DOI: 10.24996/ijs.2023.64.2.29

ISSN: 0067-2904

Orthogonal Generalized Higher k-Derivation on Semi Prime Γ-Rings

Salah Mehdi Salih, Hajer Hamed Abd-Ali*

Department of mathematics, College of Education, AL-Mustansirya University, Baghdad, Iraq

Received: 12/3/2022 Accepted: 3/6/2022 Published: 28/2/2023

Abstract

The definition of orthogonal generalized higher k-derivation is examined in this paper and we introduced some of its related results.

Key words: Semi prime Γ -Ring, k-derivation, higher k-derivations, orthogonal, generalized higher k-derivation.

Γ على الحلقات شبه الاولية من النمط κ على الحلقات شبه الاولية من النمط

صلاح مهدي صالح , هاجر حامد عبدعلي*

قسم الرياضيات , كلية التربية ,الجامعة المستنصرية ,بغداد , العراق

الخلاصة

في هذا البحث سوف ندرس مفهوم تعامد تعميمات المشتقات العليا من النمط k على الحلقات شبه الاولية من النوع Γ ودراسة بعض الخصائص المتعلقة بها.

Introduction

The definition of Γ -ring was introduced for the first time in [4] and it was circulated in [2]. The definition of prime Γ -ring and semi-prime Γ -ring was introduced in [6]. The definition of 2-torsion free ring was introduced in [2]. In 1966 Kandamar introduced k-derivation and Jordan k-derivation on Γ -ring in [3]. The definition of higher k-derivations and Jordan higher k-derivations on Γ -rings presented in [5]. In [1], Ashraf and Jamal defined orthogonal derivations in Γ -ring . Orthogonal higher K-derivation on semiprime Γ -rings introduced in [7]. One of must important result in our study is the following: Let M be 2-torsion free semiprime Γ -ring , $D = (D_n)_{i \in N}$ and $G = (G_n)_{i \in N}$ generalized higher K-derivation, where $K = (K_i)_{i \in N}$ family of additive mappings on Γ with associated higher K-derivation $d = (d_i)_{i \in N}$ and $g = (g_i)_{i \in N}$, respectively, if $D_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(y) = G_n(y)K_n(\Gamma)MK_n(\Gamma)G_n(x)$ then $(D_n - G_n)$ and $(D_n + G_n)$ are orthogonal

1. Orthogonal Generalized K-Derivations on Semi-prime Γ-Rings

In this paper we need the following lemma

*Email: hajerhamed35@uomustansiriyah.edu.iq

Lemma 1.1: [8]

Let M be a 2-torsion free semi-prime Γ -ring and $a, b \in M$, then the following conditions are equivalent.

- (1) $a\Gamma x\Gamma b = 0$, for all $x \in M$.
- (2) $b\Gamma x\Gamma a = 0$, for all $x \in M$.
- (3) $a\Gamma x\Gamma b + b\Gamma x\Gamma a = 0$, for all $x \in M$.

If one of the above conditions is fulfilled, then $a\Gamma b = b\Gamma a = 0$.

Definition 1.2

Two generalized higher K-derivation $D=(D_i)_{i\in N}$ and $G=(G_i)_{i\in N}$ defined on Γ -ring M, where $K=(K_i)_{i\in N}$ family of additive mappings on Γ , are called orthogonal if for every $n\in N$ and $x,y\in M$ $D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y)=0=G_n(y)K_n(\Gamma)MK_n(\Gamma)D_n(x)$, where $D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y)=\sum_{i=1}^n D_i(x)K_i(\Gamma)MK_i(\Gamma)G_i(y)$.

