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Abstract

In this paper, we introduce new conditions to prove that the existence and
boundedness of the solution by convergent sequences and convergent series. The
theorem of Krasnoselskii, Lebesgue’s dominated convergence theorem and fixed
point theorem are used to get some sufficient conditions for the existence of
solutions. Furthermore, we get sufficient conditions to guarantee the oscillatory
property for all solutions in this class of equations. An illustrative example is
included as an application to the main results.
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1. Introduction

The consideration of theory of differential equations (DEs) includes several fields of study
such as the existence of solutions [1,2], numerical solutions [3,4], and the finding the

qualitative properties [5,6].
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In recent years, the study of solutions of delay differential equations and their properties
such as oscillation, and asymptotic behavior has been increased due to its essential
applications and widespread in real -world fields. In fact, researchers have faced the new
models of this type of equations in the applied fields because of its great development in the
fields of technology and various sciences. In addition, the delay differential equations
(DDEs) have a great influence in modeling several scientific problems such as technical,
physical, or biological models, as in studies [7-9].

In [10], S. S. Santra have considered the existence of positive solution and oscillatory
property to the type of nonlinear neutral (NDDE):

a%(x(t) +r®)xt —a))+qOHEE —v)) = fO.

In [11], S. Pinelas and S. S. Santra have studied nonlinear NDDE with several delays:

n

d

Z @+ rOxt =)+ ) b6 (x(t —vp)) =0
£o1

H. Xiao and B. Zheng in [12] have obtained sufficient conditions for existence to multiple
periodic solutions to non-autonomous DDE:

d
Z (M) = —ax(t— D1+ x()]

H. Ahmad, S. W. Yao and others in [13] have studied the oscillatory of all solutions to the
second order nonlinear NDDE with applications:

%(tp(t) (%x(t))c) + X7, be(H)x% (rg(t)) =0, fort > t,

S. H. Saker, M. Elabbasy and T. S. Hassan in [14] considered nonoscillatory properties to
nonlinear NDDEs with several positive and negative coefficients of the form:

u n
S+ Yy —a)) + Y a0 (x (1-70)) = Y. be(06e (x(t-v5)) = 0.
=1 §=1

In this paper, we focus on the existence and oscillatory solution to the following non-linear

NDEs with Multiple delays:
n

%x(t) = — Z as (D) ge (x (‘L’g(t))) + %zn: bs (1) Gs (t,x (Q(U)) (1.1)
£=1

&1

Throughout this work, we will consider the following hypotheses:

(i) C(H4, H,) denotes to the set for all functions that are continuous; f: H; = H, with

the supremum norm ||. ||.

(i) We suppose thatag, b € C(R*,R*), (¢ = 1,2,..,n),and the functions tz : R* —
R+ are differentiable with 7;(t) — o ast — oo.

(iii) The functions g:(x) and Gg(t,x) are continuous and satisfy Lipschitz condition in x.
That is, there are positive constants Mz (¢ = 1,2,...,n), such that

|Gt %) — Ge(L ) | S Melxe—yl & = 1,2,..,,

The solution x(t) satisfies Eq.(1.1) fort >1t,. We say that solution x(t) is a non-
oscillatory solution if it is eventually negative or eventually positive, so that there exists
t, =15, such that x(t) > 0 or x(t) < 0 for all t > t,. Otherwise, the solution is said to be
oscillatory [7].
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Definition 1.1: Let x(t) be a function, x(t) is said to be relatively bounded of below or
above if there exists a function y(t) and constants: 3 y(t) < (1) < » ( < 2() < ¥ (D).
The following lemma and theorem are needed in the next section to the main results.

Lemma 1.1: [14] (Theorem to Krasnoselskii of Fixed Point).

Let X be a Banach space, O is closed convex bounded set in X, if S4, S,:0 — X,3 S;x +
S,y € O, forall x,y € O.IfS; is a mapping with contractive feature and S, is a completely
continuous mapping, then S;x + S,y = x is a solution onO.

