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Abstract 

       In this article, an inverse problem of finding timewise-dependent thermal 

conductivity has been investigated numerically. Numerical solution of forward 

(direct) problem has been solved by                    finite-difference method (FDM). 

Whilst, the inverse (indirect) problem solved iteratively using Lsqnonlin   routine  

from MATLAB. Initial guess for unknown coefficient expressed by explicit relation   

based on nonlocal overdetermination conditions and intial input data .The obtained 

numrical results are presented and discussed in several figures and tables. These 

results are accurate and stable even in the presense of noisy data.  

 

Keywords: heat equation, inverse problem , nonlocal boundary condition , integral 

overdetermination condion. 

 

للموصلية الحرارية في معادلة الحرارة تحت شروط حدودية غير محلية و التكامل كشرط التحديد العددي 
 إضافي

 

*سارة سالم ولي ، محمد صباح حسين  
 قسم الرياضيات، كلية العلوم ، جامعة بغداد، بغداد، العراق

 
 الخلاصة

على الوقت عدديًا. الحل  في هذه المقالة ، تم بحث مسألة عكسية لإيجاد الموصلية الحرارية المعتمدة      
(. بينما تم حل المسألة العكسية FDMالعددي للمسألة الأمامية )المباشرة( تم حلها بطريقة الفروقات المنتهية )

. التخمين الأولي للمعامل الغير MATLABمن  Lsqnonlin)غير المباشرة( بشكل تكراري باستخدام روتين 
لى شروط اضافيةغير محلية والشروط الابتدائية. النتائج العددية معروف معبراً عنه بعلاقة صريحة مبنية ع

التي تم الحصول عليها تمت مناقشتها في عدة أشكال وجداول. هذه النتائج دقيقة ومستقرة حتى في وجود 
 البيانات مشوشة.

 

1. Introduction                                                                                                                                                                   

       This work concerns with the study of an inverse problem not only for a parabolic 

equation resulting from physical models, but also models from medicine, combustion, 

ecology, etc.  These models are represented by partial differential equations parabolic with 

periodic coefficients. The identifying of parameters in a parabolic differential equation using 
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information of integral overdetermination situation is essential in physics and engineering [1–

7]. In our problem, this integral condition is also known as heat moments  of order zero [5]. 

     In [5,8], authors studied the chemical diffusion applications in heat conduction processes 

,while population dynamics, thermoelasticity, medical science, electrochemistry, engineering, 

broad scope, chemical engineering , and control theory all necessitate the examination of 

parabolic partial differential equations with nonlocal boundary conditions are investigated in 

[9-20].  

 

     Various approaches exist for numerically approximating  inverse problems. The author of 

[12] investigated three distinct implicit finite-difference approaches for solving parabolic 

inverse problem with temperature overspecification data. These approaches are created to 

identify the controller parameters at specific moment, achieves a specified                                                       

temperature solution at a particular position in the domain. The quantitative    approaches 

addressed are followed by the second order backward time focused (BTCS) implicit      

formulation, the second-order Crank–Nicolson implicit scheme . Another method is the 

boundary element method (BEM) [21]. It is systematic method for obtaining approximate 

solution and showing numerical results. However,  it is effective method for linear problems 

only. The homotopy perturbation method  is used to solve an inverse problem that we 

transform it into a direct nonlinear problem  [22]. We will solve this equation by using Crank-

Nicolson finite difference as a direct solver then the inverse problem will be solved in the 

form of optimization. 

 

      The organization of our paper is as follows, mathematical formulation  in section 2, 

numerical solution for the direct heat equation in section 3. Whilst,  solution of the inverse 

problem via minimisation of objective functional in section 4. Numerical outputs are 

discussed  in section 5 . Finally, the conclusions   are highlited in section 6. 