Example 1.3

Let $D=(D_i)_{i\in N}$ and $G=(G_i)_{i\in N}$ be two generalized higher K-derivations on Γ - ring M associated with K-derivations $d=(d_i)_{i\in N}$ and $g=(g_i)_{i\in N}$ on M . Let $S=M\times M$, we define $D_n = (D_i)_{i\in N}$, $G_n = (G_i)_{i\in N}$ are generalized higher K-derivations on S as $D_n(x,y) = (D_n(x),0)$

$$G_n(x, y) = (0, G_n(y))$$

$$D_{n}(x,y)K_{n}(\Gamma)(z,w)K_{n}(\Gamma)G_{n}(m,v) = (D_{n}(x),0)K_{n}(\Gamma)(z,w)K_{n}(\Gamma)(0,G_{n}(v)) = (0,0)$$

$$G_{n}(m,v)K_{n}(\Gamma)(z,w)K_{n}(\Gamma)D_{n}(x,y) = (0,G_{n}(v))K_{n}(\Gamma)(z,w)K_{n}(\Gamma)(D_{n}(x),0) = (0,0).$$

Therefore D_n and G_n are orthogonal.

Theorem 1.4

Let $D=(D_i)_{i\in N}$ and $G=(G_i)_{i\in N}$ be two generalized higher k-derivations with associated higher K-derivations $d=(d_i)_{i\in N}$ and $g=(g_i)_{i\in N}$, respectively where D_n and G_n are commutative , if D_n and G_n are orthogonal then the following hold:

1)
$$D_n(x)k_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)D_n(x)$$
 hence
$$D_n(x)K_n(\Gamma)G_n(y) + G_n(y)K_n(\Gamma)D_n(x) = 0,$$

- 2) d_n and G_n are orthogonal higher K derivation and $d_n(x)K_n(\Gamma)G_n(y) = G_n(y)K_n(\Gamma)d_n(x) = 0$ 9
- 3) D_n and g_n are orthogonal higher K derivations and $g_n(x)K_n(\Gamma)D_n(y) = D_n(y)K_n(\Gamma)g_n(x) = 0$
- 4) d_n and g_n are orthogonal higher K derivations ,
- 5) $d_n G_n = G_n d_n = 0$ and $g_n D_n = D_n g_n = 0$,
- (6) $D_n G_n = G_n D_n = 0$.
- 1) D_n and G_n are orthogonal then $D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)MK_n(\Gamma)D_n(x)$.

