
Jain and Sharma Iraqi Journal of Science, 2023, Vol. 64, No. 10, pp: 5280-5290

 DOI: 10.24996/ijs.2023.64.10.34

*Email: jainricha86@gmail.com

5280

A Deadline-Budget Constrained Task Admission Control for a Software-as-

a-Service Provider in Cloud Computing

Richa Jain, Neelam Sharma

Department of Computer Science, Banasthali Vidyapith, Niwai, Rajasthan, India

Received: 21/3/2022 Accepted: 10/11/2022 Published: 30/10/2023

Abstract

 Cloud computing is a pay-as-you-go model that provides users with on-demand

access to services or computing resources. It is a challenging issue to maximize the

service provider's profit and, on the other hand, meet the Quality of Service (QoS)

requirements of users. Therefore, this paper proposes an admission control heuristic

(ACH) approach that selects or rejects the requests based on budget, deadline, and

penalty cost, i.e., those given by the user. Then a service level agreement (SLA) is

created for each selected request. The proposed work uses Particle Swarm

Optimization (PSO) and the Salp Swarm Algorithm (SSA) to schedule the selected

requests under budget and deadline constraints. Performances of PSO and SSA with

and without ACH are evaluated and compared using CloudSim. The simulation results

prove that admission control maximizes profit by minimizing the number of task

rejections and SLA violations. It also improves resource utilization while balancing

makespan.

 Keywords: Cloud Computing, Admission Control, Salp Swarm Algorithm; Task

Scheduling, Service Layer Agreement.

 .

1. Introduction

 In cloud computing, the Software as a Service (SaaS) provider rents shareable computing

resources from an Infrastructure as a Service (IaaS) provider and provides these resources to

users' applications. Typically, SaaS providers want to increase their profit while users are

willing to complete their applications under deadline and budget constraints. In a real scenario,

a service level agreement (SLA) is signed between the user and SaaS provider that includes the

user's quality of service (QoS) requirements. However, SLA also incorporates the penalty cost,

which is given to the user if SLA is violated [1]. As a result, it decreases the SaaS provider's

profit. Furthermore, as the number of SLA violations (SLAV) increases, it also reduces service

reliability. Therefore, the main goal of SaaS providers is to execute users' applications while

satisfying deadline and budget constraints and maximizing their profit. To achieve this, the

main concern in this paper is to reduce the rate of SLAV. If a user submits an infeasible task

with a low budget or a short deadline, it affects already accepted and upcoming tasks. So, there

is a need for an admission control mechanism that identifies whether a request should be

accepted or rejected to reduce resource overload.

 ISSN: 0067-2904

mailto:jainricha86@gmail.com

Jain and Sharma Iraqi Journal of Science, 2023, Vol. 64, No. 10, pp: 5280-5290

5281

2. Literature Review

Many studies propose an admission control model. Some of them base their decision on the

current load [2, 3]. Leontiou et al. [4] proposed an adaptive admission control for the web

application. Their objective is to prevent overloading. They employed a queuing model with an

adaptive feedback control system that adapted the admitted load to balance for changes in the

system’s capacity. He et al. [5] developed an admission control model for aggregate flow. They

admitted or rejected tasks based on the bandwidth of the aggregate flow. It is computed using

network calculus. They improved resource allocation and optimized QoS parameters.

Konstanteli et al. [6] proposed a probabilistic admission control that was modeled on GAMS.

The proposed work focuses on the optimum allocation of services on virtualized machines and

reduces physical resources. Carvalho et al. [7] developed an admission control model and

capacity planning method for IaaS providers. It decreases total infrastructure costs and

optimizes service level objectives with good accuracy. A lot of research exists that considers

the user's QoS constraints like deadline and budget to decide whether a task should be accepted

or not. Reig et al. [8] incorporated machine learning techniques to develop a self-adjusting

predictor. It predicts the resource requirement by using the previous execution results. The

decision to admit is taken based on deadline constraints. A profit-oriented admission control

framework (ActiveSLA) is proposed in [9]. First, it calculates the probability of finishing

execution before the deadline. Then, it selects/rejects the new query based on that probability.