 

2. Mathematical formulation                                                                                                                                                           

Suppose that the problem of determining simultaneously is the temperature distribution 

u(   )    and time- dependent thermal conductivity coefficient a(t) satisfying the heat 

equation of the form                                                                                                                                                        

            ( )    + (   )                   (   )                                                                            ( ) 

with initial condition 

 (   )   ( )                                                                                                (2) 

and the boundary conditions of nonlocal type 

 (   )      (   )    (   )    (   )                                                  (3) 

and the energy condition as overspecified data 

∫  (   )    ( )                    
 

 
                                                                   (4) 

where     is the domain of the problem and which is defined by 

     (   )               , the parameter   is an arbitrary real number and 

 (   )  ( )  ( ) are given functions. The nonlocal boundary condition in (3) is the main 

specific feature of this problem; for       it acquires the form  

           (   )    (   )         (   )                                           (5) 

 

 and was previously investigated in [23], it is well known as the                  

conditions, whilst (4) is an integral additional specification of the energy type. The problem of 

finding a pair { ( ), (   )  will be called an inverse problem.  
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Definition 1: The pair { ( )  (   )  from the class (       (    (  )      ( ̅ ))) for 

which equations (1) -(4) are satisfied and  ( )    on the interval         is called the 

          solution of the inverse problem ( )  ( )  
The unique solvability for this problem has been established in [24] and no numerical 

realisation has been carried out, thus the aim of the current paper is to find the stable 

numerical solution of this inverse problem based on reliable algorithm. The existence and 

uniqueness theorems are stated below; 

 

2.1 Unique solvability of the inverse problem solution 

Theorem 1. If  the following assumptions (  )  (  ) on the input data of the problem (1) -

(4) are  satisfied, then the inverse problem (1)-(4) has a unique classical solution.  

    (  ) {
(  )   ( )                                                
(  )     ( )    ( )    ( )     ( )    
(  )                                     

       

 

   (  ) {

(  )   ( )                

(  )    ( )  ∫  ( )   
 

 

(  )    
 ( )                      

 

 

(  ) {
(  )    (   )    ̅    (   )                                                
(  )    (   )    (   )    (   )  (   )          
(  )    ( )             ( )                                        

 

 

            ∫  ( )   ( )               
 

 
( )  ∫  (   )   ( )                       

 

 
   

  
( )( )    

( )    (  (    ))                                                                                            

     
( )( )    

( )    (
  (    )

       (
 

   
)
)                    

                                                                                                           

  
( )    (   (      (

 

   
)))

  

                                                                           

  
( )   ((     ) (  

   (   )

   
))

  

                           

  ( )    
( )( )(   )                                                                                                                          

       ( )  (  
( )( )    

( )( ))                                 

          ( )  ( (     ))  
( )( )                         

 

 

3. Numerical solution for direct heat equation                                                                                                   

      In this section, we consider the forward boundary value problem (1) -(3). Where the 

functions   (   )   ( )       ( ) are known and the solution  (   ) is to be evaluated. In 

addition , the  condition (4) is a desired output . In order to solve the problem, we invoke the 

Crank-Nicolson (FDM) scheme which is unconditionally stable and second order accurate in 

time and space[25].    

                                                                                                                                                                                                    

The discretization of the direct problem (1)-(3) is as follows. Fix two positive integers M and 
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N and assume     
 

  
         

 

 
  be the step lengths in space and time direction, 

respectively. We subdivide the domain    into     subregions of equally step lengths. At 

the node (   ), we denote  

       (     )  (  )              (     )                                       ̅̅ ̅̅ ̅̅  

     ̅̅ ̅̅ ̅            
Applying Crank-Nicolson Scheme to equation (1) , we obtain:                     

 
            

  
 

 

 
[      (

                          

(  ) 
)+         +   (

                     

(  ) 
)+                    ( )                                             

for      ̅̅ ̅̅ ̅̅  ,  j=   ̅̅ ̅̅ ̅ 

  (    )   (  )                         ̅̅ ̅̅ ̅̅                                                                                     (7) 

