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Abstract

The purpose of this study is to investigate the effect of an elastic wall on the
peristaltic flow of Williamson fluid between two concentric cylinders, where the
inner tube is cylindrical with an inelastic wall and the outer wall is a regular elastic
sine wave. For this problem, cylindrical coordinates are used with a short
wavelength relative to channel width for its length, as well as the governing
equations of Williamson fluid in the Navier-Stokes equations. The results evaluated
using the Mathematica software program. The Mathematica program used by
entering the various data for the parameters, where the program shows the graphs,
then the effect of these parameters became clear and the results mentioned in the
conclusion. Williamson fluid peristaltic flow through an elastic conduit is the subject
of this investigation. For a number of significant elements, such as velocity
distribution, stress and wave frame streamlines, graphic findings are supplied at the
end of the article.

Keywords: Williamson fluid, peristaltic flow, wall properties, cylindrical
coordinates.
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1. Introduction

Predicated by the wave of area contraction and expansion that travels together with the
distensible tube or channel, peristaltic flow occurs. Bolus formation, ureter flow, chyme
advancement in the gastrointestinal system, embryo transport in the uterine cavity, and blood
flow in arteries are all examples of peristalsis. For example, in the nuclear sector, researchers
have used this mechanism to describe peristaltic and roller pumps, as well as the
transportation of dangerous and destructive fluids and heart-lung machines. Numerous
scholars have studied peristaltic transport in a varied configuration because of its widespread
usage in a variety of scientific domains. Peristaltic transport of non-Newtonian fluid has been
of paramount importance to researchers in bioengineering and medicine because of its wide
range of applications in sectors such as biotechnology and physiology [1-6].

Latham’s [7] initial investigation on peristalsis paved way for many scholars to study and
analyze the peristaltic motion (Shapiro [8], Yin and Fung [9]). Tang and Fung [10] are among
the numerous writers who have presented their research with the opinion that many
physiological fluids, including blood, flow under peristalsis behave like a Newtonian fluid.
Although he proposed Newtonian and non-Newtonian fluid models for physiological flow.
Salman & Ali studied the combined effects of the porous medium and heat transfer on MHD
Jeffery fluid which flows through a two dimensional asymmetric, inclined tapered channel
[11], in his work they have results show a parabolic behavior, it rises in the central part of the
channel and decreases due to the effect of Hartmann's number, while the opposite behavior
appears through the effect of the porosity modulus. Almusawi and Abdulhadi presented and
discussed a Ree—Eyring fluid’s peristaltic transport in a rotating frame and examines the
impacts of MHD [12].

The peristaltic flow of fluids through a rubber channel has an important role in the food
and medical industries, in addition to the movement of blood in the arteries, food in the
intestines and liquids in the human body. All this suggests the elasticity of the wall of the flow
channel has an important role in the movement of fluids. Al-Khafajy and Abdulhadi studied
the effects of wall properties and heat transfer on the peristaltic transport of Jeffrey, Carreau,
and Williamson fluids through a porous medium channel in three different studies [13-15].
These and other studies were in Cartesian coordinates, this prompted us to study the
peristaltic flow of Williamson's fluid between two concentric cylinders, an inner tube is
cylindrical with an inelastic wall and an outer wall is a regular elastic sine wave in the
cylindrical coordinates.

2. Mathematical Formulation
Consider the peristaltic flow of Williamson fluid through two concentric cylinders, the
inside tube is cylindrical and the outside is a regular elastic wall in the shape of a sine wave.
The cylindrical coordinates are represented by R along the radius of the tube and Z
synchronously with the axis of the tube as in Figure 1. We know the geometry of the wall
surface as follows;
Inner wall
r=1r =a
Outer wall
F= 75z =a,+bSin(Z(Z-sD)
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Figure 1: The problem Geometry

where a, is the average radius of the undisturbed tube, b is the amplitude of a peristaltic
wave, L is a wavelength,s is a wave propagation speed, and t is a time.

3. Constitutive Equations
Basic equations governing continuity and the Navier-Stokes equations are
wW=0 1)
p(V.VYV =V(—pI +7) 2)

Where V is the velocity field, p is density, p is pressure I identity tensor, T is extra

stress tensor and VV the fluid velocity gradient of Williamson's fluid is defined as:
—[teo + (o + )X =TV ']y . ©)
here u., is an infinite shear viscosity, uo is a zero shear rate viscosity, I is the time constant
and y is shear strain.

