

ISSN: 0067-2904

Triple Γ-Homomorphisms and Bi- Γ-Derivations on Jordan Γ-algebra

Rajaa C. Shaheen, Hasan R. Taher*
Department of Mathematics, , College of Education, University of Al-Qadisiyah, Al-Qadisiyah, Iraq

Received: 23/3/2022 Accepted: 18/9/2022 Published: 30/6/2023

Abstract

In this paper, we introduce the concept of Jordan Γ-algebra, special Jordan Γ algebra and triple Γ-homomorphisms. We also introduce $\mathrm{Bi}-\Gamma$-derivations and Annihilator of Jordan Γ-algebra. Finally, we study the triple Γ-homomorphisms and $\mathrm{Bi}-\Gamma$-derivations on Jordan Γ-algebra.

Keywords: Derivation, Jordan algebra, Triple homomorphism, Centroid.

تشاكلات كاما الثلاثية واشتقاقات كاما الثنائية على جوردان كاما الجبرا

رجاء جفات شاهين, حسن رمزي طاهر "
قس الرياضيات , كلية التربية, جامعة القادسية , القادسية , العراق

الخلاصة

```
في هذا البحث ،قدمنا مفهوم جوردان كاما الجبرا ،تشاكلات كاما الثاثية واشتقاقات كاما الثائية وكذلك
    د درسنا اشتقاقات كاما الثلاثية واشتقاقات كاما الثنائية على جوردان كاما الجبرا
```


1. Introduction

In [1], Jordon studied quantum mechanics, he introduced the concept of Jordon algebra. Recall that a Jordan algebra \mathfrak{J} being an algebra over field \mathcal{F} satisfies
(i) $u \circ v=v \circ u$ for all $u, v \in \mathfrak{I}$,
(ii) $\left(u^{2} \circ v\right) \circ u=u^{2} \circ(u \circ v), u^{2}=u \circ u$ for all $u, v \in \mathfrak{I}$.

In [2,3], Albert developed a successful structure theory on all fields from zero property and renamed them Jordan algebras. It is called perfect if $\mathfrak{J} \circ \mathfrak{J}=\mathfrak{I}$, see [4].
In [5], Jacobson introduced the concept of Jordan module as follows: A Jordan module is a system that consists of a Jordan algebra \mathfrak{J}, vector space V and two compositions $a . b$ and $b . a$ for all a in V and b in \mathfrak{J} where bi-linear check the following

1) $a u=u a$,
2) $(u a)(b \circ c)+(u b)(c \circ a)+(u c)(a \circ b)=(u(b \circ c)) a+(u(c \circ a)) b+(u(a \circ$
b)) c,
3) $(((u a) b) c)+(((u c) b) a+u(a \circ c \circ b)=(u a)(b \circ c)+(u b)(c \circ a)+(u c)(a \circ$ b),

In [6], Hoque defined a centralizer as follows:

[^0]An additive mapping $\boldsymbol{\delta}$: $\mathfrak{I} \rightarrow \mathfrak{I}$, is called a centralizer if $\delta(x \circ y)=x \delta(y)$ for all $x, y \in \mathfrak{I}$.
In [7], Zhou introduced the concept of triple homomorphism as follows:
Let Ω_{1} and Ω_{1} be Lie algebras on an abelian ring R. An R-linear mapping $\mathrm{f}: \Omega \rightarrow \Omega_{1}$
It is named a triple homomorphism of Ω to Ω_{1} if $f([x,[y, z]])=[f(x),[f(y), f(z)]]$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \Omega$. Similarly, triple homomorphisms can be defined in Jordanian algebra.
In [8], Öztürk et.al. introduced the concept of bi-derivation on the Gamma ring as follows :
Let $D(.,):. M \times M \rightarrow M$ be a bi-additive map which is called a bi-derivation if satisfy :
$D(x \alpha y, z)=D(x, z) \alpha y+x \alpha D(y, z)$
for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha \in \Gamma$.
In [9], Rezaei and Davvaz introduced the concept of Γ-algebra as follows: Let V be a vector space on a field \mathcal{F}. V is said to be a Γ-algebra on \mathcal{F} if there is a binary operation (product) on $V, .: V \times \Gamma \times \mathrm{V} \rightarrow \mathrm{V}$ such that $(\mathrm{b}, \alpha, \mathrm{c}) \rightarrow \mathrm{a} \alpha \mathrm{b}, \alpha \in \Gamma, r \in \mathcal{F}$ which satisfies the following conditions:

1) $a \alpha(b+c)=a \alpha b+a \alpha c,(b+c) \alpha a=b \alpha a+c \alpha a$
2) $a(\alpha+\beta) b=a \alpha b+a \beta b$
3) $(\mathrm{ra}) \alpha \mathrm{b}=\mathrm{r}(\mathrm{a} \alpha \mathrm{b})=\mathrm{a} \alpha(\mathrm{rb})$

The Γ-algebra V is commutative or abelian if $\mathrm{a} \alpha \mathrm{b}=\mathrm{b} \alpha \mathrm{a}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}, \alpha \in \Gamma$ and V is associative if $a \alpha(b \beta c)=(a \alpha b) \beta c, \forall a, b, c \in V, r \in \mathcal{F}, \alpha, \beta \in \Gamma$.
In this paper, we introduce the concept of Jordan Γ-algebra, triple Γ-homomorphism and Bi -Γ-derivation on Jordan Γ-algebra. We also give some results about its on Jordan Γ-algebra. For more details, see [10,11,12,13].
We will write triple Γ-homomorphism with the symbol (t. Γ-hom.) and Jordan Γ-algebra with the symbol $\mathfrak{J} . \Gamma$-algebras

2. Triple Γ-homomorphism on Jordan Γ-algebra

In this section, we give a definition of Jordan Gamma algebra and study the concept of triple homomorphism on it.

