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Abstract. 

      A topological index is a real number that relates to a graph that must be a structural 

invariant. In this paper, we first define a new graph, which is a concept from the 

coronavirus, called a corona graph. We give some theoretical results for the Wiener 

and the hyper Wiener index of a graph. Moreover, we calculate some topological 

indices degree-based on a corona graph. In addition, we are introducing a new 

topological index  𝑆𝐾4, which is inspired by the definition of the 𝑆𝐾1 index. 
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𝝁 لمؤشر وينر للبيان كورونا  حساب قيم  −
    

 2ن رشيدا، بيم1*ي رسولفك

 زاخو، دهوك، العراق   ، جامعة  العلوم قسم الرياضيات، كلية 1
 قسم الرياضيات ، كلية التربية، جامعة صلاح الدين، اربيل ، العراق 2

 
 الخلاصة 
حقيقية مرتبطة بالبيانات ذات تركيبات ثابتة. يكمن الهدف من هذا   المؤشرات التبولوجية هي اعدادأن         

البحث في تعريف بيان جديد لها شكل معين اسميناها بيان الكورونا تيمنا بفايروس الكورونا. لقد وجدنا نتائج  
الكرونا الجديد وقمنا بحساب المؤشرات  نظرية جديدة لمؤشرات وينر, هايبر وينر ومؤشرات تبولوجية اخرى لبيان  

بالاعتماد على    𝑆𝐾4ؤشر  بم وجدنا مؤشر تبلوجي جديد سميناهابالإضافة ان    .التبلوجية لاساس درجة الرأس
   التبلوجي المعرف سايقا.  𝑆𝐾1 تعريف المؤشر

 

1. Introduction 

     The topological index of a chemical molecule is a number that can be used to characterize 

the molecule and forecast specific physiochemical parameters such as boiling point, molecular 

weight, density, refractive index, and so on [1, 2]. Topological indices are divided into several 

groups. Some of them are distance-based topological indices, degree-based topological indices, 

and counting-related polynomials and indices of graphs. The degree-based topological indices 

are the most essential in chemical graph theory of all the topological indices. 

     In this work, all graphs are simple and finite undirected, linked, loop less, and without 

numerous edges. Consider the graph 𝐺 =  (𝑉, 𝐸) with 𝑝 vertices and 𝑞 edges. The number of 

vertices adjacent to a vertex 𝑢 ∈ 𝑉 (𝐺) is denoted by 𝑑𝑔𝑟(𝑢). A distance 𝑑(𝑢, 𝑣)  between two 

distinct vertices 𝑢, 𝑣 of a graph 𝐺 is the smallest length of a path between 𝑢 and 𝑣 in 𝐺. The 
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diameter of 𝐺, denoted by Di (G), is defined as the greatest distance between any two vertices 

of G, which is given as follows: 𝐷𝑖 (𝐺)  =  𝑚𝑎𝑥{ 𝑑(𝑢, 𝑣), ∀ (𝑢, 𝑣) ∈  𝑉(𝐺)}. Finally, we define 

𝐷𝐺(𝜆) as the number of unordered pairs of vertices in 𝐺 that are exactly 𝜆 distances for non-

negative integers 𝜆 = 1, 2, … , 𝐷𝑖(𝐺). The Wiener index, named after scientist Harold Wiener, 

is one of the most well-known topological descriptors, which is the oldest and most thoroughly 

examined use of topological indices chemistry in the study of paraffin boiling points, and the 

topological index is called a Wiener index. The wiener index [3] of a connected graph is defined 

as the total distance between all vertex pairs. The wiener index has been intensively investigated 

over the last quarter-century because it corresponds strongly with several physicochemical 

aspects of organic molecules. Zadeh and his co-authors [4] proposed a new topological index 

called the Wiener-type invariant of G in order to generalize the standard Wiener index. Gutman 

et al. introduced the first and second Zagreb indices in [5], which initially comes out in a 

topological formula for the total energy of conjugated molecules. These indexes are branching 

indices. The Zagreb indices have been used in research of QSPR and QSAR [6, 7]. For historical 

context, computational methodologies, and mathematical aspects of the Zagreb indices, we 

recommend reading [8, 9, 10, 11]. Inspired by the formulation of the Zagreb indices and their 

wide range of applications, Kulli published the first and second Gourava index of a molecular 

graph [12]. Also, Kulli proposed the multiplicative first and second status Gourava indices of a 

graph, which were inspired by the multiplicative Gourava indices [13]. New degree-based 

topological indices were proposed by Shigehalli and Kanabur, namely 𝑆𝐾,
𝑆𝐾1  𝑎𝑛𝑑 𝑆𝐾2 indexes of a molecular graph G [14]. The 𝑆𝐾, 𝑆𝐾1  𝑎𝑛𝑑 𝑆𝐾2 interval-weighted 

graph indices are then defined [15]. 

 

     In this paper, we deal with a new graph called a coronagraph. The coronagraph is a graph 

obtained from cycle 𝐶𝑡 with vertices 𝑣𝑖 , 𝑖 = 1 to 𝑡, and then by attaching 𝑢𝑗  end vertices, 𝑗 = 1 

to 𝑠 to each of the vertices of 𝐶𝑡  and denoted by 𝒞𝒪𝑡
𝑠, where 𝑡 ≥  3 and 𝑠 ≥  1. A corona graph 

has the same number of vertices and edges as shown in Figure1. Our goal is to compute the  

.𝒞𝒪
𝑡

𝑠
corona graph  previous topological indices for the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Definitions and Results 

Definition 2.1: [3] The wiener index (or wiener 

number) of G is the total W(G) of distances between all pairs of vertices in the graph G, named 

after chemist H. Wiener, who originally analyzed it in 1947 for acyclic topologies: 

𝑊𝑖(𝐺)  =  ∑ 𝐷𝐺(𝜆)𝜆
𝐷𝑖
𝜆≥1  

𝑢3 

𝑢1 

𝑢2 
 

𝑢𝑠 𝑢1 
𝑢2 

Figure 1: The Corona Graph 𝒞𝒪𝑡
𝑠 
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where 𝐷𝐺(𝜆) is the number of pairs of vertices of G that are at a distance 𝜆.  

 

     The hyper-wiener index 𝑊𝑊𝑖 is one of the recently conceived distance-based graph 

invariants which is used as a structure descriptor for predicting physicochemical properties of 

organic compounds (often those significant for pharmacology, agriculture and environment 

protection). Milan Randi'c proposed the hyper-Wiener index of acyclic networks in 1993. Then, 

as a generalization of the Wiener index, Klein et al. [16] expanded Randi'c's notion to all 

connected graphs. Its definition is as follows: 

𝑊𝑊𝑖(𝐺) =  (𝑊𝑖1(𝐺) +𝑊𝑖2(𝐺)). 

  Let 𝑊𝑖𝜇(𝐺) = ∑ 𝐷𝐺(𝜆)𝜆
𝜇𝐷𝑖

𝜆≥1   be the wiener 𝜇-invariant associated with a real number 𝜆 , 

where 𝜇 = 1 is the actual wiener index 𝑊𝑖(𝐺) and if  𝜇 ≥ 2  is the wiener 𝜇-invariant index. 

 

     Firstly, we give some results about the wiener and hyper-wiener indices 𝑊𝑖(𝐺) and 

𝑊𝑊𝑖(𝐺) of general graph G in the following theorems. 

 

Theorem 2.2: Let G be a connected finite simple graph with p vertices, and q edges, then 

1- 𝑊𝑖(𝐺) = p2 – p – q + 𝐷𝐺(3) + 2𝐷𝐺(4) + ⋯+ (𝐷𝑖 − 1)𝐷𝐺(𝐷𝑖)  if 𝐷𝑖(𝐺)  ≥  2. 