Theorem 1.2 [15] (Lebesgue's Dominated Convergence Theorem)

Let {p,} be a sequence to measurable functions ong, and g be integrable function on g with
dominates {p,.} onE such that |p,(x)| < g(x) on g, foralln. If {p,} = {p} pointwise
almost everywhere on E, then p is integrable on g with:

limy o . #n = [, 2, E is ameasurable finite set.

2. Sufficient Conditions for Existence:

In this section, we introduce new sufficient conditions to ensure the existence and
bounded of solution by two positive functions u and v on [t;, ») of Eq.(1.1), t; > t,. The
existence to positive bounded solution is studied, while existence of eventually negative
solution can be found similarly.

Throughout this section, we suppose the following conditions hold in the included results:
Al N; < az(1),bs(t) < N, where N; and N, # 0, are constants, £ = 1,2,3, ..., 1.

A2. Rix(t) < g¢ (x (rf(t))) < R,x(t) , where R; and R, # 0, are constants, ¢ =
1,2,3,..,1.

A3.Cix(t) < G¢ (t,x (r;(t))) < C,x(t), where C; and C, # Oare constants, & =
1,2,3,..,1.

Theorem 2.1

Assume that Al- A3 hold, and the bounded functions u, v € C*(N, [0, »)), such thatt, >
tg + p:

u® < ulty), to<tsty 2.1
n n
1 1 @
R_2 CZ;v(tf(t)>—N—2v(t) < t ;v Tf(s)
o 7 1
f Zu 76(s)) d R_1 Clzu 7(®) ——u(t) txt,  (22)
f Z T;(s) ds < 00 (2.3)

to f 1
Then the Eq.(1.1) has a bounded solution by positive functions u and v.

Proof
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LetI(t) = f:o Z?=1 v (Tg(s)) ds and then the condition (2.3) implies that

lim,, o I(t) = L!l_)rg f:o Z?zlv (Tf(s)) dsds = 0. (2.4)

Let (C([tg, ), R), |l.|) such that ||x|| = sup|x(t)| = C([ty, 0),R) is the Banach space.
t2t,

Let O c C([ty, ) ,R) which is defined as follows:
0 = {x(): x(t) € C([ty, ), R) with u(t) < x() < v(1),t =t} (2.5)

Such that O is closed and convex set.
The mappings S; and S,: 0 = C ([ty, ), R) are defined as follows:
n
)0 = { 1, bi(H)G; (t,x (Tf(t))) , t>t,
(S12) (1), th Sty
© 7
(S,2)(t) = ‘! Z 4595 (x(15(0)) ) ds 121, 2.6)

Sx)t) —ulty) +v) o St sy,
Where S; and S, satisfy eq. (1.1)
Forallx,y e Dandt > t,, then

(S50 + Gan)(®) = 2 b (G (1% (1)

oo

tf i as(s)gs ( (15)) ) s

=1

v

< NZszn: (Tf(t) zfzn: x(rg(s) ds
&=1 t &=1

<NZCZZW: (Tf(t) ZJZW: v Tf(S) ds
§=1 T &=1

< NG EEy v (7e®) = NoRo - <C2 v (Te®) - —v(t)) = v(1).

Forall t € [ty,t;], we have
(S12)(®) + (S21)(®) = (S120) (1) + (S2p) (1) — ulty) + v(D)
<v(t) —ult) +v) Sulty) —ulty) +v() < v(@).
So that for all t > t,, this yields

® 7N
SO + SN0 = Z e G (% (z:0)) - | D a1 (3 (7)) s
t &=1
77 © 7
= N1C1z Tf(t) 1f Z x(rg(s)) ds
§&=1 T &=1
n 7
= N1C1Z (Tf(t)) lf Z u(rg(s)) ds
§=1 T &=1
n n
= N,C, 2 u (Tf(t)) - NlRlRi C, Z u (rf(t)) - Niu(t) = u(®)
= T\ &= !