Definition 2.1:-

A $\mathfrak{J} . \Gamma$-algebras \mathfrak{J} of real vector space V with a bi-linear product map $: V \times \Gamma \times V \rightarrow V$, where $\psi(u, \alpha, v)=u \alpha v$ satisfying the commutative law and the $\mathfrak{I} . \Gamma$-identity :
$u \alpha v=v \alpha u \quad$ (commutative law),
(uдuav) $\beta u=u \lambda u \alpha(v \beta u) \quad$ (Jordan Γ-identity).
$u, v \in \mathfrak{I}, \lambda, \alpha, \beta \in \Gamma$

Definition 2.2:-

Let $\mathfrak{I}_{1}, \mathfrak{I}_{2}$ be Jordan Γ-algebras on over field \mathcal{F}. A linear map $\mathrm{f}: \mathfrak{I}_{1} \rightarrow \mathfrak{I}_{2}$
is called a triple Γ-homomorphism of \mathfrak{I}_{1} to \mathfrak{J}_{2} if $\mathrm{f}\left(x \circ_{\Gamma}\left(y \circ_{\Gamma} z\right)\right)=\mathrm{f}(x) \circ_{\Gamma}\left(\mathrm{f}(y) \circ_{\Gamma} \mathrm{f}(z)\right) \forall$ $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathfrak{J}_{1}$.
Suppose that \mathfrak{f} is (t. Γ-hom.) from \mathfrak{I}_{1} to \mathfrak{I}_{2} where \mathfrak{I}_{1} and \mathfrak{I}_{2} are \mathfrak{J}. Γ-algebras.
Define $A_{n n f}\left(\Im_{2}\right)$ as follows:
$A_{n n f}\left(\mathfrak{I}_{2}\right)=\left\{a \in \mathfrak{I}_{2} / a \circ_{\Gamma} \mathfrak{f}(x)=0\right.$, for all $\left.x \in \mathfrak{J}_{1}\right\}$, where $x \circ_{\Gamma} y=\frac{1}{2}(x \alpha y+y \alpha x)$

Lemma 2.3:-

Suppose \mathfrak{I}_{1} is a perfect Jordan Γ-algebra over \mathcal{F} and f is (t. Γ-hom.) from \mathfrak{J}_{1} to \mathfrak{J}_{2} that satisfies $A_{n n f}\left(\mathfrak{I}_{2}\right)=\{0\}$, where \mathfrak{I}_{2} be arbitrary \mathfrak{I}. Γ-algebra over \mathcal{F}. There is \mathcal{F}-linear map $\psi_{f} \cdot \mathfrak{J}_{1} \rightarrow \mathfrak{J}_{2}$ such that for all $x \in \mathfrak{J}_{1}$ with
$\mathrm{x}=\sum_{i \in I}\left(x_{1 i}{ }^{\circ}{ }_{\Gamma} x_{2 i}\right) \quad$ where $x_{1 i}, x_{2 i} \in \Im_{1}, \psi_{f}(\mathrm{x})=\sum_{i \in I}\left(\mathrm{f}\left(x_{1 i}\right){ }^{\circ}{ }_{\Gamma} \mathrm{f}\left(x_{2 i}\right)\right)$.

Proof

It is sufficient to prove that $\sum_{i \in I}\left(\mathrm{f}\left(x_{1 i}\right){ }^{\circ}{ }_{\Gamma} \mathrm{f}\left(x_{2 i}\right)\right)$ is independent of the expression of x .
Assume that $\mathrm{x}=\sum_{i \in I}\left(x_{1 i}{ }^{\circ}{ }_{\Gamma} x_{2 i}\right)=\sum_{j \in H}\left(x_{1 j}{ }^{\circ}{ }_{\Gamma} x_{2 j}\right)$
Let $\Omega=\sum_{i \in I}\left(\mathrm{f}\left(x_{1 i}\right) \circ_{\Gamma} \mathrm{f}\left(x_{2 i}\right)\right), ' \Omega=\sum_{j \in H}\left(\mathrm{f}\left(x_{1 j}\right) \circ_{\Gamma} \mathrm{f}\left(x_{2 j}\right)\right)$.
For any $z \in \mathfrak{J}_{1}$, we have

$$
\begin{gathered}
\mathrm{f}^{\mathrm{f}}(\mathrm{z}) \circ_{\Gamma}(\Omega-\Omega)=\mathrm{f}(z) \circ_{\Gamma}\left(\sum_{i \in I}\left(\mathrm{f}\left(x_{1 i}\right) \circ_{\Gamma} \mathrm{f}\left(x_{2 i}\right)\right)-\sum_{j \in H}\left(\mathrm{f}\left(x_{1 j}\right) \circ_{\Gamma} \mathrm{f}\left(x_{2 j}\right)\right)\right) . \\
=\mathrm{f}(z) \circ_{\Gamma}\left(\sum_{i \in I}\left(\mathrm{f}\left(x_{1 i}\right) \circ_{\Gamma} \mathrm{f}\left(x_{2 i}\right)\right)-\mathrm{f}(z) \circ_{\Gamma} \sum_{j \in H}\left(\mathrm{f}\left(x_{1 j}\right) \circ_{\Gamma} \mathrm{f}\left(x_{2 j}\right)\right)\right) \\
=\sum_{i \in I}\left(\mathrm{f}(z) \circ_{\Gamma}\left(\mathrm{f}\left(x_{1 i}\right) \circ_{\Gamma} \mathrm{f}\left(x_{2 i}\right)\right)-\sum_{j \in H}\left(\mathrm { f } (z) \circ _ { \Gamma } \left(\mathrm{f}\left(x_{1 j}\right) \circ_{\Gamma} \mathrm{f}\left(x_{2 j}\right)\right.\right.\right. \\
=\sum_{i \in I} \mathrm{f}\left(z \circ_{\Gamma}\left(x_{1 i} \circ_{\Gamma} x_{2 i}\right)-\sum_{j \in H} \mathrm{f}\left(z \circ_{\Gamma}\left(x_{1 j}{ }^{\circ}{ }_{\Gamma} x_{2 j}\right)\right)\right. \\
=\mathrm{f}\left(z \circ_{\Gamma}\left(\sum_{i \in I}\left(x_{1 i} \circ_{\Gamma} x_{2 i}\right)\right)-\mathrm{f}\left(z \circ_{\Gamma}\left(\sum_{j \in H}\left(x_{1 j} \circ_{\Gamma} x_{2 j}\right)\right) .\right.\right. \\
=\mathrm{f}\left(z \circ_{\Gamma} x\right)-\mathrm{f}\left(z \circ_{\Gamma} x\right)=0 .
\end{gathered}
$$

Thus, we have
$\Omega-{ }^{\prime} \Omega=0$, i.e. $\Omega={ }^{\prime} \Omega$. The proof is completed.