By lemma 1.1

$$D_n(x)k_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)D_n(x).$$

Hence $D_n(x)K_n(\Gamma)G_n(y) + G_n(y)K_n(\Gamma)D_n(x) = 0$

Proof 2

By (1)
$$D_n(x)K_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)D_n(x)$$

 $\sum_{i=1}^{n} D_i(x) K_i(\alpha) G_i(y) = 0$

Replace x by $m\beta x$

$$\sum_{i=1}^n D_i(m\beta x) K_i(\alpha) G_i(y) = 0$$

$$\sum_{i=1}^{n-1} D_i(m) K_i(\beta) d_i(x) K_i(\alpha) G_i(y) = 0$$

Replace $D_i(m)$ by $d_i(x)K_i(\alpha)G_i(y)$

```
\sum_{i=1}^{n} d_i(x) K_i(\alpha) G_i(y) K_i(\beta) d_i(x) K_i(\alpha) G_i(y) = 0
Replace K_i(\beta) by K_i(\beta)mK_i(\beta)
 \sum_{i=1}^{n} d_i(x) K_i(\alpha) G_i(y) K_i(\beta) m K_i(\beta) d_i(x) K_i(\alpha) G_i(y) = 0
Since M is semiprime \sum_{i=1}^{n} d_i(x) K_i(\alpha) G_i(y) = 0
d_n(x)K_n(\alpha)G_n(y)=0
G_n is commuting G_n(\ )K_n(\Gamma)d_n(x)=0.
Proof (3)
By (1) D_n(x)k_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)D_n(x)
G_n(y)K_n(\Gamma)D_n(x) = 0
 \sum_{i=1}^{n} G_i(x) K_i(\alpha) D_i(y) = 0
Replace x by mβx
 \sum_{i=1}^{n} G_i(m\beta x) K_i(\alpha) D_i(y) = 0
 \sum_{i=1}^{n} G_i(m)K_i(\beta)g_i(x)K_i(\alpha)D_i(y) = 0
Replace G_i(m) by g_i(x)K_i(\alpha)D_i(y)
\sum_{i=1}^{n} g_i(x) K_i(\alpha) D_i(y) K_i(\beta) g_i(x) K_i(\alpha) D_i(y) = 0
Replace K_i(\beta) by K_i(\beta)mK_i(\beta)
 \sum_{i=1}^{n} g_i(x) K_i(\alpha) D_i(y) K_i(\beta) m K_i(\beta) g_i(x) K_i(\alpha) D_i(y) = 0
Since M is semiprime \sum_{i=1}^{n} g_i(x) K_i(\alpha) D_i(y) = 0
g_n(x)K_n(\alpha)D_n(y) = 0
D_n is commuting D_n(y)K_n(\Gamma)g_n(x) = 0.
Proof (4)
By (1) D_n(x)K_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)D_n(x)
\sum_{i=1}^{n} D_i(x) K_i(\alpha) G_i(y) = 0
Replace x by m\beta x and y by w\beta y
 \sum_{i=1}^{n} D_{i}(m\beta x) K_{i}(\alpha) G_{i}(w\beta y) = 0
 \sum_{i=1}^{n} D_i(m) K_i(\beta) d_i(x) K_i(\alpha) G_i(w) K_i(\beta) g_i(y) = 0
 \sum_{i=1}^{n} d_i(x) K_i(\beta) D_i(m) K_i(\alpha) G_i(w) K_i(\beta) g_i(y) = 0
Replace D_i(m) by g_i(y) and G_i(w) by d_i(x)
 \sum_{i=1}^{n} d_i(x) K_i(\beta) g_i(y) K_i(\alpha) d_i(x) K_i(\beta) g_i(y) = 0
Replace K_i(\alpha) by K_i(\alpha)mK_i(\alpha)
\sum_{i=1}^{n} d_i(x) K_i(\beta) g_i(y) K_i(\alpha) m K_i(\alpha) d_i(x) K_i(\beta) g_i(y) = 0
Since M semiprime
 \sum_{i=1}^{n} d_i(x) K_i(\beta) g_i(y) = 0
d_n(x)K_n(\Gamma)g_n(y) = 0
By lemma 1.1
                d_n(x)K_n(\Gamma)MK_n(\Gamma)g_n(y) = 0 and g_n(y)K_n(\Gamma)MK_n(\Gamma)d_n(x) = 0
Hence d_n and g_n are orthogonal
Proof (5)
By (2) d_n(x)K_n(\Gamma)G_n(y) = 0
 \sum_{i=1}^{n} d_i(x) K_i(\alpha) G_i(y) = 0
 \sum_{i=1}^{n} G_i(d_i(x)K_i(\alpha)G_i(y)) = 0
 \sum_{i=1}^{n} G_i(d_i(x)) K_i(\alpha) g_i(G_i(y)) = 0
 \sum_{i=1}^{n} G_i(d_i(x)) K_i(\alpha) G_i(g_i(y)) = 0
Replace g_i(y) by d_i(x)
\sum_{i=1}^{n} G_i(d_i(x)) K_i(\alpha) G_i(d_i(x)) = 0
Replace K_i(\alpha) by K_i(\alpha)mK_i(\alpha)
 \sum_{i=1}^{n} G_i(d_i(x)) K_i(\alpha) m K_i(\alpha) G_i(d_i(x)) = 0
Since M is semiprime \sum_{i=1}^{n} G_i(d_i(x)) = 0
```