This decision is taken with profit optimization in mind. A deadline-aware admission control

mechanism (PYTHIA) is proposed in [10]. PYTHIA admits the tasks if their deadlines can be

met with the estimated resources; otherwise, it rejects the tasks. Yuan et al. [11] proposed a

revenue-based admission control method that admits/rejects requests based on revenue,

priority, and response time. Further, they proposed cost-aware scheduling to reduce costs and

enhance the throughput of CDC providers. The literature [12, 13] included both user QoS

constraints and workflow constraints. Hoang et al. [14] proposed an admission control

algorithm considering both the deadline and budget. But they did not consider penalty costs,

which is a significant parameter when calculating total profit. This paper proposes an admission

control and scheduling mechanism that rejects the task if it cannot be completed within the

deadline [if the deadline is hard] and budget or if the SaaS provider is not going to earn any

profit [if the deadline is soft]. Khojasteh et al. [15] presented two algorithms for task admission

control by incorporating a filtering coefficient and a full-rate task acceptance threshold value.

In 1st algorithm, they calculated the estimated average utilization. Then, they reject the task if

it is greater than the utilization threshold, whereas in the 2nd algorithm, the incoming task is

selected or rejected based on current utilization. Malawski et al. [16] proposed a dynamic

provisioning and dynamic scheduling (DPDS) algorithm for resource provisioning and

scheduling. Furthermore, they expand DPDS by including an admission control procedure that

admits a new workflow based on the remaining budget and deadline while minimizing

workflow cost. Leontiou et al. [17] proposed an autonomous mechanism for admission control

to ensure performance stability. They used the Kalman filter for incoming load prediction. Yuan

et al. [11] proposed a revenue-based admission control algorithm that admits a new request

based on its revenue, priority, and response time. They selected higher-priority requests first to

maximize revenue. Zheng et al. [13] proposed a BDC (Budget Deadline Constraint) plan to

accept or reject workflow requests. They proposed a heuristic called Budget-constrained

Heterogeneous Earliest Finish Time (BHEFT) based on the well-known list scheduling

heuristic HEFT. However, total execution costs are not addressed in this paper. Hoang et al.

[14] proposed an admission control and task scheduling algorithm based on the meta-heuristic

algorithms ACO and PSO. They focused on finding the lowest-cost VMs and improving the

SAAS provider’s profit. Wu et al. [18] proposed an admission control and scheduling algorithm

to improve the profitability of SAAS service providers. They also analyzed the impact of

Jain and Sharma Iraqi Journal of Science, 2023, Vol. 64, No. 10, pp: 5280-5290

5282

variations in QoS parameters on performance. The decision to admit a task is taken based on

the deadline, budget, and penalty rate. They did not focus on other user-driven QoS constraints

such as makespan, reliability, security, etc. Choudhary et al. [19] proposed an access control

(PbTAC) model based on task priority. This model secures the information by applying rule

policies and scheduling the tasks. It also optimizes storage and computation costs. Huang et al.

[20] proposed an algorithm (ACCRA) for admission control and resource allocation in mobile

edge computing. The objective is to enhance the system's utility. First, they divide the problem

into three subproblems, and then ACCRA finds optimal solutions for these subproblems. Sathya

et al. [21] proposed a framework for EMSA to preserve the privacy of the stored data in the

eHealth cloud-assisted environment. The EMSA algorithm is a hybrid of the Successive

Approximation Iterative Proximate algorithm and the Euclidean L3P Distance algorithm,

performing role-based key generation.

3. Problem Definition

 3.1 System Architecture

Figure 1 represents the system architecture of admission control and scheduling in cloud

computing. It consists of three main components: cloud users, the SaaS layer, and the cloud

environment.

• Cloud User: A cloud user submits task requests to the SaaS provider with some QoS

constraints, i.e., deadline, deadline type, budget, and penalty ratio. The deadline type can

be hard or soft. A soft deadline indicates that the user can wait after a missed deadline. A

compensation amount is given to the user from the SaaS provider for this delay. In contrast,

a hard deadline indicates that the task must be completed before its deadline.