2- 𝑊𝑖(𝐺)= p2 – p – q, for 𝐷𝑖(𝐺) = 2. 

 

Proof: From the definition of wiener 𝜇 -invariant  𝑊𝑖𝜇(𝐺) = ∑ 𝐷𝐺(𝜆)𝜆
𝜇𝐷𝑖

𝜆≥1 , for 𝜇 = 1, we get  

𝑊𝑖(𝐺) = 𝑊𝑖1(𝐺) = ∑ 𝐷𝐺(𝜆)𝜆
1𝐷𝑖

𝜆≥1  

            = 𝐷𝐺(1)+ 2𝐷𝐺(2) + 3𝐷𝐺(3)  + ⋯+ 𝐷𝑖𝐷𝐺(𝐷𝑖)                                                                  ….. 

(1) 

We have 𝐷𝐺(1) + 𝐷𝐺(2) + 𝐷𝐺(3) + ⋯+ 𝐷𝐺(𝐷𝑖) = (
𝑝
2
) =  

𝑝(𝑝−1)

2
 , since  𝐷𝐺(1) = q, for 𝜇 = 1, 

we get  

𝐷𝐺(2) = 
𝑝(𝑝−1)

2
− 𝑞 − 𝐷𝐺(3) − ⋯− 𝐷𝐺(Di) by substituting in equation (1)  

𝑊𝑖(𝐺)= q +2( 
𝑝(𝑝−1)

2
− 𝑞 − 𝐷𝐺(3) − ⋯−𝐷𝐺(Di)) + 3𝐷𝐺(3) + ⋯+ 𝐷𝑖𝐷𝐺(𝐷𝑖)     

           = p2 – p – q + 𝐷𝐺(3) + 2𝐷𝐺(4)  + ⋯+ (𝐷𝑖 − 1)𝐷𝐺(𝐷𝑖) . 
For part2, we put Di(G) = 2 then we get the result.  

   

Theorem 2.3: The hyper-wiener index is defined as follows for a finite connected graph G of 

order p and size q:  

𝑊𝑊𝑖(𝐺) =   [3𝑝2 − 3𝑝 − 4𝑞 + 6𝐷𝐺(3) + 14𝐷𝐺(4) + ⋯+ (𝐷𝑖
2 + 𝐷𝑖 − 5)𝐷𝐺(𝐷𝑖)]  

 

Proof: By the formula and definition of hyper-wiener, we have  𝑊𝑊𝑖(𝐺) = (𝑊𝑖1(𝐺) +
𝑊𝑖2(𝐺)). 
The first part 𝑊𝑖1(𝐺) of the formula is the Wiener index itself and proved in Theorem 2.2, and 

to calculate the second part 𝑊𝑖2(𝐺) of the formula, we apply      

 

𝑊𝑖2(𝐺) =∑ 𝐷𝐺(𝜆)𝜆
2𝐷𝑖

𝜆≥1  

             =𝐷𝐺(1)(1)
2 + 𝐷𝐺(2)(2)

2 + 𝐷𝐺(4)(4)
2 +⋯+ 𝐷𝑖2𝐷𝐺(𝐷𝑖)            … (1) 

It is clear that 𝐷𝐺(1) = 𝑞, and 𝐷𝐺(1) + 𝐷𝐺(2) + 𝐷𝐺(3) + 𝐷𝐺(4) + ⋯+ 𝐷𝐺(𝐷𝑖)  =  (
𝑝
2
) =

 
𝑝(𝑝−1)

2
 

Then  𝐷𝐺(2) = 
𝑝(𝑝−1)

2
− 𝑞 − 𝐷𝐺(3) − 𝐷𝐺(4) − ⋯ − 𝐷𝐺(Di) by substituting in (1) 
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𝑊𝑖2(𝐺) = 𝐷𝐺(1) + 4[  
𝑝(𝑝−1)

2
− 𝑞 − 𝐷𝐺(3) −⋯− 𝐷𝐺(Di)] + 9𝐷𝐺(3) + 16𝐷𝐺(4) + ⋯ 

+ 𝐷𝑖2𝐷𝐺(𝐷𝑖) 
              = 𝑞 + 2𝑝2 − 2𝑝 −  4𝑞 − 4𝐷𝐺(3) − 4𝐷𝐺(4) + ⋯− 4𝐷𝐺(Di) + 9𝐷𝐺(3) +
16𝐷𝐺(4) + ⋯+                       𝐷𝑖2𝐷𝐺(𝐷𝑖) 
𝑊𝑖2(𝐺) = 2𝑝

2  − 2𝑝 − 3𝑞 + 5𝐷𝐺(3) + 12𝐷𝐺(4) + ⋯+ (𝐷𝑖
2 − 4)𝐷𝐺(𝐷𝑖) . 

Then 

𝑊𝑊𝑖(𝐺) =  [𝑝2 − 𝑝 − 𝑞 + 𝐷𝐺(3) + 2𝐷𝐺(4) + ⋯+ (𝐷𝑖 − 1)𝐷𝐺(𝐷𝑖) + 2𝑝
2 − 2𝑝 − 3𝑞 +

5(3) + 12𝐷𝐺(4) + ⋯+ (𝐷𝑖
2 − 4)𝐷𝐺(𝐷𝑖),  by simplifying, we get  

 

𝑊𝑊𝑖(𝐺) =  [3𝑝2 − 3𝑝 − 4𝑞 + 6𝐷𝐺(3) + 14𝐷𝐺(4) + ⋯+ (𝐷𝑖
2 + 𝐷𝑖 − 5)𝐷𝐺(𝐷𝑖)]. 

 

  Now we compute wiener, wiener 𝜇-invariant 𝑊𝑖𝜇(𝐺) and hyper-wiener indices of our graph 

and evaluate some distance-based topological indices of the coronagraph. And the diameter of 

the coronagraph is determined by the cycle 𝐶𝑡, where t is odd or even, as follows: 

Di(𝒞𝒪𝑡
𝑠)= {

𝑡+4

2
                𝑖𝑓 𝑡 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑡+3

2
                𝑖𝑓 𝑡 𝑖𝑠 𝑜𝑑𝑑.

  

       

      Then we discuss the distance between any two vertices of the graph 𝒞𝒪𝑡
𝑠, we have distinct 

distances up to the vertices be it an end vertex or attaching vertex of the graph. The distances 

are between 1 and the diameter of the graph. Firstly, we solve the following example of a special 

case of the graph 𝒞𝒪𝑡
𝑠, when 𝑡 = 5 and 𝑠 = 2. 

 

Example1: Let 𝒞𝒪5
2 be a graph of order 15 and size 15 with 10 end vertices, it is a special case 

of the Figure1, then the distance between vertices are 1, 2, 3, 4 (Di(𝒞𝒪5
2)) which is defined as 

follows: 

 

Table1: The distance of the vertices of 〖CO〗_5^2 

𝒅(𝒖, 𝒗) , 𝒖, 𝒗 ∈ 𝑽(𝓒𝓞𝒕
𝒔) No. of pair of vertices 𝑫𝑮(𝝀) 

1 15 

2 30 

3 40 

4 20 

 

To find the wiener index of this graph, we have 

𝑊𝑖(𝒞𝒪5
2) = ∑𝐷𝐺(𝜆)𝜆

𝐷𝑖

𝜆=1

=  15(1) +  30 (2) + 40(3) + 20(4)  = 275. 