$$G_{n}d_{n} = 0$$
By (2) $G_{n}(y)K_{n}(\Gamma)d_{n}(x) = 0$

$$\sum_{i=1}^{n} G_{i}(x)K_{i}(\alpha)d_{i}(y) = 0$$

$$\sum_{i=1}^{n} G_{i}(x)K_{i}(\alpha)d_{i}(y) = 0$$

$$\sum_{i=1}^{n} d_{i}(G_{i}(x)K_{i}(\alpha)d_{i}(y)) = 0$$

$$\sum_{i=1}^{n} d_{i}(G_{i}(x))K_{i}(\alpha)d_{i}(d_{i}(y)) = 0$$
Replace $d_{i}(y)$ by $G_{i}(x)$

$$\sum_{i=1}^{n} d_{i}(G_{i}(x))K_{i}(\alpha)d_{i}(G_{i}(x)) = 0$$
Replace $K_{i}(\alpha)$ by $K_{i}(\alpha)mK_{i}(\alpha)$

$$\sum_{i=1}^{n} d_{i}(G_{i}(x))K_{i}(\alpha)mK_{i}(\alpha)d_{i}(G_{i}(x)) = 0$$
Replace $K_{i}(\alpha)$ by $K_{i}(\alpha)mK_{i}(\alpha)d_{i}(G_{i}(x)) = 0$
Since M is semiprime
$$\sum_{i=1}^{n} d_{i}(G_{i}(x)) = 0$$

$$d_{n}G_{n} = 0$$
By (3) $G_{n}(x)K_{n}(\Gamma)D_{n}(y) = 0$

$$\sum_{i=1}^{n} G_{i}(x)K_{i}(\alpha)D_{i}(y) = 0$$

$$\sum_{i=1}^{n} D_{i}(g_{i}(x))K_{i}(\alpha)d_{i}(D_{i}(y)) = 0$$

$$\sum_{i=1}^{n} D_{i}(g_{i}(x))K_{i}(\alpha)D_{i}(d_{i}(y)) = 0$$
Replace $d_{i}(y)$ by $G_{i}(x)$

$$\sum_{i=1}^{n} D_{i}(g_{i}(x))K_{i}(\alpha)D_{i}(g_{i}(x)) = 0$$
Replace $K_{i}(\alpha)$ by $K_{i}(\alpha)mK_{i}(\alpha)$

$$\sum_{i=1}^{n} D_{i}(g_{i}(x))K_{i}(\alpha)d_{i}(g_{i}(x)) = 0$$
Replace $K_{i}(\alpha)$ by $K_{i}(\alpha)mK_{i}(\alpha)D_{i}(g_{i}(x)) = 0$
Since M is semiprime
$$\sum_{i=1}^{n} D_{i}(g_{i}(x))K_{i}(\alpha)G_{i}(g_{i}(y)) = 0$$

$$\sum_{i=1}^{n} D_{i}(x)K_{i}(\alpha)G_{i}(y) = 0$$

$$\sum_{i=1}^{n} G_{i}(D_{i}(x))K_{i}(\alpha)G_{i}(g_{i}(y)) = 0$$
Replace $G_{i}(y)$ by $D_{i}(x)$

$$\sum_{i=1}^{n} G_{i}(D_{i}(x))K_{i}(\alpha)G_{i}(D_{i}(x)) = 0$$
Replace $K_{i}(\alpha)$ by $K_{i}(\alpha)mK_{i}(\alpha)$

$$\sum_{i=1}^{n} G_{i}(D_{i}(x))K_{i}(\alpha)G_{i}(g_{i}(y)) = 0$$
Replace $K_{i}(\alpha)$ by $K_{i}(\alpha)mK_{i}(\alpha)G_{i}(D_{i}(x)) = 0$
Replace $G_{i}(\alpha)$ by $G_{i}(\alpha)$
Replace $G_{i}(\alpha)$ by G_{i}

$$\sum_{i=1}^{n} G_i(D_i(x)) = 0$$

By the same way we get
 $G_n D_n = 0$, and $D_n G_n = 0$.