Theorem 2.4:-

Assume that \mathfrak{J}_{1} is a perfect $\mathfrak{J} . \Gamma$-algebra on \mathcal{F} and f is (t. Γ-hom.) from \mathfrak{J}_{1} to \mathfrak{J}_{2} that satisfies $A_{n n f}\left(\mathfrak{I}_{2}\right)=\{0\}$. where \mathfrak{I}_{2} be arbitrary $\mathfrak{J} . \Gamma$-algebra on \mathcal{F}. Then $\mathrm{f}(x \alpha x)=$ $\mathrm{f}(\mathrm{x}) \alpha \mathrm{f}(x)$ or $\mathrm{f}(x \alpha x)=-\mathrm{f}(x) \alpha \mathrm{f}(x)$ for all $x \in \mathfrak{J}_{1}, \alpha \in \Gamma$.

Proof

For any, $y \in \mathfrak{I}_{1}$, we have
$\left.\left.\mathrm{f}\left((x \alpha x) \circ_{\Gamma} y\right){ }^{\circ}{ }_{\Gamma} \mathrm{f}(x)=\psi_{\mathrm{f}}\left((x \alpha x){ }^{\circ}{ }_{\Gamma} y\right){ }^{\circ}{ }_{\Gamma} x\right)=\psi_{\mathrm{f}}(x \alpha x){ }^{\circ}{ }_{\Gamma}\left(y \circ_{\Gamma} x\right)\right)=$ $\mathrm{f}(x \alpha x){ }^{\circ}{ }_{\Gamma} \mathrm{f}\left(y{ }^{\circ}{ }_{\Gamma} x\right)$
On the other hand,

$$
\left.\mathrm{f}(x \alpha x) \circ_{\Gamma} y\right) \circ_{\Gamma} \mathrm{f}(x)=\left(\left(\mathrm{f}(\mathrm{x}) \circ_{\Gamma} \mathrm{f}(\mathrm{x})\right) \circ_{\Gamma} \mathrm{f}(\mathrm{y})\right) \circ_{\Gamma} \mathrm{f}(\mathrm{x})=\left(\mathrm{f}(\mathrm{x}) \circ_{\Gamma} \mathrm{f}(\mathrm{x})\right) \circ_{\Gamma}\left(\mathrm{f}(\mathrm{y}) \circ_{\Gamma} \mathrm{f}(\mathrm{x})\right) .
$$

then, we have

$$
\mathrm{f}(x \alpha x) \circ_{\Gamma} \mathrm{f}\left(y \circ_{\Gamma} x\right)=\left(\mathrm{f}(x) \circ_{\Gamma} \mathrm{f}(x)\right) \circ_{\Gamma}\left(\mathrm{f}(y) \circ_{\Gamma} \mathrm{f}(x)\right)
$$

Especially, take $x=y$, then we have
$\mathrm{f}(x \alpha x) \alpha \mathrm{f}(x \alpha x)=\left(\mathrm{f}(\mathrm{x}) \circ_{\Gamma} \mathrm{f}(x)\right) \alpha\left(\mathrm{f}(x) \circ_{\Gamma} \mathrm{f}(x)\right)$
Which implies that
$\mathrm{f}(x \alpha x)=\mathrm{f}(x) \alpha \mathrm{f}(x)$ or $\mathrm{f}(x \alpha x)=-\mathrm{f}(x) \alpha \mathrm{f}(x)$.

Corollary 2.5:-

Suppose that \mathfrak{I}_{1} be perfect \mathfrak{I}. Γ-algebra on \mathcal{F} and f is (t. Γ-hom.) \mathfrak{I}_{1} to \mathfrak{I}_{2} that satisfies $A_{n n f}\left(\mathfrak{I}_{2}\right)=\{0\}$ where \mathfrak{J}_{2} be an arbitrary \mathfrak{J}. Γ-algebra on \mathcal{F}. Hence f is a homo. if and only if $\mathrm{f}(x \alpha x)=\mathrm{f}(x) \alpha \mathrm{f}(x), \forall x \in \mathfrak{I}_{1}, \alpha \in \Gamma$ when char $\mathcal{F} \neq 2$

Proof:

Assume that f is a Γ - hom. Hence, for any $x, y \in \mathfrak{J}_{1}$, we have
$\mathrm{f}\left(x \circ_{\Gamma} y\right)=\mathrm{f}(x) \circ_{\Gamma} \mathrm{f}(y)$.
Especially, take $x=y$, we have

$$
\mathrm{f}(x \alpha x)=\mathrm{f}(\mathrm{x}) \circ_{\Gamma} \mathrm{f}(\mathrm{x})=\mathrm{f}(x) \alpha \mathrm{f}(x)
$$

Now, suppose that
$\mathrm{f}(x \alpha x)=\mathrm{f}(x) \alpha \mathrm{f}(x)$, for all $x \in \mathfrak{I}_{1}, \alpha \in \Gamma$.
Replace x by $x+y$ where $\in \mathfrak{J}_{1}$. So we have

$$
\begin{gathered}
\mathrm{f}((x+y) \alpha(x+y))=\mathrm{f}(x+y) \circ_{\Gamma} \mathrm{f}(x+y), \\
\mathrm{f}(x \alpha x)+2 \mathrm{f}\left(x \circ_{\Gamma} y\right)+\mathrm{f}(y \alpha y)=\mathrm{f}(x) \circ_{\Gamma} \mathrm{f}(y)+2 \mathrm{f}(x) \circ_{\Gamma} \mathrm{f}(y)+\mathrm{f}(y) \circ_{\Gamma} \mathrm{f}(y),
\end{gathered}
$$

Since char $F \neq 2$, we have

$$
\mathrm{f}\left(x \circ_{\Gamma} y\right)=\mathrm{f}(x) \circ_{\Gamma} \mathrm{f}(y),
$$

Therefore, f is a hom.