     Since this graph 𝐶𝑜𝑡
𝑠 is obtained by cycle graph, where the cycle graph is a simple graph 

with 𝑡 vertices and 𝑞 edges that forms a cycle of length 𝑡, all of the vertices in a cycle graph 

have a degree of two. To begin working on our graph, we must first determine a wiener index 

of the cycle graph, which depends on 𝑡 (the number of vertices) of the cycle. 

Proposition 2.5: Let 𝐶𝑡 be a cyclic graph of order𝑡, then the wiener index of the cycle𝐶𝑡, which 

are defined as follows: 
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𝑊𝑖(𝐶𝑡 ) =  

{
 

 
 𝑡(𝑡2 − 1)

8
            𝑓𝑜𝑟 𝑡 𝑖𝑠 𝑜𝑑𝑑

 𝑡3

8
                       𝑓𝑜𝑟 𝑡 𝑖𝑠 𝑒𝑣𝑒𝑛.

 

Proof: The diameter of the cycle depends on the order 𝑡, which is odd or even two cases: 

Case1: When 𝑡 is odd 

𝑊𝑖(𝐶𝑡 ) = ∑ 𝐷𝐺(𝜆)𝜆 = 𝑡(1) + 𝑡(2) + ⋯… . . +𝑡
(𝑡−1)

2

𝐷𝑖
𝜆=1 ,  

where 𝐷𝑖(𝐶𝑡 ) =  
𝑡−1

2
 

            =  𝑡 ( 1 + 2 + 3 + ⋯+ 
(𝑡−1)

2
) =

 𝑡(𝑡2−1)

8
 

Case2: When 𝑡 is even 

𝑊𝑖(𝐶𝑡 ) = ∑ 𝐷𝐺(𝜆)𝜆 =
𝐷𝑖
𝜆=1 𝑡(1) + 𝑡(2) + ⋯+ 𝑡

(𝑡−2)

2
+ 

𝑡

2
(
𝑡

2
) 

where 𝐷𝑖(𝐶𝑡 ) =  
𝑡

2
 

                        =  𝑡(1 + 2 + 3 + ⋯ . . +
(𝑡−2)

2
) + 

 𝑡2

4
 

                        = 𝑡
 (𝑡2−2𝑡)

8
+
 𝑡2

4
 =  

 𝑡3

8
 

  The minimum (smallest) distance 𝑑(𝑢, 𝑣) for the graph 𝐶𝑜𝑡
𝑠 is 1 and the maximum distance is 

𝐷𝑖(𝐶𝑡) + 2 and the other distance between them, for example for 𝑡 = 11, 𝑠 = 2 in the graph 

𝒞𝒪𝑡
𝑠, Di(𝒞𝒪11

2 ) =
(𝑡−1)

2
+ 2 = 7, as shown in Table 2 bellow: 

 

Table 2: The distance of the vertices of 𝒞𝒪11
2  

𝒅(𝒖, 𝒗) , 𝒖, 𝒗 ∈ 𝑽(𝓒𝓞𝒕
𝒔) No. of pair of vertices 𝑫𝑮(𝝀) 

1 𝑡(𝑠 + 1) 33 

2 𝑡(𝑠 − 1) + 𝑡(𝑠 − 2)  + ⋯+  2𝑡𝑠 + 𝑡 66 

3 𝑡𝑠2 + 2𝑡𝑠 + 𝑡 99 

4 𝑡𝑠2 + 2𝑡𝑠 + 𝑡 99 

5 𝑡𝑠2 + 2𝑡𝑠 + 𝑡 99 

6 𝑡𝑠2 + 2𝑡𝑠 88 

7 𝑡𝑠2 44 

  

Then in general for 𝑡 is odd and 𝑠 ≥  1, we have the following distance in Table 3: 

 

Table 3: The distance between all vertices of the graph  〖CO〗_t^s, where t is odd. 

𝒅(𝒖, 𝒗) , 𝒖, 𝒗 ∈
𝑽(𝓒𝓞𝒕

𝒔) 
No. of pair of vertices 𝑫𝑮(𝝀) 

1 ts 

 

+∑ 𝑑(𝑣𝑖 , 𝑣𝑗),
𝐷𝑖
1  where 𝑣𝑖 and 𝑣𝑗 are the 

vertices of the cycle part of the graph 𝒞𝒪𝑡
𝑠. 

i,j =1, 2, …..t, i<j. 

2 𝑡(𝑠 − 1) + 𝑡(𝑠 − 2) + ⋯+  2𝑡𝑠 

𝟑 ≤ 𝒅(𝒖, 𝒗) ≤
𝒕 + 𝟏

𝟐
 ts2+2ts 

𝒕 + 𝟑

𝟐
 ts2 

 

For 𝑡 is even and 𝑠 ≥  1, we have the following distance in Table 4: 

 

Table 4: The distance between all vertices of the graph  〖CO〗_t^s, where t is even. 
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𝒅(𝒖, 𝒗) , 𝒖, 𝒗 ∈
𝑽(𝓒𝓞𝒕

𝒔) 
No. of pair of vertices 𝑫𝑮(𝝀) 

1  

 

 

+∑ 𝑑(𝑣𝑖 , 𝑣𝑗),
𝐷𝑖
1  where 𝑣𝑖 and 𝑣𝑗 are the 

vertices of the cycle part of the graph 𝒞𝒪𝑡
𝑠. 

i,j =1, 2, …..t, i<j. 

2 𝑡(𝑠 − 1) + 𝑡(𝑠 − 2) + ⋯+  2𝑡𝑠 

𝟑 ≤ 𝒅(𝒖, 𝒗) ≤
𝒕 + 𝟏

𝟐
 ts2+2ts 

𝒕 + 𝟐

𝟐
 ts2+ts 

𝒕 + 𝟒

𝟐
 

𝑡

2
s2 

 

 

     To calculate the wiener index of the coronagraph, first, we find the wiener of the cycle graph 

because it is a part of the coronagraph since the wiener of the corona graph depends on the 

diameter of the cycle. 

 

Theorem 2.6: The wiener index of the graph 𝐶𝑜𝑡
𝑠 is defined as follows: 

𝑊(𝒞𝒪𝑡
𝑠) =   (1 + 𝑠)2

𝑡(𝑡2−1) 

8
+ 𝑠𝑡2 + 2𝑠2(𝑡

2
) + 2𝑡(𝑠

2
), where t is the order of the cycle part and 

is odd. 

Proof: Based on Table 3 of the distance, 𝑊𝑖(𝒞𝒪𝑡
𝑠) = ∑ 𝐷𝐺(𝜆)𝜆

𝐷𝑖
𝜆=1 +𝑊𝑖(𝐶𝑡) 

From Proposition 2.5, we have 𝑊𝑖(𝐶𝑡) =
 𝑡(𝑡2−1)

8
  for t is odd, then  

      𝑊𝑖(𝒞𝒪𝑡
𝑠) = (1)𝑡𝑠 + (2)([𝑡(𝑠 − 1) + 𝑡(𝑠 − 2) + ⋯+ 𝑡] + 2𝑡𝑠) + (3)(𝑡𝑠2 + 2𝑡𝑠) + ⋯+

                        (
𝑡+1

2
) (𝑡𝑠2 + 2𝑡𝑠)  + (

𝑡+3

2
) 𝑡𝑠2 +

𝑡(𝑡2−1)

8
                                                   

                  = 𝑡𝑠 + (2𝑡(𝑠
2
) + 2𝑡𝑠) + ∑ (𝑡𝑠2 + 2𝑡𝑠)

𝑡+1

2

𝜆≥3
+ (

𝑡+3

2
) (𝑡𝑠2) +

𝑡(𝑡2−1)

8
 

     After some calculations, we get 

     𝑊𝑖(𝒞𝒪𝑡
𝑠) = (𝑠 + 1)2

𝑡(𝑡2−1)

8
+ 𝑡2𝑠 + 2𝑠2(𝑡

2
) + 2𝑡(𝑠

2
) 

Theorem 2.7: The wiener index of the graph 𝒞𝒪𝑡
𝑠, is defined as follows: 

𝑊𝑖(𝒞𝒪𝑡
𝑠) =  (1 + 𝑠)2

𝑡3 

3
+ 𝑡2𝑠 + 2𝑠2(𝑡

2
) + 2𝑡(𝑠

2
) , where t is the order of the cycle part and is 

even. 