For all t € [ty,t;] and from Eqg. (2.2), we obtain
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(S12) (@) + (S21) () = (S12) (1) + (S2¥)(t1) — v(ty) + u(t)
Zulty) —ulty) +v@®) =v@®) =ul®) (2.7)
So that S;x + S,y € O For all x,y € 0.Now, we have to prove that S; is contraction mapping
onO. For all x,y € Oand t > t; ,we get

IS12 = Syl = fgfl(slx)(t) G101

= }ggtp i bg(t)G; (t,x (Tf(t))) _Zn: bf(t) Gf (t,)/ (Tf(t))>
g =i &=1
< sup %7, be(t) [Ge (t,x(rg(t))) -3, G (t,)/(Tg(t))>]|
< supN, |Z?=1 [Ge (t,x (Tf(t))) - X, G (t')’ (Tf(t))>]|

t =ty

st:gpNz Z?zl | [Ge (t,x (Tf(t))) — G (t)f (Tf(t)))”
< supN, Z:Zzl |G§ (t,x (Tf(t))) — G (t,)/ (Tf(t)))|

t >t

< suplz([6, (6,2(0. ) = 6 (6 (72 0))] +[62 (4 2(2(0)) = 62 (47 () )|

o] (12 (50 0) = G (67 (50 ))

< gypNz(Mllx —vI+M|x —y|+ -+ Mylx —vl)
1

< supc(M; + My + -+ M) |x —y|

t >ty

< M|lx -l (2.8)
Where ,M = N,(My + M, + --- +M,,)
Also for t € [ty,t4].
IS12 = Sayll = sup [(S12)@®) — (S11) (O]

to<t <ty

= Ssup |(S12)(t1) — (S1¥)(t1)]

tost <ty

i be (t1)Gg (tl.x (q:(tl))) - i be (t:)Ge (w (Tf“l)))‘
£=1 §=1

<N,

i 16 (1,2 (:20)) —i Ge (tl,y(rg(tl)»]‘

&=1 §=1

< sup szn: |[G§ (tl,x (Tf (tﬂ)) — G¢ (11, 14 (Tf (t1)))]|
=1

tost <ty

ﬁ:gpdeGl (t () = 61 (v (1 1))| +]62 (£, #(12 (1)) = G2 (¢, (721))|

+-|G, (t,x(f,,(t))) - G, (t,y(r,,(t))>|

<t StuPNz(Mﬂx — v+ Malx =yl + -+ Mylx —vl)
7t
< supNy(My + My + - +Mp)|x — |

t >t
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< Mllx—vll (2.9)
Where ,M = N,(My + M, + -+ +M,)
=Mllx—vll
This implies that
IS12 = Syvll < Mlx —yl| (2.10)

Thus, S; is mapping with contractive property on O. Now, we have to prove that S, has
completely property to continuous mapping. First of all, we need to show that S, is
continuous mapping.

Let x, = x4 (1) € O. Since O is closed, thus x,(t) tends to x(t) as k — oo, x(t) € O. For
t > t; thisyields:
(S22 ) (D) — (S22) DIl = tsgth(Szxk)(t) — (S22) (D]
1

ol 0o @)+ [ 3 aome o (s9)
B t £=1
00] T] 0
ﬁ:gPNz —tf ; 9s (xk Tg(S) ds+! s gf Tf(S)))
o 7
ﬁ gypNz f Z [9¢ (xk (rf(s)))_ gs (x (q(s)))]ds
! t §=1
supNz f (xk(rl(s))) g1 (x(rl(s)))

+ f [92 xk(Tz(s))> 92 (x(rz(s)))]dg + .
t

+j | gn X Tn(S))) — 9y (x (rn(s))>]ds| (2.11)
t
According to (2.3), and the bounded property of g; (x (rf (t))) , We get

I, 9 (x (Te(S))) ds < oo, (2.12)

Since|[g5 (xk(rl(s))) — ¢ (x(rl(s)))| —»0as k tends tooo, £ =1,2,3,..,n. By
Lebesgue's dominated convergence theorem, we get