Definition 2.6:-

Assume that $\mathfrak{I}_{1}, \mathfrak{J}_{2}$ are $\mathfrak{J} . \Gamma$-algebra on \mathcal{F} and $\mathrm{f} . \mathfrak{J}_{1} \rightarrow \mathfrak{J}_{2}$ is (t. Γ-hom.) then f is called a special (t. Γ-hom.). if $\mathrm{f}\left(\mathfrak{I}_{1}{ }^{\prime \prime}\right)=0$, where $\mathfrak{J}_{1}{ }^{\prime \prime}$ denotes all elements of type $\left(x \circ_{\Gamma} y\right) \circ_{\Gamma} z . x, y, z \in \mathfrak{J}_{1}$.
It is obvious that every (t. Γ-hom.) f. $\mathfrak{J}_{1} \rightarrow \mathfrak{I}_{2}$ satisfies ($\mathfrak{I}_{1}{ }^{\prime \prime}$) $\subseteq \mathfrak{J}_{2}{ }^{\prime \prime}$. Thus, we have (t. $\Gamma-$ hom.) $\mathfrak{f} . \mathfrak{J}_{1}{ }^{\prime \prime} \rightarrow \mathfrak{I}_{2}{ }^{\prime \prime}$ by restricting f to $\mathfrak{I}_{1} "$.

Theorem 2.7:-

Let $\mathfrak{I}_{1}, \mathfrak{J}_{2}$ be \mathfrak{J}. Γ-algebra on \mathcal{F}.

1) Up to a special (t. Γ-hom.) any (t. Γ-hom.) ff from \mathfrak{I}_{1} to \mathfrak{I}_{2} can be extended from unique (t. Γ-hom.) of $\mathfrak{J}_{1}{ }^{\prime \prime}$ to $\mathfrak{I}_{2}{ }^{\prime \prime}$.
2) If \Im_{1} is perfect, then there is no non-zero distinct (t. Γ-hom.) of \Im_{1} to \Im_{2} where \Im_{2} is an arbitrary $\mathfrak{J} . \Gamma$-algebra.

Proof

1- Assume that $\mathrm{f}_{1}, \mathrm{f}_{2}$ are two (t. Γ-hom.) from f_{1} to f_{2} such that $\mathrm{f}_{1}{ }^{\prime}=\mathrm{f}_{2}{ }^{\prime}$. let $\mathrm{f}_{\mathrm{f}}=\mathrm{f}_{1}-\mathrm{f}_{2}$ then we have

$$
\mathrm{f}\left(\mathfrak{I}_{1}^{\prime \prime}\right)=\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)\left(\mathfrak{J}_{1}{ }^{\prime \prime}\right)=\left(\mathrm{f}_{1}^{\prime}-\mathrm{f}_{2}^{\prime}\right)\left(\mathfrak{I}_{1}^{\prime \prime}\right)=0
$$

This means that f is a special (t. Γ-hom.).
2- Assume that \mathfrak{f} is a special (t. Γ-hom.) from \mathfrak{I}_{1} to \mathfrak{I}_{2} i.e., $f\left(\mathfrak{I}_{1}{ }^{\prime \prime}\right)=0$, where \mathfrak{I}_{1} is perfect , then we get $\mathrm{f}\left(\mathfrak{J}_{1}\right)=f\left(\mathfrak{J}_{1}{ }^{\prime \prime}\right)=0$.
This implies that f is zero homomophism.

3. $\mathbf{B i}-\Gamma$-derivation on Jordan Γ-algebra

In this section, we shall study the concept of $\mathrm{Bi}-\Gamma$-derivation on Jordan Γ-algebra. First, we shall introduce the definition of \mathfrak{J}. Γ-module as follows:

Definition 3.1: -

A \mathfrak{I}. Γ-module be a system Consists of a \mathfrak{I}. Γ-algebra \mathfrak{I}, vector space V and two compositions $a . b$ and $b . a$ for a in V and b in \mathfrak{J} such that they are bi-linear and the following conditions are satisfied

1) $a \alpha u=u \alpha a$,
```
2) \((u \alpha a) \beta\left(b \circ_{\Gamma} c\right)+(u \alpha b) \beta\left(c{ }^{\circ}{ }_{\Gamma} a\right)+(u \alpha c) \beta\left(a \circ_{\Gamma} b\right)=\left(u \alpha\left(b{ }^{\circ}{ }_{\Gamma} c\right)\right) \beta a+\)
\(\left(u \alpha\left(c{ }^{\circ}{ }_{\Gamma} a\right)\right) \beta b+\left(u \alpha\left(a \circ_{\Gamma} b\right)\right) \beta c\),
3) \((((u \alpha a) \beta b) \kappa c)+\left(((u \alpha c) \beta b) \kappa a+u \alpha\left(a \circ_{\Gamma} c \circ_{\Gamma} b\right)=(u \alpha a) \beta\left(b \circ_{\Gamma} c\right)+\right.\)
    \((u \alpha b) \beta\left(c \circ_{\Gamma} a\right)+(u \alpha c) \beta\left(a \circ_{\Gamma} b\right)\).
```


Definition 3.2:-

Let \mathfrak{I} be $\mathfrak{I} \Gamma$-algebra on field \mathcal{F} where $\mathbb{M} a \mathfrak{I}-\Gamma$-module, which is a subset S of \mathfrak{J}, the collection $A_{n n} \mathrm{M}(S)=\{v \in$ Ḿ: $S \alpha v=0\}$
Now, we shall introduce the definition of $\mathrm{Bi}-\Gamma$ - derivation on Jordan Γ - algebra as follows

Definition 3.3:-

A bi- Γ-derivation from a $\mathfrak{J} . \Gamma$-algebra \mathfrak{J} on Γ-module M being abilinearly
mapping $\psi: \mathfrak{J} \times \mathfrak{J} \rightarrow \dot{M}$ such that the following conditions are satisfied
(i) $\psi\left(x \circ_{\Gamma} y, \alpha, z\right)=x \alpha \psi(y, z)+y \alpha \psi(x, z)$,
(ii) $\psi\left(x, \alpha, y \circ_{\Gamma} z\right)=y \alpha \psi(x, z)+z \alpha \psi(x, y)$.

If Ψ satisfies
$\psi(x, \alpha, y)=\psi(y, \alpha, x), \forall x, y \in \mathfrak{J}, \alpha \in \Gamma$
then ψ is called a symmetric bi- Γ-derivation.
If Ψ satisfies
$\psi(x, \alpha, y)=-\psi(y, \alpha, x), \forall x, y \in \mathfrak{I}, \alpha \in \Gamma$, then ψ is called a skew-symmetric bi- Γ-derivation.