Theorem 1.5

Let M be a 2-torsion free semiprime Γ -ring, $D=(D_n)_{i\in N}$ and $G=(G_n)_{i\in N}$ generalized higher K-derivations with associated higher K-derivation $d=(d_i)_{i\in N}$ and $g=(g_i)_{i\in N}$ respectively then D_n and G_n are orthogonal if and only if for all $x,y\in M$

$$(1) D_n(x)K_n(\Gamma)G_n(y) + G_n(y)K_n(\Gamma)D_n(x) = 0.$$

 $(2) d_n(x)K_n(\Gamma)G_n(y) + g_n(y)K_n(\Gamma)D_n(x) = 0.$

Where D_n and G_n are commuting mappings

Proof:

Suppose $D_n(x)K_n(\Gamma)G_n(y) + G_n(y)K_n(\Gamma)D_n(x) = 0$

Replace x by xαy

 $\sum_{i=1}^{n} D_i(x\alpha y) K_i(\alpha) G_i(y) + G_i(y) K_i(\alpha) D_i(x\alpha y) = 0$

 $\sum_{i=1}^{n} D_i(x) K_i(\alpha) d_i(y) K_i(\alpha) G_i(y) + G_i(y) K_i(\alpha) D_i(x) K_i(\alpha) d_i(y) = 0$

 $\sum_{i=1}^{n} D_{i}(x) K_{i}(\alpha) d_{i}(y) K_{i}(\alpha) G_{i}(y) + G_{i}(y) K_{i}(\alpha) d_{i}(y) K_{i}(\alpha) D_{i}(x) = 0$