• SaaS Layer:- User requests are received at this layer, and then the SaaS provider first

checks whether this request is feasible or not. A request/task is feasible if it can be

completed within the given deadline and budget. After rejecting infeasible requests, a SLA

is created between the user and the SaaS provider. Then all selected tasks are scheduled

using a task scheduling algorithm. SLA consists of four constraints in this work, i.e.,

deadline, budget, deadline type, and penalty.

• Cloud environment:- An IaaS provider offers a virtually infinite pool of resources. These

computing resources are referred to as "virtual machines" (VMs) and are charged on a per-

use basis. A SaaS provider leases software as a service to users on demand by renting these

resources from a specific IaaS provider.

Jain and Sharma Iraqi Journal of Science, 2023, Vol. 64, No. 10, pp: 5280-5290

5283

Figure 1: System Architecture

 3.2 Problem Formulation

3.2.1. User’s Task

 This work uses the CloudSim3.0 framework to analyze the performance of a proposed

heuristic and uses workload traces from Planet Lab to make this simulation applicable. These

data are part of the CoMon project, which can be accessed at

[https://github.com/beloglazov/planetlab-workload-traces]. A user sent a task with some QoS

constraints, i.e., deadline, deadline type, budget, and penalty. Based on these constraints, the

admission control mechanism decides whether to accept or reject the task. If a request is

accepted, a SLA is created and signed by both the user and the SAAS provider.

 3.2.2. Resources

This project includes a single data center with virtual machines that are charged based on their

usage. This resource model is similar to the one offered by Amazon EC2 [22]. Here, we

consider m instances of six types of VM, which are heterogeneous and represented as

𝑉𝑀=,{𝑉𝑚-1.,,𝑉𝑚-2.…….,𝑉𝑚-𝑚.}. Price, bandwidth, RAM, and number of CPU cores of

different VM types are shown in Table 1. These are adopted from the General Purpose instance

group.

Jain and Sharma Iraqi Journal of Science, 2023, Vol. 64, No. 10, pp: 5280-5290

5284

Table 10: Instance type based on Amazon EC2

VM TYPE VCPU Bandwidth (Mbps) RAM(Gib) Price ($)

a1.medium 1 10000 2 0.0255

a1.large 2 10000 4 .0510

m4.large 2 450 8 .19

m4.xlarge 4 750 16 .38

t2.small 1 600 2 .032

t2.medium 2 650 4 .0644

3.2.3 Mathematical Model

This section introduces the mathematical equations that are used in this work. A set of n tasks

denoted by 𝑇 = {𝑡1 , 𝑡2 ,……..,𝑡𝑛}. 𝑑𝑙𝑖, 𝑑𝑡𝑖, 𝑏𝑡𝑖 and 𝑝𝑖 represent deadline, deadline type, budget

and penalty cost of 𝑖𝑡ℎ task. Deadline is calculated as given in [23]. In this work, the deadline

factor (β) is taken as 5 (average value). It is assumed that 20% of the total number of tasks have

a hard deadline. In this work, budget 𝑏𝑡𝑖 is calculated as follows:

𝑏𝑡𝑖 =
𝑚𝑖𝑛𝑇𝑖+𝑚𝑎𝑥𝑇𝑖

2
 , 𝑖 ∈ 𝑛 (1)

Here, minTi and maxTi are the minimum and maximum execution times of a task ti.

Completion Time of 𝑖𝑡ℎ task on 𝑗𝑡ℎ Vm is represented as 𝐶𝑜𝑚𝑝𝑇𝑖𝑗. It can be calculated as:

𝐶𝑜𝑚𝑝𝑇𝑖𝑗 = 𝑆𝑡𝑎𝑟𝑡𝑇𝑖 + 𝑅𝑢𝑛𝑇𝑖𝑗 (2)

Where 𝑆𝑡𝑎𝑟𝑡𝑇𝑖 is the start time when task i has started its execution and 𝑅𝑢𝑛𝑇𝑖𝑗 is the total

execution time of task i on 𝑗𝑡ℎ Vm.