Definition 3.4:-

An associatively $\Gamma-$ algebra B with the multiplication defined by $x \circ_{\Gamma} y=\frac{1}{2}(x \alpha y+y \alpha x)$ makes up a $\mathfrak{J} . \Gamma$-algebra, which is referred to B^{+}. This type from Jordan algebras is called the distinct $\mathfrak{J} . \Gamma$-algebra.

Lemma3.5:-

Let B anassociative Γ-algebra where B^{+}acorresponding distinct \mathfrak{I}. Γ-algebra where u \circ $v=\frac{1}{2}(u \alpha v+v \alpha u)$, for all $u, v \in B, \alpha, \beta \in \Gamma$.
Suppose that : B $\times \Gamma \times \mathrm{B} \rightarrow \mathrm{B}$, is bi $-\Gamma-$ Derivation on B then ψ is bi- $\Gamma-$ Derivation on B^{+}.

Proof: $\forall u, v, z \in B^{+}$
$\psi($ uov, $\beta, z)=\psi\left(\frac{1}{2}(u \alpha v+v \alpha u), \beta, z\right)$
$\psi($ uov, $\beta, z)=\psi\left(\frac{1}{2} u \alpha v+\frac{1}{2} v \alpha u, \beta, z\right)$
$=\frac{1}{2} \psi(u \alpha v, \beta, z)+\frac{1}{2} \psi(v \alpha u, \beta, z)$
$=\frac{1}{2}(\psi(u, \beta, z) \alpha v+u \alpha \psi(v, \beta, z))+\frac{1}{2}(\psi(v, \beta, z) \alpha u+v \alpha \psi(u, \beta, z))$
$=\frac{1}{2}(\psi(u, \beta, z) \alpha v+v \alpha \psi(u, \beta, z))+\frac{1}{2}(u \alpha \psi(v, \beta, z)+\psi(v, \beta, z) \alpha u$
$=\psi(\mathrm{u}, \beta, \mathrm{z}){ }^{\circ}{ }_{\Gamma} \mathrm{v}+\mathrm{u}{ }^{\circ}{ }_{\Gamma} \psi(\mathrm{v}, \beta, \mathrm{z})$
Similarly, we have
$\psi\left(u, \beta, v \circ_{\Gamma} z\right)=\psi(u, \beta, v) \circ_{\Gamma} z+v \circ_{\Gamma} \psi(u, \beta, z)$.

Corollary 3.6:-

Let B be an acommutative anassociative Γ-algebra where ψ asymmetric bi- Γ-derivation on B satisfies
$\psi(u \alpha v, \beta, z)=z \alpha \psi(u, \beta, v), \forall u, v, z \in B, \alpha, \beta \in \Gamma$
, then
$\psi\left(\mathrm{u}{ }^{\circ}{ }_{\Gamma} \mathrm{v}, \beta, \mathrm{z}\right)=\mathrm{z} \circ_{\Gamma} \psi(\mathrm{u}, \beta, \mathrm{v}), \forall \mathrm{u}, \mathrm{v}, \mathrm{z} \in \mathrm{B}^{+}, \alpha, \beta \in \Gamma$
Proof :For all $u, v, z \in B^{+}$we have
$\psi\left(\mathrm{u}{ }^{\circ}{ }_{\Gamma} \mathrm{v}, \beta, \mathrm{z}\right)=\psi\left(\frac{1}{2}(\mathrm{u} \alpha \mathrm{v}+\mathrm{v} \alpha \mathrm{u}), \beta, \mathrm{z}\right)$
$=\psi\left(\frac{1}{2} u \alpha v+\frac{1}{2} v \alpha u, \beta, z\right)$
$=\frac{1}{2} \psi(u \alpha v, \beta, z)+\frac{1}{2} \psi(v \alpha u, \beta, z)$
$=\frac{1}{2} \mathrm{z} \alpha \psi(\mathrm{u}, \beta, \mathrm{v})+\frac{1}{2} \mathrm{z} \alpha \psi(\mathrm{v}, \beta, \mathrm{u})$
$=\frac{1}{2} z \alpha \psi(u, \beta, v)+\frac{1}{2} \psi(u, \beta, v) \alpha z$
$=\mathrm{z}{ }^{\circ}{ }_{\Gamma} \psi(\mathrm{u}, \beta, \mathrm{v})$.

Definition 3.7:-

A \mathfrak{I}-module M of \mathfrak{I}. Γ-algebra \mathfrak{I} who be referring to $\operatorname{Cent}(\mathrm{M})$ as a linearly mapping : $\mathfrak{J} \rightarrow \mathrm{M}$, refer $\operatorname{Cent}(\mathrm{M})$ if for all $x, y \in \mathfrak{J}$,
$\delta\left(x \circ{ }_{\Gamma} y\right)=x \alpha \delta(y)$.

Theorem 3.8:-

Let \mathfrak{I} be perfect \mathfrak{I}. Γ-algebra on \mathcal{F} where M is $\mathfrak{I}-\Gamma-$ module checking $A_{n n} \mathbb{M}(\mathfrak{J})=\{0\}$. Let $\psi: \mathfrak{J} \times \Gamma \times \mathfrak{J} \rightarrow \mathrm{M}$ be asymmetric bi- Γ-derivation and γ belong on $\operatorname{cent}(\mathcal{M})$. Thus, the equivalence of the following equations is achieved.

$$
\begin{array}{r}
\psi\left(\mathrm{w}, \alpha, \mathrm{u}{ }^{\circ} \mathrm{v}\right)=\mathrm{w} \alpha \psi(\mathrm{u}, \mathrm{v}) \cdot \forall \mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathfrak{I} \\
\mathrm{z} \alpha \delta\left(\mathrm{x}{ }^{\circ}{ }_{\Gamma} \mathrm{y}\right)=\mathrm{x} \alpha \delta\left(\mathrm{y}{ }^{\circ}{ }_{\Gamma} \mathrm{z}\right)+\mathrm{y} \alpha \delta\left(\mathrm{x}{ }^{\circ}{ }_{\Gamma} \mathrm{z}\right) \cdot \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathfrak{I} \ldots \tag{2}
\end{array}
$$

Proof:

Suppose that $\psi: \mathfrak{I} \times \Gamma \times \mathfrak{J} \rightarrow \bar{M}$ is asymmetric bi- Γ-derivation checking (1). Defining
$\delta: \mathfrak{I} \rightarrow \mathrm{M}$ as a linearly mapping by
$\delta\left(\mathrm{x}{ }^{\circ}{ }_{\Gamma} \mathrm{y}\right)=\psi(x, \alpha, y), \forall \mathrm{x}, \mathrm{y} \in \mathfrak{J}$
Suppose $\sum_{i} x_{i}{ }^{\circ}{ }_{\Gamma} \quad y_{i}=0$ then we have
$0=\psi\left(u, \alpha, \sum_{i} x_{i} \circ_{\Gamma} \quad y_{i}\right)=\sum_{i} \psi\left(u, x_{i} \circ_{\Gamma} \quad y_{i}\right)$
$=\sum_{i} u \alpha \psi\left(x_{i} \circ_{\Gamma} \quad y_{i}\right)=u \alpha\left(\sum_{i} \psi\left(x_{i}, y_{i}\right)\right)$
Since $A_{n n} \mathcal{M}(\mathfrak{J})=\{0\}, \sum_{I} \psi\left(x_{i}, \alpha, y_{i}\right)=0$
Hence δ is well-define
$\forall u, v \in \mathfrak{I}$, suppose $v=\sum_{i} x_{i}{ }^{\circ}{ }_{\Gamma} y_{i}$ then we have
$\psi(u, \alpha, v)=\psi\left(u, \sum_{i} x_{i}{ }^{\circ}{ }_{\Gamma} y_{i}\right)$
$=\sum_{i} \psi\left(u, \alpha, x_{i}{ }_{\Gamma} y_{i}\right)=\sum_{i} u \alpha \psi\left(x_{i}{ }_{\Gamma}{ }_{\Gamma} y_{i}\right)$
$=\sum_{i} u \alpha \delta\left(x_{i}{ }^{\circ}{ }_{\Gamma} y_{i}\right)=u \alpha\left(\sum_{i} \delta\left(x_{i}{ }^{\circ}{ }_{\Gamma} y_{i}\right)\right.$
$=u \alpha \delta\left(\sum_{i} x_{i}{ }^{\circ}{ }_{\Gamma} y_{i}\right)=u \alpha \delta(v)$.
Then we have $\delta\left(x \circ_{\Gamma} y\right)=\psi(x, \alpha, y)=x \alpha \gamma(y)$.
This implies that $\delta \in \operatorname{cent}(M)$.
For all $x, y, z \in \mathfrak{J}$.
$\mathrm{z} \alpha \delta\left(\mathrm{x} \circ_{\Gamma} \mathrm{y}\right)=\mathrm{z} \alpha \psi(\mathrm{x}, \alpha, \mathrm{y})=\psi\left(\mathrm{x} \circ_{\Gamma} \mathrm{y}, \alpha, \mathrm{z}\right)$
$=x \alpha \psi(\mathrm{y}, \alpha, \mathrm{z})+\mathrm{y} \alpha \psi(\mathrm{x}, \alpha, \mathrm{z})$
$=\mathrm{x} \alpha \delta\left(y{ }^{\circ}{ }_{\Gamma} z\right)+y \alpha \delta\left(x{ }^{\circ}{ }_{\Gamma} z\right)$
This means that δ satisfies (2)
Now, we assume that δ belongs to $\operatorname{cent}(\mathrm{M})$ and satisfying (2). And define : $\mathfrak{J} \times \Gamma \times \mathfrak{J} \rightarrow \mathrm{M}$ is being a bi-linearly mapping by $\psi(x, \alpha, y)=\delta\left(x \circ_{\Gamma} y\right)$, for all $x, y, z \in \mathfrak{J}$.
$\psi\left(\mathrm{x}{ }^{\circ}{ }_{\Gamma} \mathrm{y}, \alpha, \mathrm{z}\right)=\delta\left(\left(\mathrm{x}{ }^{\circ}{ }_{\Gamma} \mathrm{y}\right){ }^{\circ}{ }_{\Gamma} \mathrm{z}\right)=\delta\left(\mathrm{z}{ }^{\circ}{ }_{\Gamma}\left(\mathrm{x}{ }^{\circ}{ }_{\Gamma} \mathrm{y}\right)\right)=\mathrm{z} \alpha \delta\left(\mathrm{x}{ }^{\circ}{ }_{\Gamma} \mathrm{y}\right)$
$=\mathrm{x} \alpha \delta\left(\mathrm{y}{ }^{\circ}{ }_{\Gamma} \mathrm{z}\right)+\mathrm{y} \alpha \delta\left(\mathrm{x}{ }^{\circ}{ }_{\Gamma} \mathrm{z}\right)=\mathrm{x} \alpha \psi(\mathrm{y}, \mathrm{z})+\mathrm{y} \alpha \psi\left(\mathrm{x}{ }^{\circ}{ }_{\Gamma} \mathrm{z}\right)$
Hence, ψ is symmetric bi- Γ-derivation satisfying (1)
Corollary 3.9:-

If \mathfrak{J} is perfect $\mathfrak{J} . \Gamma$-algebra and checks that $A_{n n}(\mathfrak{I})=\{0\}$. Hence, all symmetric bi- Γ-derivation ψ on \mathfrak{J} satisfies (1)is of the from $\psi(\mathrm{u}, \alpha, \mathrm{v})=\delta\left(\mathrm{u}{ }_{\Gamma}{ }_{\Gamma} \mathrm{v}\right)$, where $\delta \in$ cent(I) such (2) satisfies.