By lemma 1.1

 $\sum_{i=1}^{n} D_i(x) K_i(\alpha) d_i(y) K_i(\alpha) G_i(y) = 0$

 $\sum_{i=1}^{n} G_i(y) K_i(\alpha) d_i(y) K_i(\alpha) D_i(x) = 0$

Hence D_n and G_n are orthogonal

Conversely

Let D_n and G_n are orthogonal

 $D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y)=0$

 $\sum_{i=1}^{n} D_i(x) K_i(\alpha) M K_i(\alpha) G_i(y) = 0$

By lemma 1.1

 $D_n(x)K_n(\Gamma)G_n(y) = 0$ and $G_n(y)K_n(\Gamma)D_n(x) = 0$

Hence, $D_n(x)K_n(\Gamma)G_n(y) + G_n(y)K_n(\Gamma)D_n(x) = 0$

Also $D_n(x)K_n(\Gamma)G_n(y) = 0$

 $\sum_{i=1}^{n} D_i(x) K_i(\alpha) G_i(y) = 0$

 $\sum_{i=1}^{n} d_i(D_i(x)K_i(\alpha)G_i(y)) = 0$

 $\sum_{i=1}^{n} d_i (D_i(x)) K_i(\alpha) d_i (G_i(y)) = 0$

 $\sum_{i=1}^{n} d_i (D_i(x)) K_i(\alpha) G_i (d_i(y)) = 0$

Replace $D_i(x)$ by x and $d_i(y)$ by y

 $\sum_{i=1}^{n} d_i(x) K_i(\alpha) G_i(y) = 0$

 $d_n(x)K_n(\Gamma)G_n(y) = 0$

And

 $G_n(x)K_n(\Gamma)D_n(y) = 0$

 $\sum_{i=1}^{n} G_i(x) K_i(\alpha) D_i(y) = 0$

 $\sum_{i=1}^{n} g_i(G_i(x)K_i(\alpha)D_i(y)) = 0$

 $\sum_{i=1}^{n} g_i(G_i(x)) K_i(\alpha) g_i(D_i(y)) = 0$

 $\sum_{i=1}^{n} g_i(G_i(x)) K_i(\alpha) D_i(g_i(y)) = 0$

Replace $G_i(x)$ by y and $g_i(y)$ by x

 $\sum_{i=1}^{n} g_i(y) K_i(\alpha) D_i(x) = 0$

 $g_n(y)K_n(\Gamma)D_n(x) = 0$

 $d_n(x)K_n(\Gamma)G_n(y) + g_n(y)K_n(\Gamma)D_n(x) = 0.$

Theorem 1.6

Let M be a 2-torsion free semiprime Γ -ring, $D=(D_n)_{i\in N}$ and $G=(G_n)_{i\in N}$ generalized higher K-derivations with associated higher K-derivation $d=(d_i)_{i\in N}$ and $g=(g_i)_{i\in N}$ respectively then D_n and G_n are orthogonal if and only if for all $x,y\in M$

$$D_n(x)K_n(\Gamma)G_n(y) = d_n(x)K_n(\Gamma)G_n(y) = 0$$

Where D_n and G_n are commutative

Proof

Suppose $D_n(x)K_n(\Gamma)G_n(y) = 0$

Replace x by xαy

 $\sum_{i=1}^{n} D_i(x\alpha y) K_i(\alpha) G_i(y) = 0$

 $\sum_{i=1}^{n} D_i(x) K_i(\alpha) d_i(y) K_i(\alpha) G_i(y) = 0$

Since D_n and G_n are commutative $\sum_{i=1}^n G_i(y)K_i(\alpha)d_i(y)K_i(\alpha)D_i(x) = 0$

Hence D_n and G_n are orthogonal

Conversely

 D_n and G_n are orthogonal

 $D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y) = 0$

$$D_n(x)K_n(\Gamma)G_n(y) = 0.$$

By lemma 1.1

And by using the same way we have

 $d_n(x)K_n(\Gamma)G_n(y) = 0$

Theorem 1.7

Let M be a 2-torsion free semiprime Γ -ring, $D=(D_n)_{i\in N}$ and $G=(G_n)_{i\in N}$ generalized higher K-derivations with associated higher K-derivation $d=(d_i)_{i\in N}$ and $g=(g_i)_{i\in N}$ respectively then D_n and G_n are orthogonal if and only if for all $x,y\in M$

$$D_n(x)K_n(\Gamma)G_n(y) = 0$$
 and $d_nG_n = d_ng_n = 0$

Proof

Suppose D_n and G_n are orthogonal.

 $D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y)=0$

$$D_n(x)K_n(\Gamma)G_n(y) = 0$$

By lemma 1.1

 $\sum_{i=1}^{n} D_i(x) K_i(\alpha) G_i(y) = 0$

 $\sum_{i=1}^{n} d_i(D_i(x)K_i(\alpha)G_i(y)) = 0$

 $\sum_{i=1}^{n} d_i (D_i(x)) K_i(\alpha) d_i (G_i(y)) = 0$

Replace $D_i(x)$ by $G_i(y)$

 $\sum_{i=1}^{n} d_i (G_i(y)) K_i(\alpha) d_i (G_i(y)) = 0$

Replace $K_i(\alpha)$ by $K_i(\alpha)mK_i(\alpha)$

 $\sum_{i=1}^{n} d_i (G_i(y)) K_i(\alpha) m K_i(\alpha) d_i (G_i(y)) = 0$

Since M is semiprime

$$\sum_{i=1}^{n} d_i \big(G_i(y) \big) = 0$$

$$d_nG_n=0$$

And by theorem 3.1 [7]

 $d_n g_n = 0$

Conversely

 $D_n(x)K_n(\Gamma)G_n(y) = 0$

 $\sum_{i=1}^{n} D_i(x) K_i(\alpha) G_i(y) = 0$

Replace $K_i(\alpha)$ by $K_i(\alpha)mK_i(\alpha)$

 $\sum_{i=1}^{n} D_i(x) K_i(\alpha) m K_i(\alpha) G_i(y) = 0$

By lemma 1.1

 $\sum_{i=1}^{n} G_i(x) K_i(\alpha) m K_i(\alpha) D_i(y) = 0$

$$D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(y) = 0 = G_n(y)K_n(\Gamma)MK_n(\Gamma)D_n(x) = 0.$$