Let V (vy, v,, v3) be the velocity vector at cylindrical coordinates(r,9,z). The shear strain
tensor is illustrated as follows:

dv; dv, av, Jdv, 0vs
2~ ——
ar (619 vzt 6r) 9z | or
1 /0v, av, v, dv, 10vs
—2F =|-(222 _ hi] i N i}
v r(aﬁ v2 T(')r) (619 ) 9z 799
dv; Odvg dv, 10v, d0vs
— I I —_ 2_
9z | or 9z 7 99 oz

4. Flexible wall
The equation governing the motion of an elastic wall can be expressed as L* = p — py,
where L* is an operator, which is used to represent the motion of stretched membrane with

viscosity damping forces such that
s _ gl o
L'=A- BaZZ+C +D =+ Ep
where A is a flexural rigidity of a wall, B is a longitudinal tension per unit width, C is a
mass per unit area, D is a coefficient of viscous damping and E; is a spring stiffness.
The governing equation for flexible wall canal properties at ¥ = #, is found;

oP o4
% a—Z(Aﬁ—Bﬁ-I‘Cﬁ‘FD +EL)(T2)
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5. Solution Method
We write the speed components in an unstable two-dimensional flow as follows: V =
(Vi(7,2,1),0,V5(7, z,£)), here V; and V5 represent speed components corresponding to the
radial and axial direction in a given frame, respectively.
The governing equations are got for fluid motion after replacing the velocity components in
the shear stress equations for Williamson's fluid, then in Eq. (1) and Eq.(2), we have

o, Vi 0Vs _
ﬁa_E ? =0 vy d d T o
V; V; — 0V, D 1 T99
P(a_fl+ 16_1:+V33_21):_a_i7+§a}3 Trr) + —(TRZ —% )
Vs | 5 OV = AV ap , 10
p (a_; +V a_; + V3 a_;) = - O_Z— 23R = (RTzz) +5; (Tzz) (6)
and the components of the extra stress are;
_ av;
rR = 2(ko + (Mo — Ho)TY) ( —ﬁ) (7)
_ N[OV | OV
7z = (o + (o — n)T) (52 + 52) (8)

The corresponding boundary conditions are:
V;=V,=0,at T=7 =q

10
V;=V,=0, atr—rz(zt_)—a2+b5m( Z—SD) (10)

General and special two-frame coordinate transformations are given as follows;
F=R,Z = Z—st (11)
U_1:]71,U_3:]73—S (12)

For (¥, 2) and (V,V5) are also the components of velocity in the moving and static frames,
respectively. By using these transforms, the equations the problem are:

e~ (13)
p(%+—laa”_+(—+s)—)=—%+§%(ﬁ )+ = (% )—f’%@ (14)
p(CHEA I IS 4T = - L+ 1 () L)
with the governing motion equation on the elastic wall, we get
(a2 -BZ, S AE2) () = 22 () + = (7
—p (d(v;;-s) +_1d(v3+s) n (_+ )a(v3+s)) (16)

In order to solve the equations controlling motion, we present non-dimensional equations
to simplify these equations

v{L U3 T Z s a,T a I's azy

V= ! ;v :_slr:_)Z:_)t:_PT: 2 ) __Z'W - - 2

1 3 e
ass s a, L L SUo L as S (17)
2_ - -
asp psa T b T . _

=2 Re="2rn==2=¢<1,0=—,1n===1+@sin(2n2)

sLpo Mo a; a a

where @ the amplitude ratio, Re Reynolds number, & the dimensionless wave number,
and W, Weissenberg number.
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Substituting equation (17) into the components of the extra stress equations (7-9), equations
(13-16), and the boundary conditions (10), respectively. We have

O +2+2)-0 )
F:) 9 0 0 10 0
Res3 (%4—171&4'(1734'1) vl)=_£+6;5(rﬂ[rr)+6£(rrz)_6r6fg (19)

ar ;
f) d ] 10 G
Red(f+v1§+(v3+1)£) = —a—z+;;(TTrz)+55Tzz (20)