 (    )                   
                

 (  )
 

           

 (  )
                                ̅̅ ̅̅ ̅                    (8) 

The difference equation for (6)-(8) will be in the form 

                                           + [1+    ]                    =                                                            

                                        + [1            +          + 
  

 
 (     +       )                               ( )                                                  

             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                                                                                                                                                                    

                                                     
  (  )

 (  ) 
 ,      =

  (  )

 ( ) 
 ,                                                             (  )                                 

 

       At each time step        for j=       we use the boundary conditions (2)-(3) , then we 

obtain an (   ) linear system of linear take the form         

                                                                                                                                                       

                                                                                                                       (11)        

 

  where,                                                                                                                                                                

     (                                  )        (                         )  A and E 

are  (   )  matrices of the form;                                                                                                                                                                                                         

A=

[
 
 
 
 

   

   ̃
  ̃
 
 

  ̃

     

  ̃
   ̃
  ̃
 
 

     

 
  ̃

   ̃
 
 

     

 
 

  ̃
 
 

     

 
 
 
 
 

     

 
 
 

  ̃
 

     

 
 
 

   ̃
  ̃

    

 
 
 

  ̃
   ̃   ̃   (  ) ̃

             

]
 
 
 
 

                                                                        

 

E=

[
 
 
 
 

  

    

  

 
 
  

     

  

    
  

 
 

     

 
  

    

 
 

     

 
 
  

 
 

     

 
 
 
 
 

     

 
 
 
  

 

     

 
 
 

    

  

     

 
 
 
  

         (  )  
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d=

[
 
 
 
 
 
 

                

                   
  

 
(           )

  

 
(           )

 
  

 
(               )

  

 
(           )

                                

]
 
 
 
 
 
 

 

where,  ̃            ̃                                   
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3.1   Example for direct problem                                                                                 

      Let the problem (1)-(3) with T=1 and the following input data are taken 

 

 ( )=     ,  ( )  
  

 
             (   )     

 

 (   )  
(     (          ))

(    ) 
 , (   )     ,   and                 

The desired output is    ( )  
 

(     )
                                                                    (12)              

   

      The exact solution for the direct problem (1)-(4) is given by  

 

                  (   )  
  

(    )
                 (   )                                                  (  ) 

 

       The approximate and exact solutions for the heat solution  (   ) at various mesh size                                            

M=N   {10,20,40} are shown in Figure 1. From this figure one can clearly notice                                                            

that an accurate and stable solutions are obtained. We can also see that if  the number of mesh 

points  are increased,then the more accurate solutions are obtained. This  revels that the mesh 

independent is achieved. It can be  clearly noticed in Figure 3 when the mesh size increases, 

the error level will decrease to very low level of order  (    ). Also, the trapezoidal rule is 

employed to computed the integral condition in (5) based on the following formula                                     

 

  ∫  (    )   
 

  

 

 
( (    )   (    )   ∑  (     )

   
   ),             ̅̅ ̅̅ ̅                     (  ) 

 

        Figure 2, illustrates the desired output in various mesh size and one can observe that as 

the mesh number increases the more accurate results obtained.             

 

 
 

                                                                    (a) 
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(b) 

 
                                                                        (c) 

Figure 1: The exact and the numerical solutions for the direct problem (1)-(3), for various 

mesh size (a)M=N=10 (b) M=N=20 (c) M=N=40 for Example 1. Also, the absolute  error 

graph is included 

 
Figure 2: The exact  and numerical solution for E(t) in (13) for various mesh size     
           . 
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Figure 3: The absolute error for E(t) in (13) for various mesh size 

                         . 
4. The inverse problem 

      The  aim is to find stable numerical reconstructions for the problem under consideration 

which   is described in Section 2. We focus our attention on finding the unknown coefficient 