Remark 3.10:-

Assume that \mathfrak{J} a $\mathfrak{J} . \Gamma$-algebra, clear that $\psi \cdot \mathfrak{J} \times \Gamma \times \mathfrak{J} \rightarrow A_{n n}(\mathfrak{J})$ with $\psi(\mathfrak{J}, \alpha, \mathfrak{J})=0$ be a symmetric bi- Γ-derivation over \mathfrak{J} and call it trivial bi-derivation.
Let $\psi: \mathfrak{J} \times \Gamma \times \mathfrak{J} \rightarrow \mathfrak{J}$ be an optional symmetric bi- Γ - derivation for all $u, v \in \mathfrak{J}, z \in$ $A_{n n}(\mathfrak{J})$, we have got
$0=\psi\left(z{ }_{\Gamma} u, \alpha, v\right)=z{ }_{\Gamma} \psi(u, \alpha, v)+u \circ_{\Gamma} \psi\left(z{ }_{\Gamma} v\right)=u \circ_{\Gamma} \psi(z, \alpha, v) . \quad$ Hence, $\psi(z(\mathfrak{J}), \mathfrak{J}) \subseteq A_{n n}(\mathfrak{J})$.
As a result, setting $\overline{\mathfrak{J}}=\mathfrak{J} / A_{n n}(\mathfrak{J})$, then we can define a symmetric bi- Γ-derivation $\bar{\psi}: \overline{\mathfrak{J}} \times \bar{\Gamma} \times \overline{\mathfrak{J}} \rightarrow \overline{\mathfrak{J}}$
By
$\bar{\psi}(\bar{u}, \bar{\alpha}, \bar{v})=\overline{\psi(u, \alpha, v)}$ where
$\bar{u}=u+A_{n n}(\mathfrak{J}) \in \overline{\mathfrak{J}}$ for $\in \mathfrak{J}$.

Lemma 3.11:-

Let \mathfrak{J} be a \mathfrak{I}. Γ-algebra be trivial bi- Γ-derivation over \mathfrak{I}. The map $\psi \rightarrow \bar{\psi}$ be $1-1$ map of symmetric bi- Γ-derivation satisfying (1) over \mathfrak{J} of symmetric bi- Γ-derivation checking (1) over $\overline{\mathfrak{J}}$.

Proof

Assume ψ_{1}, ψ_{2} be symmetric bi- Γ-derivation on \mathfrak{I} such that $\overline{\psi_{1}}=\overline{\psi_{2}}$, then $\psi=\psi_{1}-$ ψ_{2} is asymmetric bi- Γ-derivation on \mathfrak{J}. since $\overline{\psi_{1}}=\overline{\psi_{2}}$ then

$$
\overline{\psi_{1}}(\overline{\mathfrak{J}})=\overline{\psi_{2}}(\overline{\mathfrak{J}})
$$

Subsequently
$\overline{\psi_{1}(\mathfrak{J})-\psi_{2}(\mathfrak{J})}=\overline{\psi_{1}(\mathfrak{J})}-\overline{\psi_{2}(\mathfrak{J})}=\overline{\psi_{1}}(\overline{\mathfrak{J}})-\overline{\psi_{2}}(\overline{\mathfrak{J}})=0$,
Which implies
$\psi_{1}(\mathfrak{J})-\psi_{2}(\mathfrak{J}) \in A_{n n}(\mathfrak{J})$
i.e. $\psi(\mathfrak{J}, \alpha, \mathfrak{J}) \subseteq A_{n n}(\mathfrak{J})$ moreover, we have

$$
\psi(\mathfrak{I}, \alpha, \mathfrak{I})=\psi(\mathfrak{I}, \alpha, \mathfrak{J} o \mathfrak{I})=\mathfrak{I} o \psi(\mathfrak{I}, \alpha, \mathfrak{I})=0
$$

So,ψ is a trivial bi- Γ-derivation on \mathfrak{J}.

Definition 3.12

let \mathfrak{J} be a \mathfrak{J}. Γ-algebra . A special bi- Γ-derivation be a symmetric bi $-\Gamma$-derivation $\psi: \mathfrak{J} \times \mathfrak{J} \rightarrow \mathfrak{J}$ such that

1) $\psi\left(\mathfrak{J}^{\prime}, \mathfrak{J}\right)=0$
2) $\psi\left(\mathfrak{J}, \mathfrak{J}^{\prime}\right) \subseteq A_{n n_{\mathfrak{I}}}(\mathfrak{J})$.

Every symmetric bi $-\Gamma$-derivation
$\psi: \mathfrak{J} \times \mathfrak{I} \rightarrow \mathfrak{I}$ satisfying

$$
\begin{equation*}
\psi\left(u, x \circ_{\Gamma} y\right)=x \circ_{\Gamma} \psi(u, y)+y \circ_{\Gamma} \psi(u, x) \in \mathfrak{J} \tag{3}
\end{equation*}
$$

For all $u, x, y \in \mathfrak{I}$.
Thus, we have a symmetric bi- Γ-derivation
$\psi^{\prime}: \mathfrak{I}^{\prime} \times \Gamma \times \mathfrak{I}^{\prime} \rightarrow \mathfrak{I}^{\prime}$ by restricting ψ over $\mathfrak{I}^{\prime} \times \Gamma \times \mathfrak{J}^{\prime}$

Lemma 3.13

Let \mathfrak{J} is \mathfrak{J}. Γ-algebra where satisfies $A_{n n}(\mathfrak{J})=\{0\}$

1) Up to a specific bi- Γ-derivation, all symmetric bi- Γ-derivation ψ satisfying (1) on \mathfrak{J} is an extension from a single symmetry bi- Γ - derivation checking (1) over \mathfrak{J}^{\prime}.
2) if \mathfrak{I}^{\prime} is perfect, then \mathfrak{J} has no non zero distinct bi- Γ-derivation.

Proof

1) Let ψ_{1}, ψ_{2} be bi- Γ - derivation on \mathfrak{J} satisfy
$\psi_{1}=\psi_{2}$. Set $\psi=\psi_{1}-\psi_{2}$, then

$$
\psi\left(\mathfrak{I}^{\prime}, \alpha, \mathfrak{I}^{\prime}\right)=\left(\psi_{1}-\psi_{2}\right)\left(\mathfrak{I}^{\prime}, \alpha, \mathfrak{I}\right)=\left(\psi_{1}^{\prime}-\psi_{2}^{\prime}\right)\left(\mathfrak{I}^{\prime}, \alpha, \mathfrak{I}^{\prime}\right)=0
$$

Take $u, y \in \mathfrak{J}$ in (3), then we have
$y \circ_{\Gamma} \psi(u, \alpha, x)=0, \forall x \in \mathfrak{J}, y, u \in \mathfrak{J}^{\prime}$
I.e. $\psi\left(\mathfrak{J}, \alpha, \mathfrak{S}^{\prime}\right) \subseteq A_{n n_{\mathfrak{I}}}\left(\mathfrak{S}^{\prime}\right)$.