 𝑐𝑜𝑠𝑡𝑖𝑗 is the total execution cost when 𝑖𝑡ℎ task runs on 𝑗𝑡ℎ Vm. It is calculated as:

costij = 𝑅𝑢𝑛𝑇𝑖𝑗 ∗ pricej (3)

Where pricej represents the unit price of the jth Vm.

 So, Total Profit of SaaS provider can be calculated as:

𝑇𝑝𝑟𝑜𝑓𝑖𝑡 = ∑ 𝑏𝑡𝑖
𝑛
𝑖=0 − ∑ 𝑐𝑜𝑠𝑡𝑖𝑗

𝑛
𝑖=0 − ∑ 𝑝𝑖

𝑛
𝑖=0 (4)

 If SLA is violated then some penalty 𝑝𝑖 is given by provider to the user. It decreases the

profit of the provider. This study aims to reduce the SLA violation rate (SlaVR) to increase

service provider profit. SlaVR is calculated as:

SlaVR =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑆𝐿𝐴 violation

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑇𝑎𝑠𝑘
∗ 100 (5)

A task ti can be scheduled on 𝑗𝑡ℎ Vm only when its deadline (𝑑𝑙𝑖) is less than or equal to

(𝐶𝑜𝑚𝑝𝑇𝑖𝑗) and its budget (𝑏𝑡𝑖) is greater than execution cost (𝑐𝑜𝑠𝑡𝑖𝑗).

The objective of this work is to maximize the total profit of SaaS providers. Then, Deadline-

Budget Constrained Task Admission Control problem can be formulated as follows:
𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆 𝑻𝒑𝒓𝒐𝒇𝒊𝒕

 subject to

 𝑑𝑙𝑖 ≤ 𝐶𝑜𝑚𝑝𝑇𝑖𝑗 (𝑖𝑓 ℎ𝑎𝑟𝑑 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒) (6)

 𝑏𝑡𝑖 > 𝑐𝑜𝑠𝑡𝑖𝑗 (7)

 𝑖 ∈ {1,2, … … 𝑛}(𝑠𝑒𝑡 𝑜𝑓 𝑛 𝑡𝑎𝑠𝑘𝑠)
 j ∈ {1,2, … … 𝑚}(𝑠𝑒𝑡 𝑜𝑓 𝑚 𝑉𝑚𝑠)

 Constraint (6) assures that the deadline of the admitted task must be less than its completion

time. Constraint (7) ensures that the budget of the admitted task must be less than its execution

cost. After the admission control process, tasks are scheduled in such a way that profit is

maximized while satisfying deadline and budget constraints.

Jain and Sharma Iraqi Journal of Science, 2023, Vol. 64, No. 10, pp: 5280-5290

5285

4. The Proposed Algorithm

 Algorithm 1 shows the pseudo-code of the proposed admission control heuristic. We'll look

at two resource queues here.1) A time-oriented queue (consisting of fast VMS) 2) Budget-

oriented queue (consisting of cheap VMs) (line 1). Tasks are arranged in ascending order to

schedule the task with the lower deadline first (line 2). Initially, lines 3–6 schedule m tasks.

First, a VM from ToQ is taken, and the check_constraint function (Algorithm 2) checks whether

tasks can be scheduled on that VM under deadline and budget constraints. The check_constraint

function works as follows:

1) If both constraints are satisfied, then schedule the task.

2) If budget is violated, take a Vm from BoQ; If it satisfies both constraints, then schedule;

otherwise, reject the task.

3) If a deadline is violated and it is a hard deadline, reject the task; otherwise, schedule the

task and calculate the delay.

 Lines (7-10) schedule the remaining tasks. Line 8 finds that the Vm has a minimum load,

and then line 9 calls the check_constraint functions to check constraints. After rejecting

infeasible requests, line 11 creates an SLA for accepted task requests. Finally, line 12 executes

these selected tasks using efficient task scheduling algorithms. In this work, we are using SSA

and PSO.

Algorithm 1: Pseudo code of proposed Admission Control Heuristic (ACH) and

scheduling.

Input: User’s tasks (Number of tasks is m)

Output: Tasks are scheduled while optimizing QoS constraints.