 

Proof: The wiener index 𝑊𝑖(𝐺) = 𝑊𝑖(𝒞𝒪𝑡
𝑠) = ∑ 𝐷𝐺(𝜆)𝜆

𝐷𝑖
𝜆=1  

Then based on Table4 the wiener of the coronagraph 𝐶𝑜𝑡
𝑠 is 

𝑊𝑖(𝒞𝒪𝑡
𝑠) = ∑𝐷𝐺(𝜆)𝜆

𝐷𝑖

𝜆=1

 

𝑊𝑖(𝒞𝒪𝑡
𝑠) = ∑𝐷𝐺(𝜆)𝜆

𝐷𝑖

𝜆=1

+𝑊𝑖(𝐶𝑡) 

= (1)𝑡𝑠 + (2)([𝑡(𝑠 − 1) + 𝑡(𝑠 − 2) + ⋯+ 𝑡] + 2𝑡𝑠) + (3)(𝑡𝑠2 + 2𝑡𝑠) + ⋯

+ (
𝑡

2
) (𝑡𝑠2 + 2𝑡𝑠) 

                      + (
𝑡+2

2
) (𝑡𝑠2 + 𝑡𝑠) + (

𝑡+4

2
) (

𝑡

2
𝑠2) + 

𝑡3

8
         

 where 𝑊𝑖(𝐶𝑡) =  
𝑡3

8
 ,  t is even mentioned in Proposition 2.5 
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= 𝑡𝑠 + (2𝑡 (
𝑠

2
) + 2𝑡𝑠) + ∑(𝑡𝑠2 + 2𝑡𝑠)

𝑡
2

𝜆≥3

+ (
𝑡 + 2

2
) (𝑡𝑠2 +   2𝑡𝑠) + (

𝑡 + 4

2
) (
𝑡

2
𝑠2) +

𝑡3

8
 

 After simplifying, we get 

𝑊𝑖(𝒞𝒪𝑡
𝑠) = (𝑠 + 1)2

𝑡3

8
+ 𝑡2𝑠 + 2𝑠2(𝑡

2
) + 2𝑡(𝑠

2
). 

  Now after finding the wiener index of the coronagraph, we study the wiener-𝜇 invariant and 

hyper wiener of this graph by the following theorem. 

 

Theorem 2.8: The hyper-wiener index is of the connected graph 𝐶𝑜𝑡
𝑠, which is defined as 

follows:  

𝑊𝑊𝑖(𝒞𝒪𝑡
𝑠) = (𝑠 + 1)2

𝑡(𝑡2−1)

8
+ 𝑡2𝑠 + 2𝑠2(𝑡

2
) + 2𝑡(𝑠

2
) + 𝑡𝑠 + 4(

𝑡𝑠2−𝑡𝑠

2
)  +

 𝑡𝑠 2(
𝑡3+12𝑡2+47𝑡−60

24
)  +                            2𝑡𝑠(

𝑡3+6𝑡2+11𝑡−18

24
)  + 𝑡(

𝑡3−𝑡

24
).                                                                             

if 𝑡 is odd 

𝑊𝑊𝑖(𝒞𝒪𝑡
𝑠) = (𝑠 + 1)2

𝑡3

8
+ 𝑡2𝑠 + 2𝑠2(𝑡

2
) + 2𝑡(𝑠

2
) + 𝑡𝑠 + 4 (

𝑡𝑠2−𝑡𝑠

2
) +

𝑡𝑠 2 (
𝑡3+9𝑡2+26𝑡−96

24
) +                          2ts(

𝑡3+3𝑡2+2𝑡−24

24
)   + t(

𝑡3−3𝑡2+2𝑡

24
)+ ( 

𝑡3

8
)+ ts2( 

𝑡2+8𝑡+16

8
) + 

ts( 
𝑡2+4𝑡+4

4
).                if 𝑡 is even 

 

Proof: In general, hyper wiener 𝑊𝑊𝑖(𝐺) =  (𝑊𝑖1(𝐺) +𝑊𝑖2(𝐺)). 

where  𝑊𝑖1(𝐺)= ∑ 𝐷𝐺(𝜆)𝜆
1𝐷𝑖

𝜆≥1  for 𝜇 = 1 is wiener index itself and it is found on the theorem 

above, to calculate the second part 𝑊𝑖2(𝐺) for 𝜇 = 2, so the diameter of the corona graph 

depends on the number of vertices of the cycle part, we have to discuss two cases when it is 

odd or even. 

 

Case1: For t is odd, 

𝑊𝑖2(𝐺) = ∑ 𝐷𝐺(𝜆)𝜆
2𝐷𝑖

𝜆≥1   

               = 𝐷𝐺(1)(1)
2 + 𝐷𝐺(2)(2)

2 +𝐷𝐺(3)(3)
2 +⋯ + 𝐷𝐺(𝐷𝑖 − 1)(𝐷𝑖 −

1)2+𝐷𝐺(𝐷𝑖)(𝐷𝑖)
2. 

But, 𝐷𝐺(1) is the number of vertices of distance one it is equal to the size of the graph, and it 

is equal t(s+1) in this graph, then  

𝑊𝑖2(𝒞𝒪𝑡
𝑠) =  t(𝑠 + 1) + [𝑡(𝑠 − 1) +  𝑡(𝑠 − 2) + ⋯+ 2𝑡𝑠 + 𝑡](2)2 

+ (𝑡𝑠2 + 2𝑡𝑠 + 𝑡)(3)2 + (𝑡𝑠2 + 2𝑡𝑠 + 𝑡)(4)2 +⋯+ (𝑡𝑠2 + 2𝑡𝑠
+ 𝑡)( 𝐷𝑖 − 2)2 + (𝑡𝑠2 + 2𝑡𝑠)  (𝐷𝑖 − 1)2 + (𝑡𝑠2)(𝐷𝑖)2. 