 ( )  At initial time; i.e. at    , we can use the input data to get initial values for  ( ) 

which will be described in next subsection. These values are essential and will be considered 

as initial guess for  iterative process of solving the  inverse problem. We reformulate  the 

inverse problem as nonlinear least-squares minimization problem. That is, we minimize the 

gap between the measured data and numerically obtained solution via the objective function 

of the form; 

 

 ( )   ‖∫  (   )    ( )
 

 

‖

 

                                                                        (  ) 

 

or, in discredited form,   

 

               ( )  ∑ (∫  (    )    (  )
 

 
)
 

 
    ,                                                    (16) 

 

The norm in objective functional is the usual norm  in           
 

      The minimization of the objective functional (16), performed subject to simple physical 

bound constrain    , since the coefficient can not be zero or negative which is performed by 

lsqnonline routine, for more details see [26]. During the iterative simulation process, we need 

some values of parameters of the routine to be set in order to terminate the processes;                                 

     . Maximum number of iterations (MaxIter)       (                   )  
      . Maximum number of objective function evaluations (MaxEval)        (       

         of variables). 

      . Solution tolerance (SolTOL)         

    . Objective function tolerance (FunTOL)         

 

For both exact and noisy measurements the inverse problem is solved. The noisy data is 

simulated numerically  by adding random errors as: 

                 (  )   (  )                        ̅̅ ̅̅ ̅̅                                                             (  ) 
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where   is Gaussian random vector with mean zero and standard deviation   which is 

obtained by  

                               ( )                                                                                  (18) 

where   is the percentage of noise. The MATLAB bulletin function normrnd used to generate 

the random variable   = (  )           ̅̅ ̅̅ ̅̅    as follows:    

                                                     (     ),                                               (19) 

 

4.1 Initial guess for the unknown  coefficient a(t) 

      During iterative minimization process of solving the inverse problem we need initial                           

guess to start with. These values for a (0) can be computed from input data as follows: 

 Integrating the equation (1) for both side with respect to x from  [0,1] as;                                                

∫   (   )    ( )∫    (   )  
 

 

 

 

 ∫  (   )  
 

 

                                          (  ) 

applying Leibniz’s formula for integral, we obtain               

                   
 

  
(∫  (   )  

 

 
)   ( ) ∫    

 

 
(   )   ∫  (   )                            

 

 
 

                     ( )   ( )   (   )    (   )  ∫  (   )  
 

 
, 

by using boundary condition (3) 

                   ( )   a( )    (   )  ∫  (   )  
 

 
  

                   a(t) 
  ( ) ∫  (   )

 
 

   (   )
,                                                                                          (21) 

evaluating last equation at initial time, we have 

                a (0) 
∫  (   )   ( )

 
 

  ( )
                                                                                           (22) 

provided that   ( )   . 

 

5. Computational results and discussion 

      We present numerical solutions for the recovery of timewise coefficient a(t) and the 

temperature  (   )  in the case of noisy and exact data (4). To assess the accuracy of the 

numerical results, we utilize the root mean square error (rmse) as: 

 

                     rmse(a)=[
 

 
∑ (           

   (  )        (  ))
 ]

 

 
,                                    (23) 

 

In our simulation we fix T=1. 

 

5.1 Example 1: for inverse problem 

      Assume the inverse problem (1)-(4) with the input data in the example of direct problem 

except 

 the coefficient a is unknown. One can notice that the conditions  of unique solvability of 

Theorem 1 are satisfied and hence the solution exist and unique. The initial guess for the 

unknown thermal conductivity a(t) equal to vector of constant  ( )    which is obtained 

explicitly via equation (22). 