Steps:

1. Take two resource queues i.e. time oriented (ToQ) and budget oriented(BoQ)

2. Sort all tasks the non-decreasing order of deadline.

3. for each tasks ti(i=1 to m)

4. take a Vmi from ToQ

5. Call Check_Constraints(i,j)

6. end for

7. for each tasks ti (i=m+1 to n)

8. find vm having minimum execution time

9. Call Check_Constraints(i,vm)

10. end for

11. Create SLA for selected tasks

12. Do task scheduling for optimizing QoS constraints.

Jain and Sharma Iraqi Journal of Science, 2023, Vol. 64, No. 10, pp: 5280-5290

5286

Algorithm 2: Pseudo code of checking constraints for admission control

 Check_Constraints(i,j)

 Input: Task i and vm

 Output: Task is selected /rejected

 Steps:

1. if dli<=compTi and bti >costij

2. schedule ti

3. else if(dli>compTi)

 if(dli type is HARD)

 then reject ti

 else schedule ti and calculate delay

4. if(bti <cost)

 take Vmk from ToB

 if dli<=compTk and bti >costik

 then schedule ti

 k++

 else reject ti

5. Result and discussion

To evaluate the performance of the proposed heuristic (ACH), we use the CloudSim 3.0

framework [24]. Task scheduling is done using existing metaheuristics, i.e., PSO [25] and SSA

[26]. To prove the effectiveness of the ACH, we compare the performance of PSO, SSA, APSO

(PSO with admission control), and ASSA (SSA with admission control). All algorithms are run

in the same simulation environment for a fair comparison. The population size is 50, and the

maximum number of iterations is 1000 for all algorithms. Experiments are conducted for 1052

user tasks and varying VMS from 50 to 250. Each experiment is run five times independently.

The population size is 50, and the maximum number of iterations is 1000 for all algorithms.

Experiments are conducted for 1052 user tasks and varying VMS from 50 to 250. Each

experiment is run five times independently. It can be observed from Figure 2 that if ACH is

combined with SSA and PSO, then it increases profit. In the results, ASSA achieves a profit

approximately 33% higher than SSA, whereas APSO achieves about 19% higher than SSA.

ACH prevents the admission of infeasible tasks, which decreases the number of SLA violations

and the number of task rejections. Figure 3 compares ASSA with SSA and APSO with PSO

and shows that ASSA and APSO reduce SLA violations. Comparison results prove that the

number of SLA violations is reduced in ASSA by 17% and in APSO by 30%. Figure 3 shows

the comparison of ASSA with SSA and APSO with PSO in terms of task rejections. Simulation

results prove that ASSA reduces the number of task rejections by 18% and APSO reduces it by

36%. For ASSA and APSO, rejected tasks are calculated by adding the rejected tasks in ACP

and in the task scheduling process. Figure 5 illustrates that ASSA and APSO balance makespan

also. Finally, resource utilization is compared for SSA and PSO with ASSA and APSO,

respectively. Comparison results show that ACH effectively enhances resource utilization. It

can be seen in the results that it increased by 8% in ASSA and by 8.5% in APSO.

Figure 3 and Figure 4 compare ASSA with SSA and APSO with PSO and show that ASSA

and APSO reduce SLA violations and task rejections, respectively. For ASSA and APSO,

rejected tasks are calculated by adding the rejected tasks in ACP and in the task scheduling

process. Finally, Figure 6 proves that resource utilization is increased by adding ACH.

Jain and Sharma Iraqi Journal of Science, 2023, Vol. 64, No. 10, pp: 5280-5290

5287

 Figure 2: Comparison of Profit for SSA, ASSA, PSO and APSO.