After simplifying this equation, we get 

𝑊𝑖2(𝒞𝒪𝑡
𝑠) = ts +  4 (𝑡 ∑ (𝑠 − 𝑖)𝑠−1

𝑖=1 ) +  ts2∑ 𝜆2𝐷𝑖
𝜆=3  +  2ts ∑ 𝜆2

(𝐷𝑖−1)
𝜆=2  +  𝑡 ∑ 𝜆2

(𝐷𝑖−2)
𝜆=1   

Substituting, 𝐷𝑖 =
𝑡+3

2
 

                  = ts + 4 (𝑡 ∑ (𝑠 − 𝑖))𝑠−1
𝑖=1 + ts2∑ 𝜆2

𝑡+3

2

𝜆=3
 + 2𝑡𝑠 ∑ 𝜆2

𝑡+1

2

𝜆=2
 + 𝑡 ∑ 𝜆2

𝑡−1

2

𝜆=1
,  

Set ∑ 𝜆2
𝑡+1

2

𝜆=2
 = ∑ 𝜆2

𝑡−1

2

𝜆=1
 + 

(𝑡−1)(𝑡+3)

4
 and ∑ 𝜆2

𝑡+3

2

𝜆=3
 = ∑ 𝜆2

𝑡−1

2

𝜆=1
 + 4( ∑ 𝜆 +

𝑡−1

2
 

𝑡−1

2

𝜆=1
) 

𝑊𝑖2(𝒞𝒪𝑡
𝑠) = 𝑡𝑠 + 4(

𝑡𝑠2−𝑡𝑠

2
)  +  𝑡𝑠2 (

𝑡3+12𝑡2+47𝑡−60

24
) +  2𝑡𝑠(

𝑡3+6𝑡2+11𝑡−18

24
) + 𝑡(

𝑡3−𝑡

24
) 

 

Case2: For t is even, 

𝑊𝑖2(𝐺) = ∑ 𝐷𝐺(𝜆)𝜆
2𝐷𝑖

𝜆≥1   
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               = 𝐷𝐺(1)(1)
2 + 𝐷𝐺(2)(2)

2 +𝐷𝐺(3)(3)
2 +⋯ + 𝐷𝐺(𝐷𝑖 − 1)(𝐷𝑖 − 1)

2  +
𝐷𝐺(𝐷𝑖)(𝐷𝑖)

2 

  =  𝑡𝑠 +  4(𝑡 ∑ (𝑠 − 𝑖)𝑠−𝑖
𝑖=1 ) + 𝑡𝑠2∑ 𝜆2

(𝐷𝑖−1)
𝜆=3  +  2𝑡𝑠 ∑ 𝜆2

(𝐷𝑖−2)
𝜆=2  +  𝑡 ∑ 𝜆2

(𝐷𝑖−3)
𝜆=1  + 

𝑡

2
(𝐷𝑖 −

2)2  +                     
𝑡

2
𝑠2(𝐷𝑖)2 + 𝑡𝑠(𝐷𝑖 − 1)2. 

Where 𝐷𝑖 is a diameter for t even and 𝐷𝑖 =
𝑡+4

2
, 𝐷𝑖 − 1 =

𝑡+2

2
, 𝐷𝑖 − 2 =

𝑡

2
, 𝐷𝑖 − 3 =

𝑡−2

2
. Put 

in the above equation, we get 

=  𝑡𝑠 +  4(𝑡∑(𝑠 − 𝑖)

𝑠−𝑖

𝑖=1

) + 𝑡𝑠2∑𝜆2

𝑡+2
2

𝜆=3

 +  2𝑡𝑠∑𝜆2

𝑡
2

𝜆=2

 +  𝑡∑𝜆2

𝑡−2
2

𝜆=1

 + 
𝑡

2
(
𝑡

2
)2  +  

𝑡

2
𝑠2(

𝑡 + 4

2
)2

+ 𝑡𝑠(
𝑡 + 2

2
)2 

 

Then the sum,  ∑ 𝜆2
𝑡+2

2

𝜆=3
= ∑ 𝜆2 + 4(∑ 𝜆 +

𝑡−2

2

𝜆=1

𝑡−2

2

𝜆=1

𝑡−2

2
) and ∑ 𝜆2 =

𝑡

2

𝜆=2
∑ 𝜆2 +

(𝑡−2)(𝑡+2)

2

𝑡−2

2

𝜆=1
 

After some calculations, we get 

𝑊𝑖2(𝒞𝒪𝑡
𝑠) = ts +4(

𝑡𝑠2−𝑡𝑠

2
) + ts2 (

𝑡3+9𝑡2+26𝑡−96

24
) + 2ts(

𝑡3+3𝑡2+2𝑡−24

24
) + 

t(
𝑡3−3𝑡2+2𝑡

24
)+ ( 

𝑡3

8
)+ ts2( 

𝑡2+8𝑡+16

8
) + ts( 

𝑡2+4𝑡+4

4
). 

 

3. Some Degree-based Topological Indices  

● The first and second Zagreb indices of G were first proposed by Gutman and Trinajesti'c [5]. 

They are defined as follows: 

 

𝑀1(𝐺) = ∑ [𝑑𝑔𝑟(𝑢) + 𝑑𝑔𝑟(𝑣)]𝑢𝑣∈𝐸(𝐺)  

 

𝑀2(𝐺)  = ∑ [𝑑𝑔𝑟(𝑢). 𝑑𝑔𝑟(𝑣)]𝑢𝑣∈𝐸(𝐺)  

 

● Shigehalli and Kanabur presented the three new indices [14], which are as follows: 

𝑆𝐾(𝐺)  = ∑
 𝑑𝑔𝑟(𝑢)+𝑑𝑔𝑟(𝑣)

2𝑢𝑣∈𝐸(𝐺)  

𝑆𝐾1(𝐺)  = ∑
𝑑𝑔𝑟(𝑢) .  𝑑𝑔𝑟(𝑣)

2𝑢𝑣∈𝐸(𝐺)  

𝑆𝐾2(𝐺)  = ∑ (
𝑑𝑔𝑟(𝑢)+𝑑𝑔𝑟(𝑣)

2
)
2

𝑢𝑣∈𝐸(𝐺)  

  

● Inspired by the definitions of the Zagreb indices and their vast applications, Kulli [12] was 

proposed the first Gourava index of a molecular graph as follows. For a graph G, the first and 

second Gourava indices are defined as: 

 

𝐺𝑂1(𝐺)  = ∑ [(𝑑𝑔𝑟(𝑢) + 𝑑𝑔𝑟(𝑣)) + (𝑑𝑔𝑟(𝑢) . 𝑑𝑔𝑟(𝑣))]𝑢𝑣∈𝐸(𝐺)  

 

𝐺𝑂2(𝐺)  =  ∑ [(𝑑𝑔𝑟(𝑢) + 𝑑𝑔𝑟(𝑣)) . (𝑑𝑔𝑟(𝑢) . 𝑑𝑔𝑟(𝑣))]

𝑢𝑣∈𝐸(𝐺)

 

Results: [12, 17, 18] The first and second Zagreb indices  𝑆𝐾, 𝑆𝐾1, 𝑆𝐾2 indices, and the first 

and second Gourava indices for the cycle graph (𝐶𝑡, 𝑡 ≥ 3) are given by:  

• 𝑀1(𝐶𝑡) = 𝑀2(𝐶𝑡) = 4𝑡 

• 𝑆𝐾(𝐶𝑡) = 𝑆𝐾1(𝐶𝑡)  = 
1

2
 𝑀1(𝐶𝑡) 
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• 𝑆𝐾2(𝐶𝑡) = 𝑀1(𝐶𝑡) 
• 𝐺𝑂1(𝐶𝑡)   = 2 𝑀1(𝐶𝑡) 
• 𝐺𝑂2(𝐶𝑡) = 4 𝑀1(𝐶𝑡) 
 

   In this section, we study the 𝑀1, 𝑀2, 𝑆𝐾, 𝑆𝐾1, 𝑆𝐾2, 𝐺𝑂1 and 𝐺𝑂2 of coronagraph. 

Theorem 3.1: Let 𝐶𝑜𝑡
𝑠 be the coronagraph, where t is the number of vertices of a cycle and s 

be the number of end vertices that are adjacent to each vertex of a cycle for 𝑡 ≥  3, 𝑠 ≥ 1. 

