

2) if \mathfrak{T} is perfect, then \mathfrak{T} has no non zero distinct bi $-\Gamma$ -derivation.

Proof 1) Let ψ_1, ψ_2 be bi $-\Gamma$ – derivation on \Im satisfy $\psi_1 = \psi_2$. Set $\psi = \psi_1 - \psi_2$, then $\psi(\mathfrak{T}, \alpha, \mathfrak{T}) = (\psi_1 - \psi_2) (\mathfrak{T}, \alpha, \mathfrak{T}) = (\psi_1 - \psi_2) (\mathfrak{T}, \alpha, \mathfrak{T}) = 0$ Take $u, y \in \mathfrak{I}$ in (3), then we have $y \circ_{\Gamma} \psi(u, \alpha, x) = 0, \forall x \in \mathfrak{J}, y, u \in \mathfrak{J}$ I.e. $\psi(\mathfrak{I}, \alpha, \mathfrak{I}) \subseteq A_{nn_{\mathfrak{I}}}(\mathfrak{I})$. Hence, ψ is a distinct bi–derivation over \Im 2) Suppose that ψ is a distinct bi $-\Gamma$ -derivation over \Im . From proof (1), one can get $\psi(\mathfrak{J}, \alpha, \mathfrak{J}) \subseteq A_{nn_{\mathfrak{J}}}(\mathfrak{J}).$ Since \Im is perfect and satisfies $A_{nn_{\Im}}(\Im) = \{0\}$, can be $\psi(\Im, \alpha, \Im') = 0$. Suppose that $\psi \neq 0$, x_1 , $x_2 \in \mathfrak{I}$ such that $\psi(x_1, x_2) = Z_{12} \neq 0.$ Since $A_{nn}(\mathfrak{I}) = \{0\}$, we can see $x_3 \in \mathfrak{I}$ such that $x_3 \circ_{\Gamma} Z_{12} = Z \neq 0.$ Let $\psi(x_1, x_3) = Z_{13}$, $\psi(x_2, x_3) = Z_{23}$. Then we have $0 = \psi(x_1 \circ_{\Gamma} x_3, \alpha, x_2) = x_1 \circ_{\Gamma} \psi(x_3, \alpha, x_2) + x_3 \circ_{\Gamma} \psi(x_1, \alpha, x_2) =$ $0 = \psi(x_1 \circ_{\Gamma} x_2, \alpha, x_3) = x_1 \circ_{\Gamma} \psi(x_2, \alpha, x_3) + x_2 \circ_{\Gamma} \psi(x_1, \alpha, x_3) =$ $x_1 \circ_{\Gamma} Z_{23} + x_2 \circ_{\Gamma} Z_{13} \dots \dots (2)$ $0 = \psi(x_2 \circ_{\Gamma} x_3, \alpha, x_1) = x_2 \circ_{\Gamma} \psi(x_3, \alpha, x_1) + x_3 \circ_{\Gamma} \psi(x_2, \alpha, x_1) =$ From (1), we get $x_1 \circ_{\Gamma} Z_{23} + Z = 0 \implies x_1 \circ_{\Gamma} Z_{23} = -Z$ From (2), we obtained $x_1 \circ_{\Gamma} Z_{23} + x_2 \circ_{\Gamma} Z_{13} = 0 \implies x_1 \circ_{\Gamma} Z_{23} = -x_2 \circ_{\Gamma} Z_{13}$ From (3) $x_2 \circ_{\Gamma} Z_{13} + Z = 0 \implies x_2 \circ_{\Gamma} Z_{13} = -Z$ We deduce that $Z = -x_1 \circ_{\Gamma} Z_{23} = x_2 \circ_{\Gamma} Z_{13} = -Z,$ Which is a contradiction. Therefore, $\psi = 0$.

Conclusions:

The concept of Jordan Γ –algebra, special Jordan Γ –algebra and triple Γ –homomorphisms are introduced and studied. In addition, Bi - Γ –derivations and Annihilator of Jordan Γ -algebra are introduced and discussed. Finally, many results of these concepts are obtained.

References

- [1] p., J. Jordan , V. Neumann and E. Winger , "On an algebraic generalization of the quan-tum mechanic formalism". *Annalytic of Mathematics*, Vol.35,no.1,pp.29-64, 1934.
- [2] A. A. Albert, "On Jordan algebras of linear transformations ". *Transection of the American Mathematical Society*, Vol.59, no.3, pp.524-555, 1946.
- [3] A. A. Albert, " A structure theory for Jordan algebras ", *Annalyatic of Mathematics*, Vol.48,no.3,pp. 546-567, 1947.

- [4] C. Yao, Y. Ma and L. Chen., "Biderivations and triple homomorphisms on perfect Jordan algebras ", *arXiv:1811.05315v3 [math.RA]*, 2019.
- [5] N. Jacobson, "General representation theory of Jordan algebras ", *Transection of the American Mathematical Society*. Vol.70, no.3, pp.509-530,1951.
- [6] M. D. Hoque, "On Centralizers of Semiprime Gamma Rings ", *International Mathematical Forum*, Vol.6, no.13, pp.627-638, . 2011.
- [7] J. Zhou, "Homomorphisms of perfect Lie algebras", *Communications in Algebra*, Vol.42, no.3, pp. 3724–3730, .2014.
- [8] M. A. Öztürk, M. Sapanci, M. Soytürk and K. HoKim, "symmetric bi-derivation on prime gamma rings", *Scientiae Mathematicae*, Vol.3,no.2, pp. 273-281, 2000.
- [9] A. H. Rezaei and B. Davvaz, "Construction of Γ-algebra and Γ- Lie Admissible algebras". *Korean Journal of Mathematics*, Vol.26, no.2, pp.175-189, 2018.
- [10] F. Marcelo and L. Alicia, "Representations of generalized almost-Jordan algebras. Communications in Algebra", Vol.43, no.8, pp. 3372-3381, 2015.
- [11] S.Ayupov, F. Arzikulov, N. Umrzaqov and O. Nuriddinov, "Description of 2-local derivations and automorphisms on finite dimensional Jordan algebras". *arXiv:1911.03194v2 [math.RA]*, .2020.
- [12] A. L. Agore and G. Militaru , " Unified products for Jordan algebras Applications ". arXiv:2107.04970v4 [math.RA], 2022.
- [13] .A. L. Agore and G. Militaru . " Algebraic constructions for Jacobi -Jordan algebras " .arXiv:2105.14722v2 [math.RA], 2021.