 Figure 3: Comparison of Number of SLA Violations for SSA, ASSA, PSO and APSO

 Figure 4: Comparison of Number of Task Rejections for SSA, ASSA, PSO and APSO

0

50

100

150

200

250

300

50 100 150 200 250

SSA

ASSA

PSO

APSO

No. of VMs

P
ro

fi
t

0

100

200

300

400

500

600

700

800

50 100 150 200 250

SSA

ASSA

PSO

APSO

No. of VMs

N
o

. o
f

SL
A

V
io

la
ti

o
n

s

0

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250

SSA

ASSA

PSO

APSO

No. of VMs

N
0

. o
f

R
ej

ec
te

d
Ta

sk
s

Jain and Sharma Iraqi Journal of Science, 2023, Vol. 64, No. 10, pp: 5280-5290

5288

 Figure 5: Comparison of Makespan for SSA, ASSA, PSO and APSO

Figure 6: Comparison of Resource Utilization for SSA, ASSA, PSO and APSO

6. Conclusion and future work

This paper describes a budget deadline-based admission control heuristic (ACP) that is

implemented at the SaaS layer. It guarantees to reduce SLA violations and task rejections by

rejecting infeasible tasks before SLA establishment. The proposed work also incorporates

penalty costs that affect the profit of the provider. Finally, a SLA is created for each selected

task, and they are scheduled in such a way that budget and deadline constraints are met.

According to simulation results, the proposed ACP and scheduling can significantly increase

the profit of SaaS provider resource utilization while also satisfying the user by meeting SLA

parameters and balancing time frames. In future work, we would extend the work by improving

task scheduling that optimizes QoS parameters like throughput, load balancing, and energy

consumption.

Conflict of interest

 The authors declare that they have no conflicts of interest.

0

2

4

6

8

10

12

14

16

18

20

50 100 150 200 250

SSA

ASSA

PSO

APSO

No. of VMs

M
ak

es
p

an

0

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200 250

SSA

ASSA

PSO

APSOR
e

so
u

rc
e

U
ti

liz
at

io
n

No. of VMs

Jain and Sharma Iraqi Journal of Science, 2023, Vol. 64, No. 10, pp: 5280-5290

5289

References

[1] Yeo, Chee Shin, and Rajkumar Buyya, “Service level agreement based allocation of cluster

resources: Handling penalty to enhance utility,” In 2005 IEEE International Conference on Cluster

Computing, pp. 1-10. IEEE, 2005.

[2] Cherkasova, Ludmila, and Peter Phaal, “Session-based admission control: A mechanism for peak

load management of commercial web sites,” IEEE Transactions on computers 51, no. 6 (2002):

669-685.

[3] Zhao, Yali, Rodrigo N. Calheiros, Athanasios V. Vasilakos, James Bailey, and Richard O. Sinnott,

“Profit maximization and time minimization admission control and resource scheduling for cloud-

based big data analytics-as-a-service platforms,” In International Conference on Web Services, pp.

26-47. Springer, Cham, 2019.

[4] Leontiou, Nikolaos, Dimitrios Dechouniotis, and Spyros Denazis, “Adaptive admission control of

distributed cloud services,” In 2010 International Conference on Network and Service

Management, pp. 318-321. IEEE, 2010.

[5] He, Yunlong, Jun Huang, Qiang Duan, Zi Xiong, Juan Lv, and Yanbing Liu, “A novel admission

control model in cloud computing,” arXiv preprint arXiv:1401.4716 (2014).

[6] Konstanteli, Kleopatra, Theodora Varvarigou, and Tommaso Cucinotta, “Probabilistic admission

control for elastic cloud computing,” In 2011 IEEE International Conference on Service-Oriented

Computing and Applications (SOCA), pp. 1-4. IEEE, 2011.

[7] Carvalho, Marcus, Francisco Brasileiro, Raquel Lopes, Giovanni Farias, Alessandro Fook, Joao

Mafra, and Daniel Turull, “Multi-dimensional admission control and capacity planning for IaaS

clouds with multiple service classes,” In 2017 17th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGRID), pp. 160-169. IEEE, 2017.

[8] Reig Ventura, Gemma, Javier Alonso López, and Jordi Guitart Fernández, “Deadline constrained

prediction of job resource requirements to manage high-level SLAs for SaaS cloud providers,”

(2010).

[9] Xiong, Pengcheng, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Calton Pu, and Hakan HacigümüŞ,

“ActiveSLA: a profit-oriented admission control framework for database-as-a-service providers,”

In Proceedings of the 2nd ACM Symposium on Cloud Computing, pp. 1-14. 2011.