Jm I(Sz2) ) — (S;2) DI =0 (2.13)
It reduces that S, will be continuous mapping.
To prove that S, 0 is a relatively compact, we must accentual that {S,x : x € O} is uniformly
bounded and equicontinuous on [t,, o], by Arzela-Ascoli theorem [16]. From (2.5), we get
{S,x : 2 € O} is auniformly bounded.
To secure that {S,x : x € 0} is equicontinuouson on [t,, ), let x € O and for any € > 0, by
(2.12), so that there exists t, > t;large enough:

ffgg(x(rg(s)))dw -ttt (2.14)

Then, forany givene > 0and x € O, T, > T; > t,, we have
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1(S2x1)(T2) — (S22)(T)Il = sup [(Sax)(T2) — (S2)(Ty)]

T, >Ty >t,

< |Sx) (T + |(Szx)(T1)|

f Zag(t) ¢ (i (1) ) s + f Z as (g (x (1)) ds

T, =1

© 7 oo n
N, J. Z ge | xk rg(s) ds + N, f Z ge | x TE(S) )
T, E=1 T, §=1
& & &
<N, (ZWNZ Fo ) + N, (ZnNz Fom ZUNZ) <¢ (2.15)
n — times n — times
For x e Oandt; < Ty < T, < t,, we get
1(S22)(T2) — (S22)(T)ll = sup  [(S2)(T2) — (S2)(Ty)]

t1< T1<Tp< t,

i L o) [ oo o)

Ms

ge (x (Tg(s) ds — z gelx r;(s) )

1 T e=1

Nji g¢ (% (5) ) s

T]_ €=1

=N, sz g1 (x(‘rl(s))) ds + N, f 92 (x(rz(s))) ds+ -+ N, fTZ gn|x ( (Tn (s))) ds

Ty
< NonMy (T, — Ty).

t
< sup N, f

STy <Tp< Ly T,

S
1l

T;

Thus there exists §; = — , such that
nM;

|(S,2)(T,) — (Syx2)(Ty)| < gif 0<T,—T; <6, (2.16)
Finally, let V(1) = % then for anyx €0, ty<T; <T, <t;, by mean value theorem
there exists k; € (T4,T,) and §, = > 0 such that

’( 1)
82T - &M =|(5) (1) - (5) (1)

= [V(T2) — V(T1)
V' (k1)(To — T)|
[V (k)I(T2 — T1) <,
if 0<T,—-T; <96,. (2.17)

Hence S, 0 is a compact relatively set. By using lemma (1.1), it reduces that Eq. (1.1) has
solution which is bounded relatively from below.
Next theorem is generalizing of theorem (2.1). We will show that the solution of Eq. (1.1)
exists and bounded by convergent series Z’gzluf (t) and Zgzl vg (1).
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Theorem 2.2
Suppose that Al- A3, (2.3) hold, and there is convergent series Z?:ﬂf (t),Z?=1 v (1) €
(N, [0,0)),t; =ty + p such that
v(®) = v(ty) (2.18)
* CiN; — Ki !
ft u((z())) ds < WZ ug (7)) 1 > (2.19)
C,N, —

J;oov<(rg(s)))ds, RN, Zv; T;(t)

Then, the Eq.(1.1) has a bounded solution by convergent series Z’gzlug (t),Z:lzl ve (1) € CL.
Proof
Let (C([ty, ), R), |l |]) such that ||x|| = sup|x(t)| = C([t,, ), R) is Banach space, let
t>to

0O c C([ty, =), R) which is defined as follows:
O = {x():x(t) € C([ty, ), R): u(t) < x() < v(t), t=t,
Kix(t) < 2(t;() < Kpxe (), t = 1o, } (2.20)
Such that O is a closed and convex. The mappings S; and S,: 0 = C ([t,, =), R) are defined
as:

n
(S,20)() = ; bs ()G (t,x (Tf(f))), t =ty
(S12) (1), to St <ty

( fzn: as(s)ge (* (Tf(s)>) ds, t >ty

=

(S2) () = 1 (2.21)

n
(S,x)(ty) — ve () + ve (1), to St <ty
| NI AT

We are going to prove for any x,y € O such that S;x + S,y € Oand forall x,y € 0,t > 1,
we have