Hence, ψ is a distinct bi-derivation over \mathfrak{J}
2) Suppose that ψ is a distinct bi- Γ-derivation over \mathfrak{I}. From proof (1), one can get $\psi(\mathfrak{I}, \alpha, \mathfrak{J}) \subseteq A_{n n_{\mathfrak{I}}}\left(\mathfrak{J}^{\prime}\right)$.
Since \mathfrak{J} is perfect and satisfies $A_{n n \mathfrak{J}}(\mathfrak{J})=\{0\}$, can be $\psi(\mathfrak{J}, \alpha, \mathfrak{I})=0$.
Suppose that $\psi \neq 0, x_{1}, x_{2} \in \mathfrak{J}$ such that
$\psi\left(x_{1}, x_{2}\right)=Z_{12} \neq 0$.
Since $A_{n n}(\mathfrak{J})=\{0\}$, we can see $x_{3} \in \mathfrak{I}$ such that
$x_{3} \circ_{\Gamma} Z_{12}=Z \neq 0$.
Let $\psi\left(x_{1}, x_{3}\right)=Z_{13}, \psi\left(x_{2}, x_{3}\right)=Z_{23}$.
Then we have
$0=\psi\left(x_{1}{ }^{\circ}{ }_{\Gamma} x_{3}, \alpha, x_{2}\right)=x_{1}{ }^{\circ}{ }_{\Gamma} \psi\left(x_{3}, \alpha, x_{2}\right)+x_{3}{ }^{\circ}{ }_{\Gamma} \psi\left(x_{1}, \alpha, x_{2}\right)=$
$x_{1}{ }^{\circ}{ }_{\Gamma} Z_{23}+Z \ldots \ldots \ldots \ldots$.
$0=\psi\left(x_{1} \circ_{\Gamma} x_{2}, \alpha, x_{3}\right)=x_{1} \circ_{\Gamma} \psi\left(x_{2}, \alpha, x_{3}\right)+x_{2} \circ_{\Gamma} \psi\left(x_{1}, \alpha, x_{3}\right)=$
$x_{1}{ }^{\circ}{ }_{\Gamma} Z_{23}+x_{2}{ }^{\circ}{ }_{\Gamma} Z_{13} \ldots \ldots$ (2)
$0=\psi\left(x_{2} \circ_{\Gamma} x_{3}, \alpha, x_{1}\right)=x_{2} \circ_{\Gamma} \psi\left(x_{3}, \alpha, x_{1}\right)+x_{3} \circ_{\Gamma} \psi\left(x_{2}, \alpha, x_{1}\right)=$
$x_{2}{ }^{\circ}{ }_{\Gamma} Z_{13}+Z$
From (1), we get
$x_{1} \circ{ }_{\Gamma} Z_{23}+Z=0 \Rightarrow x_{1} \circ{ }_{\Gamma} Z_{23}=-Z$
From (2), we obtained
$x_{1}{ }^{\circ}{ }_{\Gamma} Z_{23}+x_{2}{ }^{\circ}{ }_{\Gamma} Z_{13}=0 \Rightarrow x_{1}{ }^{\circ}{ }_{\Gamma} Z_{23}=-x_{2}{ }^{\circ}{ }_{\Gamma} Z_{13}$
From (3)
$x_{2}{ }^{\circ}{ }_{\Gamma} Z_{13}+Z=0 \Rightarrow x_{2}{ }^{\circ}{ }_{\Gamma} Z_{13}=-Z$
We deduce that
$Z=-x_{1}{ }^{\circ}{ }_{\Gamma} Z_{23}=x_{2}{ }^{\circ}{ }_{\Gamma} Z_{13}=-Z$,
Which is a contradiction. Therefore, $\psi=0$.

Conclusions:

The concept of Jordan Γ-algebra, special Jordan Γ-algebra and triple Γ-homomorphisms are introduced and studied. In addition, $\mathrm{Bi}-\Gamma$-derivations and Annihilator of Jordan Γ-algebra are introduced and discussed. Finally, many results of these concepts are obtained.

References

[1] p., J. Jordan, V. Neumann and E. Winger, "On an algebraic generalization of the quan-tum mechanic formalism". Annalytic of Mathematics, Vol.35,no.1,pp.29-64, 1934.
[2] A. A. Albert, "On Jordan algebras of linear transformations ". Transection of the American Mathematical Society,Vol.59, no.3, pp.524-555, 1946.
[3] A. A. Albert, " A structure theory for Jordan algebras ", Annalyatic of Mathematics, Vol.48,no.3,pp. 546-567, 1947.
[4] C. Yao, Y. Ma and L. Chen., " Biderivations and triple homomorphisms on perfect Jordan algebras " , arXiv:1811.05315v3 [math.RA], 2019.
[5] N. Jacobson, " General representation theory of Jordan algebras ", Transection of the American Mathematical Society. Vol.70, no.3, pp.509-530,1951.
[6] M. D. Hoque, "On Centralizers of Semiprime Gamma Rings " , International Mathematical Forum, Vol.6,no.13, pp.627-638, . 2011 .
[7] J. Zhou, " Homomorphisms of perfect Lie algebras ", Communications in Algebra, Vol.42,no.3,pp. 3724-3730, . 2014.
[8] M. A. Öztürk, M. Sapanci, M. Soytürk and K. HoKim, " symmetric bi-derivation on prime gamma rings ", Scientiae Mathematicae, Vol.3,no.2, pp. 273-281, 2000.
[9] A. H. Rezaei and B. Davvaz, " Construction of Γ-algebra and Γ - Lie Admissible algebras " . Korean Journal of Mathematics, Vol.26, no.2,pp.175-189, 2018.
[10] F. Marcelo and L. Alicia, " Representations of generalized almost-Jordan algebras. Communications in Algebra " , Vol.43, no.8,pp. 3372-3381, 2015.
[11] S.Ayupov, F. Arzikulov, N. Umrzaqov and O. Nuriddinov, " Description of 2-local derivations and automorphisms on finite dimensional Jordan algebras" .arXiv:1911.03194v2 [math.RA], . 2020.
[12] A. L. Agore and G. Militaru ," Unified products for Jordan algebras Applications ". arXiv:2107.04970v4 [math.RA], 2022.
[13] .A. L. Agore and G. Militaru . " Algebraic constructions for Jacobi -Jordan algebras " .arXiv:2105.14722v2 [math.RA], 2021.

[^0]: "Email: hasan1982rmzi@gmail.com