And the equation of motion governing the elastic wall

(Aag)asrz _ (Bag) 93r, n (Csag) 931, n (Dag) 9%r, n (ELag)aj
usLs) 0zs usL3) 0z3 ulL3 ) 0zot? ulL?2) ozot usL ) 0z

10 ad d 2 0
= 5 1) + 85,1~ Re8 (24 v 524+ (v + D 52) (21)
where:
_ - k2%
we = 2m(1+ T (252)

vy

_ - T3

T = w1+ TIVD (52 +52)
— - o(v3+
777 = 2w(1+TI7I) (2222)

This gives boundary conditions with respect to dimensionless variables in the wave

framework:
v3=-—1,v, =0, at ra, = ra, =a,a4
vy3=-1, v, =0, at ra, = rna,(z,t) =a, + b Sin (ZTH (zL — s%)) } (22)
6. Solutions of the Problem

It is very difficult to solve the problem in the latter form so we assume a very small wave-
number (§ « 1), hence equations (18-21) become:

6171 6173

Vi Y1, OVs
667" + r + dz 0 (23)
p
op 10
=, = 5. (rtrz) (25)
657"2 637"2 637"2 621"2 67"2 _ li
Ligstlegmtlagantlags + s =750r1r) (26)
3 3
where L, = 222 is a flexural stiffness of the wall, L, = ——% is a longitudinal tension per
usLs usL3
3 3
unit width, L; = C:La; is a mass per unit area, L, = % is a coefficient of viscid damping, and

3
Lg = % is spring stiffness is the spring stiffness. The components of the extra stress, are
2
Trr =Tz, = 0and 7., = (% + We (%) )

Using the accepted assumption (§ « 1), the components of the additional shear stress will be
dimensionless as follow;

) av5\?
T, = (ﬁ +we (22) ) 27)
Replacing t,, into equation (26), we have;
62173 6173 6113 2 6v3 62v3 _
W + ? + We (?) + 2rWe (?) (m) =rK (28)

with boundary conditions is v; () = v3(r,) = —1.
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_ 657"2 637"2 637'2 627'2 67‘2
where K = L, 55 T L, 5 T L 5902 T L, 6zaat + Lg py ;
. . . 1 1
The corresponding stream function is v, = — ;a—f and vy = ;ﬁ.

7. Perturbation Method Solution

In this section, we find the momentum function, shear stress function and stream function.
The equation (28) is a nonlinear equation and the exact solution may not be possible,
therefore, in order to find the solution, we employ the regular perturbation method in terms of
a variant of We Weissenberg number for a second order. For perturbation solution, we expand
as

V3 = Vg3 + Wevy3 + We?v,; + 0(We?) (29)

Substituting equation (29) into equation (28) with boundary conditions, then equating the like
powers of We, we obtain

7.1.  Zeroorder
0%vo3 Ovo3 _
oz Ty 7K
With boundary conditions vy; = —latr =candr =1+ (ZS.Sin(Zn(z - t)).

7.2.  First order

Y LR (621703) (61703) _ (8v03)2
or? ar or? or ar

With boundary conditions v,5 = 0atr = eand r = 1 + @.Sin(2n(z — ©)).

7.3.  Second order
0%v,3

r = (T ) - (5 (5 2 (B 5)
With boundary conditions v,; = 0atr = eandr = 1 + 0.Sin(2n(z — t)).

The formula for the solutions obtained (velocity , shear stress, and stream function) is too
long. The accompanying constants can be determined using the accompanying boundary
conditions. Thus, we will discuss these solutions through graphs in the following section.

8. Discussion and Results

In this section, we discuss the results that we obtained after solving the equations of the
problem using the perturbation method and then using a MATHEMATICA program to draw
these results. This section has been divided into three parts: the first discusses the influence of
parameters on the movement of the fluid through the flow channel, the second includes a
discussion of the influence of parameters on shear stress and the last discusses the influence of
parameters on the fluid flow paths.