S ® + SO = Z b (G (1% (7 (1)) - f i ag ()¢ (# (7)) ) ds
< Nzczi o (540) — Mok f Z (59 ds
0 Y -t [ ) o
) S
M.y . Ky ve(®) — Nk, tf KZ ve(s) ds
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n CZ N2 n n

< N,G,K, z ve(t) — NyR, TKZKZ Z ve (1) = Z ve (1) (2.22)
=1 22 £=1 £=1

Let t € [ty, t1], using (2.22), we get:
1 1
(S12)(®) + (S2) (@) = (S120) (1) + (Soy) () — Z Ve (1) + Z ve (1)
£=1 £=1

n n n n

<Zv§(t1)—2vg(t1)+zvf(t):va(t)

£=1 £=1 £=1 £=1
Moreover, V't > t,, yield:

n
GO + SN = ) b6 (12 (z:®)) -
%’_

;.x

n 0o
= N, C, Z x (Te®) - Nlle
é=1 t =1
n 0o n
> Nlcl Z K1 xf(t) - N1R1 j K1 2 xg(S) dS
&=1 1 =1
n 0o n
> Nlcl z K1 ue(t) - N1R1 j K1 uf(S) dS
= t $=1
1
n CZNZ _K_2 n n
z NZCZKZ z u§(t) - NZRZ WKZ Z Ug (t) = z ug (t) (2.23)
=1 24¥2 =1 =

Then for t € [t,,t;], using (2.18) and (2.23), we obtain:

n n
SO + SN0 = ) + SN0 = ) v () + ) v )
&=1 &=1

F iuf (t) — i 143 (t) + i 143 (1)
§=1 &=1 &=1
>Zn:ug (t) — zn:ug (t1)+zn:vf (1) :zn:vf 1) >z’7:uf )
=1 §=1 §=1 §=1 £=1

Thus, S;x + S,y € 0,V %,y € 0. By using similarly steps in theorem (2.1), we conclude the
result. By lemma (1.1) there exists x, € 0,3 S;xy + S,x, = x,. We realize that x,(t) is a
one side relatively bounded solution of the Eq. (1.1).

3. Oscillation Criteria of multiple delay Differential Equation:

In the present section, we'll seek for oscillatory criteria to Eqg. (1.1) and we use some basic
lemmas:
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Lemma 3.1 [5] If these assumptions hold
0,9,%,T,0 € C[ ty, ©0), ER] @) <0,lim,,, @(t) exists, 0 <I9,(t) <1, 7(t) <t, o(t) =
t, t =1, lim;, 7(t) = 0 and
x2(1) < @) +9,(t) max{x(s): 7(t) < s < o(D)}, t=1t . (3.1)
Then x(t) cannot be positive for t > t;, > t,.
Il. If these assumptions hold ¢,9,x,7,0 € C[[ty, ©);R], @(t) > 0,lim,o @(t) exist,
0<9,)<1,t) <to(®) =t t =ty lim_,,7(t) =0 and
x2(t) = @) + 9,(t) min{x(s): T(t) < s < o()}, t = 1. (3.2)
Then x(t) cannot be negative for t >1t; > t,

Lemma 3.2 [17]
Assume that v,p € C[R*, R*] are continuous functions such that v(t) < t,v'(t) = 0 for
t =ty with lim_,,, v(t) = oo.

: et 1
If lime 1nffu(t) p(s) ds > - (3.3)
then the inequality x'(t) + p(t)x(v(t)) < 0 has no eventually positive solution.

Lemma 3.3
Assume that:

v =2® -0, [F P a(s)ge (% () ) s - 2y b0 (62 (7)) 3.9
And the following assumptions hold:

Ge(tx(r 0)) < 9¢(#(®))

x(fg(t)) x(‘rf(t)) <Y1, p(t) = max{r:(1)}

H2: lim sup Z" [frgl(vf(t)) ag(s)ds + b;(t)] <

If x(t) is eventually positive solution of Eq. (1.1) with(z; 1(v5 (t))) 0 then:
Y (1) is positive non-increasing function.