 

5.1.1 Case 1: No noise and no regularization 

        We start the computationl investigation with the case of no noise included in the 

measurement (4), i.e.     in the equation (18).      
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(a) 

 
                                                                          (b) 

 

Figure 3: (a) Objective function (16) as a function of the number of iterations (b) Thermal 

conductivity, with no noise included and for various mesh size                 
 

      In this case, in order to choose an approperate mesh size, we take M=N            and 

find    the numerical recontruction at each mesh, as it is plotted in Figure 3(b). From this 

figure it can be clearly seen that when M=N=20, the best result can be obtained. Hence, in our 

numerical approximation we fix M=N=20. One can also choose higher mesh sizes such as 

M=N= 80, 160, 320 to gain more accurate retrievals, however the computational time will be 

beyond our purpose. Also, it can be observed from  the last column in Table 1 when M=N=20 

we have the lowest rmse(a).  

 

Table 1: The ture and numerical values for desired output  ( ) with               , 
with no noise. 

      T     0.1      0.5    0.6    0.8   0.9     1  rmse(a) 

M=N=10 0.8887 0.5799 0.5852 0.4925 0.3644 0.4192 0.0342 

M=N=20 0.9116 0.5983 0.5390 0.4370 0.3933 0.3544 0.0097 

M=N=40 0.9183 0.6383 0.5806 0.4866 0.4483 0.4134 0.0315 

Exact 0.9048 0.6065 0.5488 0.4493 0.4066 0.3679  
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5.1.2 Case 2: with (p=1%) noise    

       Next, we perturb the measured data equation (4) as in (17) via (18) with 1  noise. Figure 

4 (a) illustrates the objective function (16), as a function of the number of iterations together 

with the horizontal noise threshold   =2.16E    which evaluated using the formula 

 =√∑ (  (  )   (  ))
 
  

    This threshold is essential to employ the discrepancy principle in 

order to terminate the iterative process before  the errors in the outputs start to dominate. 

From Figure 4(a) the criterion yields the iteration number iter(discrepancy)=7. Also Figure 

4(a) revel that the objective function (16) minimization has been convergent to small 

stationary value of order O(    ) after iter(convergent)=63. The rmse(a) as a function of the 

number of iterations plotted in Figure 4(b). From this figure it can be notice the best retrieval 

occurs at iter(optimal)=4. For more detailes, see numerical results in Figure 5 and in Table 2.                                                                                                      

 

 

Table 2: The number of iterations, the rmse(a) values (23) based on stopping criteria , for 

Example 1 with p=1  noise. 

   Stopping Criterion No. of iterations rmse(a) 

to achieve convergence iter.conv. 63 0.3367 

to achieve minimum  rmse(a) iter.opt. 4 0.1773 

discrepancy principle iter.discr.   0.1994 

                                                                    

Remark:  We have also tried to add some regularization penalty term  ‖ ( )‖ 
       

 with 

   , some regularization parameter to the functional (16), but  the stability of the retrieved 

solution did not improved . Hence, all  results related to regularization part which are omitted 

from discussion. 

                                                                     

 
(a) 
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(b) 

Figure 4: (a) Objective function (16) with horizontal noise threshold =2.16E-4, and (b) the 

rmse(k) values (23), for Example 1 with ρ = 1% noise. 

 

 
Figure 5: Exact (—) and the numerical solutions for a(t) obtained after iterconv.=63 (- •  -), 

iteropt.=4 (-o-), and iterdiscr.=7 (-△-), for Example 1 with ρ = 1% noise. 

 

6.    Conclusions 

       The problem of finding the timewise-dependent conductivity with nonclassical boundary 

conditions and nonlocal (energy/mass) overspecified measurement has been numerically 

investigated. The obtained inverse problem has been reformulated as nonlinear  least-squares 

mimimization problem with simple bound. This problem has been efficiently solved by using 

Lsqnonlin routine from MATLAB. The numerical results are accurate, and reasonably stable 

retrieval in term of high oscilation free. 

Furthermore, this inverse problem  seems rather stable and hence in general, no regularization 

needs to be applied. Discrepancy principal is also used to terminate the iterative process 

before the errors start to dominate. 
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