Hence D_n and G_n are orthogonal

Theorem 1.8

Let M be a 2-torsion free semiprime Γ -ring, $D = (D_n)_{i \in \mathbb{N}}$ and $G = (G_n)_{i \in \mathbb{N}}$ generalized higher K-derivations with associated higher K-derivation $d = (d_i)_{i \in \mathbb{N}}$ and $g = (g_i)_{i \in \mathbb{N}}$ respectively if $D_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(y) = G_n(y)K_n(\Gamma)MK_n(\Gamma)G_n(x)$

then $(D_n - G_n)$ and $(D_n + G_n)$ are orthogonal

Proof

$$(D_n + G_n)K_n(\Gamma)MK_n(\Gamma)(D_n - G_n)(x) + (D_n - G_n)K_n(\Gamma)MK_n(\Gamma)(D_n + G_n)(x)$$

$$(D_n(x) + G_n(x))K_n(\Gamma)MK_n(\Gamma)(D_n(x) - G_n(x)) + (D_n(x) - G_n(x))K_n(\Gamma)MK_n(\Gamma)(D_n(x) + G_n(x))$$

$$G_n(x)$$

$$= (D_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x)) - (D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x)) + (G_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x)) - (G_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x)) + (D_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x))$$

$$-(G_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x)) + (D_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x)) + (D_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x))$$

$$+ (C_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x)) + (C_n(x)K_n(\Gamma)MK_n(\Gamma)C_n(x))$$

$$-(G_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x)) - (G_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x))$$

=0

By lemma 1.1

$$(D_n + G_n)K_n(\Gamma)MK_n(\Gamma)(D_n - G_n)(x) = 0$$

And
$$(D_n - G_n)K_n(\Gamma)MK_n(\Gamma)(D_n + G_n)(x) = 0$$
.

Hence $(D_n - G_n)$ and $(D_n + G_n)$ are orthogonal.

Theorem 1.9

Let M be a 2-torsion free semiprime Γ -ring, $D=(D_n)_{i\in N}$ and $G=(G_n)_{i\in N}$ generalized higher K-derivations with associated higher K-derivation $d=(d_i)_{i\in N}$ and $g=(g_i)_{i\in N}$ respectively if $D_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(y)=g_n(y)K_n(\Gamma)MK_n(\Gamma)g_n(x)$ then (D_n-g_n) and (D_n+g_n) are orthogonal.

$$\begin{split} &(D_n+g_n)K_n(\Gamma)MK_n(\Gamma)(D_n-g_n)(x)+(D_n-g_n)K_n(\Gamma)MK_n(\Gamma)(D_n+g_n)(x)\\ &=(D_n(x)+g_n(x))K_n(\Gamma)MK_n(\Gamma)(D_n(x)-g_n(x))\\ &+(D_n(x)-g_n(x))K_n(\Gamma)MK_n(\Gamma)(D_n(x)+g_n(x))\\ &=(D_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x))-(D_n(x)K_n(\Gamma)MK_n(\Gamma)g_n(x))\\ &+(g_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x))\\ &-(g_n(x)K_n(\Gamma)MK_n(\Gamma)g_n(x))+(D_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x))\\ &+(D_n(x)K_n(\Gamma)MK_n(\Gamma)g_n(x))\\ &-(g_n(x)K_n(\Gamma)MK_n(\Gamma)D_n(x))-(g_n(x)K_n(\Gamma)MK_n(\Gamma)g_n(x))=0\\ \text{By lemma } 1.1\\ &(D_n+g_n)K_n(\Gamma)MK_n(\Gamma)(D_n-g_n)(x)=0\\ \text{And } &(D_n-g_n)K_n(\Gamma)MK_n(\Gamma)(D_n+g_n)(x)=0.\\ &\text{Hence } &(D_n-g_n) \ and \ (D_n+g_n) \ are \ orthogonal. \end{split}$$