Then the first and second Zagreb index for the corona graph 𝐶𝑜𝑡
𝑠 are defined as the following: 

1. 𝑀1(𝒞𝒪𝑡
𝑠) = 𝑡𝑠2 + 5𝑡𝑠 + 4𝑡 

2. 𝑀2(𝒞𝒪𝑡
𝑠) = 2𝑡𝑠2 + 6𝑡𝑠 + 4𝑡  

Proof: Let 𝐶𝑡  be the cycle graph on 𝑡 vertices. The coronagraph 𝒞𝒪𝑡
𝑠  is shown in Figure 1. 

Furthermore, corona graph 𝒞𝒪𝑡
𝑠  consist of 𝑡(𝑠 +  1) vertices and also 𝑡(𝑠 +  1)  edges. 

𝐸(𝒞𝒪𝑡
𝑠) is divided into two edge divisions based on the degrees of end vertices. The 𝑡𝑠 edges 

𝑢𝑗𝑣𝑖 are contained in the first edge partition 𝐸1(𝒞𝒪𝑡
𝑠), where 𝑑𝑔𝑟(𝑢𝑗)  =  1 and 𝑑𝑔𝑟(𝑣𝑖)  =  𝑠 +

2. The second edge partition 𝐸2(𝒞𝒪𝑡
𝑠) has 𝑡 edges 𝑣𝑖𝑣𝑖+1 with 𝑑𝑔𝑟(𝑣𝑖)   = 𝑑𝑔𝑟(𝑣𝑖+1)  =  𝑠 + 2. 

Then we have the following using expressions: 

 

1- 𝑀1(𝐺) = ∑ [𝑑𝑔𝑟(𝑢) + 𝑑𝑔𝑟(𝑣)]𝑢𝑣∈𝐸(𝐺)  

 

𝑀1(𝒞𝒪𝑡
𝑠) = ∑ (𝑑𝑔𝑟(𝑢𝑗) + 𝑑𝑔𝑟(𝑣𝑖))𝑢𝑗𝑣𝑖∈𝐸1(𝒞𝒪𝑡

𝑠)  + ∑ (𝑑𝑔𝑟(𝑣𝑖) + 𝑑𝑔𝑟(𝑣𝑖+1))𝑣𝑖𝑣𝑖+1∈𝐸2(𝒞𝒪𝑡
𝑠)   

               = | 𝐸1(𝒞𝒪𝑡
𝑠)| (𝑑𝑔𝑟(𝑢𝑗) + 𝑑𝑔𝑟(𝑣𝑖))  +  | 𝐸2(𝒞𝒪𝑡

𝑠) | (𝑑𝑔𝑟(𝑣𝑖) + 𝑑𝑔𝑟(𝑣𝑖+1)) 

              =  𝑡𝑠 [1 + (𝑠 + 2)]  +  𝑡 [(𝑠 + 2)  + (𝑠 + 2)] 
                 

We get the following result after some simple simplifications. 

 

𝑀1(𝒞𝒪𝑡
𝑠) = 𝑡𝑠2 + 5𝑡𝑠 + 4𝑡. 

 

2- 𝑀2(𝐺) = ∑ [𝑑𝑔𝑟(𝑢). 𝑑𝑔𝑟(𝑣)]𝑢𝑣∈𝐸(𝐺)  

 

𝑀2(𝒞𝒪𝑡
𝑠) = ∑ (𝑑𝑔𝑟(𝑢𝑗) . 𝑑𝑔𝑟(𝑣𝑖))𝑢𝑗𝑣𝑖∈𝐸1(𝒞𝒪𝑡

𝑠)  + ∑ (𝑑𝑔𝑟(𝑣𝑖) . 𝑑𝑔𝑟(𝑣𝑖+1))𝑣𝑖𝑣𝑖+1∈𝐸2(𝒞𝒪𝑡
𝑠)   

               = | 𝐸1(𝒞𝒪𝑡
𝑠)|  (𝑑𝑔 (𝑢𝑗) . 𝑑𝑔 (𝑣𝑖))  + | 𝐸2(𝒞𝒪𝑡

𝑠)| (𝑑𝑔 (𝑣𝑖) . 𝑑𝑔 (𝑣𝑖+1)) 

=  𝑡𝑠 [1 . (𝑠 + 2)]  +  𝑡 [(𝑠 + 2) . (𝑠 + 2)] 
We get the following result after some simple simplifications. 

 

𝑀2(𝒞𝒪𝑡
𝑠) = 2𝑡𝑠2 + 6𝑡𝑠 + 4𝑡 

Theorem 3.2: Let 𝒞𝒪𝑡
𝑠 be the corona graph, where t is the number of vertices of a cycle and s 

be the number of end vertices that are adjacent to each vertex of a cycle, and 𝑡 ≥  3, 𝑠 ≥ 1. 

Then the 𝑆𝐾, 𝑆𝐾1 and 𝑆𝐾2 for the corona graph 𝒞𝒪𝑡
𝑠 are defined as the following: 

1. 𝑆𝐾 (𝒞𝒪𝑡
𝑠) = 

1

2
 𝑀1(𝒞𝒪𝑡

𝑠) 

2. 𝑆𝐾1 (𝒞𝒪𝑡
𝑠)  = 

1

2
 𝑀2(𝒞𝒪𝑡

𝑠) 

3. 𝑆𝐾2 (𝒞𝒪𝑡
𝑠)  = 

1

4
 [(𝑠 + 4) 𝑀1(𝒞𝒪𝑡

𝑠) + 𝑡𝑠(𝑠 + 1)] 

 

 Proof: Let 𝐶𝑡  be the cycle graph on 𝑡 vertices. The coronagraph 𝒞𝒪𝑡
𝑠  is shown in Figure 1. 

Furthermore, corona graph 𝒞𝒪𝑡
𝑠  consist of 𝑡(𝑠 +  1) vertices and also 𝑡(𝑠 +  1)  edges. 

𝐸(𝒞𝒪𝑡
𝑠) is divided into two edge divisions based on the degrees of end vertices. The 𝑡𝑠 edges 

𝑢𝑗𝑣𝑖 are contained in the first edge partition 𝐸1(𝒞𝒪𝑡
𝑠), where 𝑑𝑔𝑟(𝑢𝑗)  =  1 and 𝑑𝑔𝑟(𝑣𝑖)  =  𝑠 +
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2. The second edge partition 𝐸2(𝒞𝒪𝑡
𝑠), has 𝑡 edges 𝑣𝑖𝑣𝑖+1, with 𝑑𝑔𝑟(𝑣𝑖)   = 𝑑𝑔𝑟(𝑣𝑖+1)  =  𝑠 +

2. We now have the following using expressions: 

 

1- 𝑆𝐾(𝐺)  = ∑
 𝑑𝑔𝑟(𝑢)+𝑑𝑔𝑟(𝑣)

2𝑢𝑣∈𝐸(𝐺)  

𝑆𝐾(𝒞𝒪𝑡
𝑠) = ∑ (

𝑑𝑔𝑟 (𝑢𝑗)+ 𝑑𝑔𝑟 (𝑣𝑖)

2
)𝑢𝑗𝑣𝑖∈𝐸1(𝒞𝒪𝑡

𝑠)  + ∑ (
𝑑𝑔𝑟 (𝑣𝑖)+ 𝑑𝑔𝑟 (𝑣𝑖+1)

2
)𝑣𝑖𝑣𝑖+1∈𝐸2(𝒞𝒪𝑡

𝑠)   

               = | 𝐸1(𝒞𝒪𝑡
𝑠)|  (

𝑑𝑔𝑟 (𝑢𝑗)+ 𝑑𝑔𝑟 (𝑣𝑖)

2
)  + | 𝐸2(𝒞𝒪𝑡

𝑠)|   (
𝑑𝑔𝑟 (𝑣𝑖)+ 𝑑𝑔𝑟 (𝑣𝑖+1)