[10] Dimopoulos, Stratos, Chandra Krintz, and Rich Wolski, “Pythia: Admission control for multi-

framework, deadline-driven, big data workloads,” In 2017 IEEE 10th International Conference on

Cloud Computing (CLOUD), pp. 488-495, 2017.

[11] Yuan, Haitao, Jing Bi, Wei Tan, and Bo Hu Li, “CAWSAC: Cost-aware workload scheduling and

admission control for distributed cloud data centers,” IEEE Transactions on Automation Science

and Engineering 13, no. 2, pp. 976-985, 2015.

[12] Shi, Jiyuan, Junzhou Luo, Fang Dong, Jinghui Zhang, and Junxue Zhang, “Elastic resource

provisioning for scientific workflow scheduling in cloud under budget and deadline

constraints,” Cluster Computing 19, no. 1, pp. 167-182, 2016.

[13] Zheng, Wei, and Rizos Sakellariou, “Budget-deadline constrained workflow planning for

admission control,” Journal of grid computing 11, no. 4, pp. 633-651, 2013.

[14] Hoang, Ha Nguyen, Son Le Van, Han Nguyen Maue, and Cuong Phan Nhat Bien, “Admission

control and scheduling algorithms based on ACO and PSO heuristic for optimizing cost in cloud

computing,” In Recent Developments in Intelligent Information and Database Systems, pp. 15-28.

Springer, Cham, 2016.

[15] Khojasteh, Haleh, and Jelena Mišić, “Task admission control policy in cloud server pools based on

task arrival dynamics,” Wireless Communications and Mobile Computing 16, no. 11, pp.1363-

1376, 2016.

[16] Malawski, Maciej, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski, “Algorithms for cost-and

deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds,” Future

Generation Computer Systems 48, pp. 1-18, 2015.

[17] Leontiou, Nikolaos, Dimitrios Dechouniotis, and Spyros Denazis, “Adaptive admission control of

distributed cloud services,” In 2010 International Conference on Network and Service

Management, pp. 318-321. IEEE, 2010.

Jain and Sharma Iraqi Journal of Science, 2023, Vol. 64, No. 10, pp: 5280-5290

5290

[18] Wu, Linlin, Saurabh Kumar Garg, and Rajkumar Buyya, “SLA-based admission control for a

Software-as-a-Service provider in Cloud computing environments,” Journal of Computer and

System Sciences 78, no. 5, pp. 1280-1299, 2012.

[19] Choudhary, Sandeep, and Nanhay Singh, “Analysis of Security-Based Access Control Models for

Cloud Computing,” International Journal of Cloud Applications and Computing (IJCAC) 12, 1,

pp. 1-19, 2022.

[20] Huang, Jiwei, et al, “Dynamic admission control and resource allocation for mobile edge

computing enabled small cell network,” IEEE Transactions on Vehicular Technology 71, 2, pp.

1964-1973, 2021.

[21] Sathya, A., and S. Raja, “Privacy preservation-based access control intelligence for cloud data

storage in smart healthcare infrastructure,” Wireless Personal Communications 118, 4, pp. 3595-

3614, 2021.

[22] Amazon EC2 Pricing. https://aws.amazon.com/ec2/pricing/.

[23] Jain, Richa, and Neelam Sharma, “A Deadline-Constrained Time-Cost-Effective Salp Swarm

Algorithm for Resource Optimization in Cloud Computing,” International Journal of Applied

Metaheuristic Computing (IJAMC) 13, no. 1, pp. 1-21, 2022.

[24] Calheiros, Rodrigo N., Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajkumar Buyya,

“CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation

of resource provisioning algorithms,” Software: Practice and experience 41, no. 1, pp. 23-50,

2011.

[25] Eberhart, Russell, and James Kennedy, “A new optimizer using particle swarm theory,” MHS'95.

Proceedings of the sixth international symposium on micro machine and human science. IEEE,

1995.

[26] Mirjalili, Seyedali, et al, “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design

problems,” Advances in engineering software 114, pp. 163-191, 2017.