Theorem 1.10

Let M be a 2-torsion free semiprime Γ -ring, $D=(D_n)_{i\in N}$ and $G=(G_n)_{i\in N}$ generalized higher K-derivations with associated higher K-derivation $d=(d_i)_{i\in N}$ and $g=(g_i)_{i\in N}$ respectively if $d_n(x)K_n(\Gamma)MK_n(\Gamma)d_n(y)=G_n(y)K_n(\Gamma)MK_n(\Gamma)G_n(x)$ then (d_n-G_n) and (d_n+G_n) are orthogonal.

Proof

$$(d_n + G_n)K_n(\Gamma)MK_n(\Gamma)(d_n - G_n)(x) + (d_n - G_n)K_n(\Gamma)MK_n(\Gamma)(d_n + G_n)(x)$$

$$\begin{aligned} &(d_n(x)+G_n(x))K_n(\Gamma)MK_n(\Gamma)(d_n(x)-G_n(x)) \ + (d_n(x)-G_n(x))K_n(\Gamma)MK_n(\Gamma)(d_n(x)+G_n(x)) \\ &= (d_n(x)K_n(\Gamma)MK_n(\Gamma)d_n(x)) - (d_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x)) \\ &\quad + (G_n(x)K_n(\Gamma)MK_n(\Gamma)d_n(x)) \\ &- (G_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x)) + (d_n(x)K_n(\Gamma)MK_n(\Gamma)d_n(x)) \\ &\quad + (d_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x)) \\ &- (G_n(x)K_n(\Gamma)MK_n(\Gamma)d_n(x)) - (G_n(x)K_n(\Gamma)MK_n(\Gamma)G_n(x)) = 0 \end{aligned}$$
 By lemma 1.1
$$(d_n+G_n)K_n(\Gamma)MK_n(\Gamma)(d_n-G_n)(x) = 0$$
 And
$$(d_n-G_n)K_n(\Gamma)MK_n(\Gamma)(d_n+G_n)(x) = 0$$
 Hence
$$(d_n-G_n) \ and \ (d_n+G_n) \ are \ orthogonal,$$

Acknowledgement

The authors would like to thank Mustansiriyah University (<u>www.uomustansiriyah.edu.iq</u>) Baghdad- Iraq for its support in the present work. Special thanks to my supervisor Dr. Salah Mahdi Salih.

References

- [1] M. Ashraf and M. Rashid Jamal, "Orthogonal Derivati On in -rings", *Advance in Algebra*, vol.3, no. 1, pp.1-6, 2010.
- [2] W.E. Barnes, "On the Gamma Rings of Nobusawa", pacific J. Math., vol.18, pp.411-422, 1966.
- [3] H. Kandamar, "The k-derivation of a gamma ring", Turk. J. Math. vol. 24, pp. 221-231, 2000.
- [4] N. Nobusawa, "On a generalization of the ring theory", Osaka J. Math. vol. 1, pp. 81-89, 1964.
- [5] S. M. Salih "On Prime -Rings with Derivations" Ph.D. Thesis dep. of mathematics college of education Al-Mustansirya University, 2010.
- [6] M. Soyt "urk, "Some Generalizations in prime ring with derivation", Ph. D.Thesis, Cumhuriyet Univ. Graduate School of Natural and Applied Sci. Dep. of Math., 1994.
- [7] S. M. Salih, H. H. Abd-Ali "Orthogonal Higher k-Derivations on Semiprime Γ-Rings" to appear.
- [8] S .M. Salih , S. J.Shaker "Orthogonal generalized Symmetric Higher bi-Derivations on Semiprime Γ -Rings" *Iraqi Journal of science*, vol.59, no.2A, pp. 711-723, 2018.