2
) 

                =  𝑡𝑠 (
1 + (𝑠+2)

2
) +  𝑡 (

(𝑠+2) + (𝑠+2)

2
) 

            

After any easy simplification, we obtain 

 

               = 
1

2
 (𝑡𝑠2 + 5𝑡𝑠 + 4𝑡) 

𝑆𝐾 (𝒞𝒪𝑡
𝑠) = 

1

2
 𝑀1(𝒞𝒪𝑡

𝑠) 

 

2- 𝑆𝐾1(𝐺) = ∑
 𝑑𝑔𝑟(𝑢) . 𝑑𝑔𝑟(𝑣)

2𝑢𝑣∈𝐸(𝐺)  

𝑆𝐾1(𝒞𝒪𝑡
𝑠) = ∑ (

𝑑𝑔𝑟 (𝑢𝑗) .  𝑑𝑔𝑟 (𝑣𝑖)

2
)𝑢𝑗𝑣𝑖∈𝐸1(𝒞𝒪𝑡

𝑠)  + ∑ (
𝑑𝑔𝑟 (𝑣𝑖) .  𝑑𝑔𝑟 (𝑣𝑖+1)

2
)𝑣𝑖𝑣𝑖+1∈𝐸2(𝒞𝒪𝑡

𝑠)   

               = | 𝐸1(𝒞𝒪𝑡
𝑠)|   (

𝑑𝑔𝑟 (𝑢𝑗) .  𝑑𝑔𝑟 (𝑣𝑖)

2
) + | 𝐸2(𝒞𝒪𝑡

𝑠)|  (
𝑑𝑔𝑟 (𝑣𝑖) .  𝑑𝑔𝑟 (𝑣𝑖+1)

2
) 

               =  𝑡𝑠 (
1 .  (𝑠+2)

2
) + 𝑡 (

(𝑠+2) .  (𝑠+2)

2
) 

 

After any easy simplification, we obtain 

                

                 = 
1

2
 (2𝑡𝑠2 + 6𝑡𝑠 + 4𝑡) 

𝑆𝐾1 (𝒞𝒪𝑡
𝑠)  = 

1

2
 𝑀2(𝒞𝒪𝑡

𝑠) 

 

3- 𝑆𝐾2(𝐺) = ∑ (
𝑑𝑔𝑟(𝑢)+𝑑𝑔𝑟(𝑣)

2
)
2

𝑢𝑣∈𝐸(𝐺)  

 

𝑆𝐾2(𝒞𝒪𝑡
𝑠) = ∑ (

𝑑𝑔𝑟 (𝑢𝑗) + 𝑑𝑔𝑟 (𝑣𝑖)

2
)
2

𝑢𝑗𝑣𝑖∈𝐸1(𝒞𝒪𝑡
𝑠)  + ∑ (

𝑑𝑔𝑟 (𝑣𝑖) + 𝑑𝑔𝑟 (𝑣𝑖+1)

2
)
2

𝑣𝑖𝑣𝑖+1∈𝐸2(𝒞𝒪𝑡
𝑠)   

               = |𝐸1(𝒞𝒪𝑡
𝑠)| (

𝑑𝑔𝑟 (𝑢𝑗) + 𝑑𝑔𝑟 (𝑣𝑖)

2
)
2

 + |𝐸2(𝒞𝒪𝑡
𝑠)| (

𝑑𝑔𝑟 (𝑣𝑖) + 𝑑𝑔𝑟 (𝑣𝑖+1)

2
)
2

 

                  =  𝑡𝑠 (
1 +(𝑠+2)

2
)
2

 + 𝑡 (
(𝑠+2)+(𝑠+2)

2
)
2

 

 

After any easy simplification, we obtain 

 

𝑆𝐾2 (𝒞𝒪𝑡
𝑠)  = 

1

4
 [(𝑠 + 4) 𝑀1(𝒞𝒪𝑡

𝑠) + 𝑡𝑠(𝑠 + 1)] 

 

Theorem 3.3: Let 𝒞𝒪𝑡
𝑠 be the corona graph, where t is the number of vertices of a cycle and s 

be the number of end vertices that are adjacent to each vertex of a cycle, and 𝑡 ≥  3, 𝑠 ≥ 1. 

Then the 𝐺𝑂1 and 𝐺𝑂2 for the corona graph 𝒞𝒪𝑡
𝑠  are defined as the following: 

1.  𝐺𝑂1(𝒞𝒪𝑡
𝑠)  = 𝑀1(𝒞𝒪𝑡

𝑠) + 𝑀2(𝒞𝒪𝑡
𝑠) 

2.  𝐺𝑂2(𝒞𝒪𝑡
𝑠)  = (𝑠 +  2) (𝑀1(𝒞𝒪𝑡

𝑠) + 𝑀2(𝒞𝒪𝑡
𝑠)) 

we have the following expressions: 
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1- 𝐺𝑂1(𝐺)  = ∑ [(𝑑𝑔𝑟(𝑢) + 𝑑𝑔𝑟(𝑣)) + (𝑑𝑔𝑟(𝑢) . 𝑑𝑔𝑟(𝑣))]𝑢𝑣∈𝐸(𝐺)                            

𝐺𝑂1(𝒞𝒪𝑡
𝑠)  = ∑  [(𝑑𝑔𝑟 (𝑢𝑗) + 𝑑𝑔𝑟 (𝑣𝑖))𝑢𝑗𝑣𝑖∈𝐸1(𝒞𝒪𝑡

𝑠) + (𝑑𝑔𝑟 (𝑢𝑗) . 𝑑𝑔𝑟 (𝑣𝑖)) ]+ 

∑  [(𝑑𝑔𝑟 (𝑣𝑖) + 𝑑𝑔𝑟 (𝑣𝑖+1)) + (𝑑𝑔𝑟 (𝑣𝑖) . 𝑑𝑔𝑟 (𝑣𝑖+1))]𝑣𝑖𝑣𝑖+1∈𝐸2(𝒞𝒪𝑡
𝑠)  

= |𝐸1(𝒞𝒪𝑡
𝑠)| + [(𝑑𝑔𝑟 (𝑢𝑗) + 𝑑𝑔𝑟 (𝑣𝑖)) + (𝑑𝑔𝑟 (𝑢𝑗) . 𝑑𝑔𝑟 (𝑣𝑖)) ] + |𝐸2(𝒞𝒪𝑡

𝑠)|[(𝑑𝑔𝑟 (𝑣𝑖) +

 𝑑𝑔𝑟 (𝑣𝑖+1)) + (𝑑𝑔𝑟 (𝑣𝑖) . 𝑑𝑔𝑟 (𝑣𝑖+1))] 

          =  𝑡𝑠 [(1 + (s + 2)) + (1 . (s + 2))] + 𝑡 [((s + 2) + (s + 2)) + ((s + 2) . (s + 2))] 

          =  𝑡𝑠 (2𝑠 +  5)  +  𝑡 [(2s + 4) + (𝑠2 + 4𝑠 + 4)] 
         =   𝑡𝑠 (2𝑠 +  5)  +  𝑡 (s2 + 6s + 8). 
After any easy simplification, we obtain 

 

𝐺𝑂1(𝒞𝒪𝑡
𝑠)  = 𝑀1(𝒞𝒪𝑡

𝑠) + 𝑀2(𝒞𝒪𝑡
𝑠) 

2- 𝐺𝑂2(𝐺)  = ∑ [(𝑑𝑔(𝑢) + 𝑑𝑔(𝑣)) . (𝑑𝑔(𝑢) . 𝑑𝑔(𝑣))]𝑢𝑣∈𝐸(𝐺)                            