H1:9,() <

Proof
Assume that a solution x(t) is a non-oscillatory of the Eg.(1.1). So that let x(t) be
eventually positive solution, thereist; > to+p 3 x(t) >0 for t>1t;.
n

YO =x®- ) [aer (o ©)ge (x (v @))) @ e - ar® gg (x ()]
£=1
n
- %z be (1) Ge (t, X (rf(t)))
£=1

From Eq. (1.1), we obtain that
n

r® == a®g (x(r®)) + Z be(® G (&% (1))

£=1
U

_Z ag(tg’ (Uf(t)))ge( (@ (t))) (27 (g (1))
+Z ae(t)gs( 7 (1) ) Z be (1) G (t x(rf(t)))
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n

Y'(t) = —Z ag (7 (ve (1)) g (x ((uf(t))> (tz'(ve (1)) <0 (35)
=1
So, we conclude that Y’ (t) is non-increasing.
Let Y'(1) is positive. Otherwise thereisat; > ty, 3 Y'(t) < 0 fort, > t;.

n T Hve)

x(®) = Y () +z f ag()9¢ (* () ) s +z b G (& (7))

n ¢ (Uf(t))
Y(t)+z f ag (50, (D (7(s)) ds+z be (09, (O (7¢(s))

" Tf (uf(t))

<KYQ®)+9, (t) max x(s) z f az(s)ds + b (1)
t
<Y () + 9,(H) max,p<s<e £(s) fort; > 1.
By using lemma (3.1-1), then x(t) cannot be positive function on [t3, co) which contradicts
to x(t) > 0.

Theorem 3.1
Assume that H1, H2 hold and Y (1) is defined as in (3.4) in addition to the condition:

N

K |
lim inf f I[Z ag(rgl(uf(s)))ﬁz(rgl(uf(s)))(rgl(uf(s)))'] I 1
v;(t)l é=1 l
. rgl(uf(v(s))) . TI .
+ 2 f az(u)9,(uw) du + Z be (vg(s)) U, (vg (s))Jllds > 3 (3.6)
§=1 ve(s) &=1

Let ve € C(R*,RY), ve(t) < tsuchthat 771 (ve(t)) > t, v(t) — 0 ast — oo,
Then every solution of Eg. (1.1) oscillates.

Proof
Assume that a solution x(t) is non-oscillatory of the Eq. (1.1). So, let x(t) is eventually
positive solution, thereist; > ty, +p, 2 x2(1) >0, t>1t;.
From (3.4): x(t) > Y (1) then:
- 7 (ve (1))

2() = Y(t) + Z f ag()g¢ (% (z()) s +Zn: b (G (1% (7(0)

n TE (v‘,:(t))
=Y + 2 f ag()9,(5)x (Te(s) ) s + Z be (8 (Hx (v ()
- Tfl(vg(t))

>Y () +z f ag ()0, ()Y (te(s)) ds +Z be 8, (ve()
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Tgl(vf(t))

n n
=Y () + z v ((ve®) f ag (s)9,(s) ds + 2 be®8, Y (ve()
: : -
n Tfl(vf(t))

=Y + Y0 Z f ae ()9, (s) ds + Y (®) 2 be (89, ()
. Tfl(v;(t))
=Y I1 + Z f a; (s)95(s) ds + Z b (1), (t)‘

. Tfl(vg(t))
() » YD) I1 + Z f 0 (5)9(s) ds + Z be (D9, (t)‘
. (Ug(vg(t))) 0 ]
x(e®) = Y vg(t) [1 + Z f az(s)9,(s)ds + z bg (v;(t)) U (Ve (1) |
=1 Uf(t) &=1 J

From (3.5), we have:

n
r'@+ Z ag(zg " (ve(1)))gs (x ((Uf(t))) (rg " (ve)))' < 0
=1

n
Y'(t) + Z ag (v (v ()))9 (o7 (v () (ve(®) ) (7 (v (1))’ < O
=1

n |
Z ae (r7 (v (1)) (‘L'gl(vf(t)))(z'gl(vf(t)))'] |[1

Y'®) +
&=1
n 7 (vee®) )
+ Z J az(s)9,(s)ds + z bg (Ug(f)) Y, (vg(t))‘ Y (Ug(t))
- ve(®) £=1

<0
By lemma (3.2), then the last inequality has no eventually positive solution.