 𝐺𝑂2(𝒞𝒪𝑡
𝑠)  = ∑  [(𝑑𝑔𝑟 (𝑢𝑗) + 𝑑𝑔𝑟 (𝑣𝑖))𝑢𝑗𝑣𝑖∈𝐸1(𝒞𝒪𝑡

𝑠) . (𝑑𝑔𝑟 (𝑢𝑗) . 𝑑𝑔𝑟 (𝑣𝑖)) ]+ 

∑  [(𝑑𝑔𝑟 (𝑣𝑖) + 𝑑𝑔𝑟 (𝑣𝑖+1)) . (𝑑𝑔𝑟 (𝑣𝑖) . 𝑑𝑔𝑟 (𝑣𝑖+1))]𝑣𝑖𝑣𝑖+1∈𝐸2(𝒞𝒪𝑡
𝑠)  

= |𝐸1(𝒞𝒪𝑡
𝑠)|[(𝑑𝑔𝑟 (𝑢𝑗) + 𝑑𝑔𝑟 (𝑣𝑖)) . (𝑑𝑔𝑟 (𝑢𝑗) . 𝑑𝑔𝑟 (𝑣𝑖)) ]  

+ |𝐸1(𝒞𝒪𝑡
𝑠)|[(𝑑𝑔𝑟 (𝑣𝑖) + 𝑑𝑔𝑟 (𝑣𝑖+1)) . (𝑑𝑔𝑟 (𝑣𝑖) . 𝑑𝑔𝑟 (𝑣𝑖+1))] 

=  𝑡𝑠 [(1 + (𝑠 + 2))  . (1 . (𝑠 + 2))]  +  𝑡[((𝑠 + 2) + (𝑠 + 2))  .  ((𝑠 + 2)  . (𝑠 + 2))] 
               =  𝑡𝑠 (s2 + 5𝑠 + 6) + t(2s3 + 12s2 + 24𝑠 + 16). 
After any easy simplification, we obtain 

 

𝐺𝑂2(𝒞𝒪𝑡
𝑠)  = (𝑠 +  2) (𝑀1(𝒞𝒪𝑡

𝑠) + 𝑀2(𝒞𝒪𝑡
𝑠)) 

 

4. New results of new  topological index 𝑺𝑲𝟒. 

  In this section, we define a new topological index whose definition is inspired by the definition 

of the 𝑆𝐾1 index. Then we applied to the corona graph. 

Definition 4.1: The 𝑆𝐾4  index of a graph 𝐺 =  (𝑉, 𝐸) is defined as:   

 

𝑆𝐾4 (𝐺)  = ∑ (
𝑑𝑔𝑟(𝑢) .  𝑑𝑔𝑟(𝑣)

2
)
2

𝑢𝑣∈𝐸(𝐺)  

where 𝑑𝑔𝑟(𝑢) and 𝑑𝑔𝑟(𝑣) be the degree of the vertex 𝑢 and 𝑣, respectively. 

 

Example 4.2: For the simple graph 𝐺, the 𝑆𝐾4  index of a graph 𝐺 equal to 24.25 . 
 

 

                     𝐺:    
  

 

 

To find the 𝑆𝐾4  index, then the degree of the vertices of the graph G are, 𝑑𝑔𝑟 (𝑣1) = 1, 

𝑑𝑔𝑟 (𝑣2) = 3 and 𝑑𝑔𝑟 (𝑣3) = 𝑑𝑔𝑟 (𝑣4) = 2, by the definition of the 𝑆𝐾4  index is: 

 

𝑆𝐾4 (𝐺)  = ∑ (
𝑑𝑔𝑟(𝑢) .  𝑑𝑔𝑟(𝑣)

2
)
2

𝑢𝑣∈𝐸(𝐺)  

                 = (
1 .  3

2
)
2

+ 2(
3 .  2

2
)
2

+ (
2 .  2

2
)
2

 

                = 24.25. 

𝑣2 𝑣1 

𝑣3 𝑣4 
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Lemma 4.3: Let 𝐶𝑡 be a cycle with t ≥ 3 vertices. Then  𝑆𝐾4 (𝐶𝑡) is 𝑀1(𝐶𝑡). 

Proof: Let 𝐶𝑡 be a cycle with t ≥ 3 vertices. Then  𝑆𝐾4 (𝐶𝑡) = 𝑡(
2.2

2
)2 = 4𝑡 = 𝑀1(𝐶𝑡). 

Theorem 4.4: The 𝑆𝐾4  index for corona graph 𝒞𝒪𝑡
𝑠 is given by: 

𝑆𝐾4  (𝒞𝒪𝑡
𝑠) = 

(𝑠+2)2

4
 𝑀1(𝒞𝒪𝑡

𝑠). 

 

Proof: Let 𝐶𝑡  be the cycle graph on 𝑡 vertices. The corona graph 𝒞𝒪𝑡
𝑠  is shown in Figure 1. 

Furthermore, corona graph 𝒞𝒪𝑡
𝑠  consist of 𝑡(𝑠 +  1) vertices and also 𝑡(𝑠 +  1)  edges. The 

edge set 𝐸(𝒞𝒪𝑡
𝑠) is divided into two edge divisions based on the degrees of end vertices. The 

𝑡𝑠 edges 𝑢𝑗𝑣𝑖  are contained in the first edge partition 𝐸1(𝒞𝒪𝑡
𝑠), where 𝑑𝑔𝑟(𝑢𝑗)  =  1 and 

𝑑𝑔𝑟(𝑣𝑖)  =  𝑠 + 2. The second edge partition 𝐸2(𝒞𝒪𝑡
𝑠) has 𝑡 edges 𝑣𝑖𝑣𝑖+1, with 𝑑𝑔𝑟(𝑣𝑖)   = 

𝑑𝑔𝑟(𝑣𝑖+1)  =  𝑠 + 2. Now by Definition 4.1, we have: 

𝑆𝐾4  (𝒞𝒪𝑡
𝑠)  = ∑ (

𝑑𝑔𝑟 (𝑢𝑗) .  𝑑𝑔𝑟 (𝑣𝑖)

2
)
2

𝑢𝑗𝑣𝑖∈𝐸1(𝒞𝒪𝑡
𝑠)  + ∑ (

𝑑𝑔𝑟 (𝑣𝑖) .  𝑑𝑔𝑟 (𝑣𝑖+1)

2
)
2

𝑣𝑖𝑣𝑖+1∈𝐸2(𝒞𝒪𝑡
𝑠)   

               = |𝐸1(𝒞𝒪𝑡
𝑠)| (

𝑑𝑔𝑟 (𝑢𝑗) .  𝑑𝑔𝑟 (𝑣𝑖)

2
)
2

 + |𝐸1(𝒞𝒪𝑡
𝑠)|  (

𝑑𝑔𝑟 (𝑣𝑖) .  𝑑𝑔𝑟 (𝑣𝑖+1)

2
)
2

 

                =  𝑡𝑠 (
1 .  (𝑠+1)

2
)
2

 + 𝑡 (
(𝑠+1) .  (𝑠+1)

2
)
2

 

After any easy simplification, we obtain 

𝑆𝐾4  (𝒞𝒪𝑡
𝑠) = 

(𝑠+2)2

4
 𝑀1(𝒞𝒪𝑡

𝑠). 

 

5. Conclusion 

     In this study, a new graph is defined and studied. The new graph is related to the coronavirus 

which is called a coronagraph. Some properties and important results have been investigated 

and discussed. A new topological index is also introduced that is inspired by the definition of 

the 𝑆𝐾1 index. Finally, many theoretical results are given. 
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