Corollary 3.1
Let Y'(t) is defined as in (3.4) and the conditions H1 and H2 hold, in addition to the

following conditions:
Let u > 0 such that:

n n
O<p< Z az(s)9,(s)ds + Z bg (vf(t)) 9, (vf(t)) (3.7)
§=1 v é=1
n
()9, (r7 (v (t v (1) = 3.8
Z oy (1 (o D)0 (e O a7 e > ey (39)

Then any solution of Eq. (1.1) oscillates.

889



Sharba and Jaddoa Iragi Journal of Science, 2023, Vol. 64, No. 2, pp: 878-892

Proof
It is easy to see that the condition (3.8) satisfies the following inequality:

t U]
f “Z ag(tg (ve(s)) 02 (Ve (s (g (ve(s)))' || ds
ve(h) | L[§=1

t

1 f 1 t-ve®) 1

7= ds > 7
Min s, {s — ve(s)} min {t—ve®} e

e
ve(d)

Then the condition (3.6) holds, by theorem (3.1) every solution of Eg. (1.1) oscillates.

Example 3.1
Consider the following multiple DDE:
2

2
%x(t) = - 4 (x (rf(t))) +%Z be (£)Ge (t,x(rf(t))) (3.9)
Solution - -

Let9, (1) =1, 9,(t) = % with the condition:

3 _Ge (t,x (rf(t))) _o (x (Tg(t))) -

o x(®) x (e 1))
Setag(t) =z +e \by(t) =+ e LT () =t—2,0;(®) =t—1, { = 1,2
To satisfy the condition H2:

2 Tgl(vf(t)) 2 [t+1
1 1
. T - —s - —t
tliror;tsupf 1 f ag(s)ds + bz (1) —girorgsup; f (5+e )ds+4+e
= t =1 |t

2
1 1 9
= tli’?.l Sup; [g — (e —e™h 4 ) + Ze_t] =10 <1

To satisfy the condition (3.6):
t n
tlirgol inf ] [Z ag(rgl(vf(s)))ﬁz(Tgl(vf(s)))(rgl(vg(s)))’] 1
ve) | L$=1
75 (v e )

n
3
=1

n
ag(u),(u) du + Z bg (vg (s)) U, (Ve () ||ds
=1

ve(s)
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t 2
i f[ 3 1, e Hi f3 L,y +22:31
= fminf [ zGre ) 3G e du G
l §=1 s-1 §=1
]

|
+e =) [|as

t
31 31 31
—Ii . = —(s+1) T _ a-s —(s-1) = —(s-1)
tlgggmff“z(5+e )][1+2(5 e +e )+2(4+e )”ds
t—1

t
3 3 67 1
=limi TR £ 5 DN I Iy —s+1
tlirorolmfj“lo+2e ” e +te ”ds
t=1

20 2
t
201 67 3 1 3 1
— 13 P _ aA—S—1_ _— ,-S__,—2s-1 _ a—S+1,4 — 4-2s
=l inf [400+BOe 20¢ "2¢ 0 T tge ]ds

t—1
1
= 0.5025 > 0.36787 = -
By theorem (3.1) then every solution of the Eq. (3.9) has an oscillatory property.

4. Conclusions

Many researchers in the existence's field of bounded solutions have been focused on
bounded solutions by a constant and others have been studied the existence of bounded
solutions by functions, for more details see the references. The sufficient conditions have been
found to ensure the existence of bounded solutions by using convergent sequences, as well as
bounded by convergent series. The theorem of Krasnoselskii and Lebesgue's dominated
convergence theorem are used. The sufficient conditions for oscillatory solution are more
flexible and they are easy to apply in examples. The obtained conditions are more applicable
and they are easier than others in a similar work.
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