8.1. Velocity profile

Figures 2-5 illustrate effect parameters W,, @, L, L,, L3, L4, Ls, and € on the distribution
of velocity v vs. r, respectively. We notice in Figure 2 and 3 that the velocity is positively
affected by the increase with parameters W,, @, L, and L., respectively. Figure 4 shows that
the velocity distribution decreases with the increasing of parameters L; and L,, respectively.
In Figure 5, observed that the velocity distribution rises with increasing parameter L and falls
down with increasing «.
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8.2. Shear Stress

In this section, we discuss the effect of parameters @, L,, L,, Ls, L3, Ly, €, and W, on the
shear stress, as we notice in Figures 6-9 that the stress increases on the solid wall (the inner
wall of the channel) where its value is positive and in the middle of the channel the stress
turns into a negative amount and its value decreases at the wall elastic (the outer wall of the
channel) under the influence of the increase in the parameters @, L,, L,, and Ls, respectively.
While in Figures 10 and 11,we notice the effect of parameters L; and L, opposite to the
previous parameters as the stress decreases on the solid wall (the inner wall of the channel)
where its value is positive and in the center of the channel, the stress turns into a negative
amount and its value increases at the elastic wall (the outer wall of the channel). We note the
effect of parameters € and W, on stress directly according to Figures 12, 13.

8.3. Phenomena Trapping

The closed streamlines of the bolus are formed thanks to the peristaltic motion of the wall
of the flow channel affecting the fluid flow within the channel. in this section we will discuss
the effect of parameters @, W,, Lq, L,, Ls, L3, L4, and € on the trapped bolus.

Through Figures 14-18 we see that the trapped bolus increases and grows steadily in the
center of the channel and expands to the outer wall (elastic wall) with increasing parameters
@, W,, Ly, L,, and Lg, respectively, and vice versa for the parameters L5, L,, and € where their
effect is the contraction of the trapped bolus when these parameters are increased,
respectively, in Figures 19-21.

------
6F 4“" .~~s 1
o, We {001, 0.2}
¢ 200

V_

Figure 2: Velocity distribution for various values of W, and @ with ¢ = 0.15, L, = 0.1,
L,=059L;=01,L,=0.1,L; =0.1,t =0.1,z = 04.

v3

I I I I I
0.2 04 0.6 0.8 1.0
r

oo

I I I I I
0.2 04 0.6 0.8 1.0

r J .
Figure 3: Velocity distribution for various values of L, and L, with @ = 0.15, & = 0.15,
W,=0.01,L;=01,L,=0.1,L; =0.1,t =0.1,z = 0.4.
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Figure 4: Velocity distribution for various values of L; and L, with @ = 0.15, € = 0.15,

W, =0.01,L, =0.1,L, =0.5,Ls =0.1,t = 0.1, z = 0.4.
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Figure 6 Shear-Stress for various
values of @ with & =0.15,t =0.1,
L1 = 01, LZ = 05, L3 = 01, L4 =

0.1, L; = 0.1, W, = 0.01, z = 0.4.

%
Figure 5 Velocity distribution for various values of Ls and ¢ with @ = 0.15, W, = 0.01,
L,=01L,=05L;=01,L, =0.1,t =0.1, z = 0.4.
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Figure 8 Shear-Stress for various Figure 9 Shear-Stress for various
values of L, with ¢ = 0.15,t = 0.1, values of Lg with ¢ = 0.15,t = 0.1,
Ll = 0.1, L3 = 0.1, L4 = 0.1, L1 = 0.1, L3 = 0.1, L4_ = 0.1,
L =01, ©=0.15 W, =0.01, L; =01, ¢ =0.15 W, =0.01,
z =04. z =04.

Iz

Figure 10 Shear-Stress for various Figure 11 Shear-Stress for various
values of L; with € = 0.15,t = 0.1, values of L, with ¢ =0.15,¢t = 0.1,
L,=01, L,=05 L,=0.1, L,=01, L,=05  L;=0.1,
Ls=01, ©¢=0.15 W, =0.01, Ly=01, @=015 W, =001,
z=04. z=04.
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Figure 13 Shear-Stress for various
values of & with @ = 0.15,¢t = 0.1, values of W, with & = 0.15,t = 0.1,
Ly=01, L,=05  Ly=0.1, Ly=01 L, =05 L3y=01,

Ly=01, Lg=01, W, =001, Ly=01, Ls=01 0=015
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Figure 12 Shear-Stress for various

873



Al-Khafajy and Al-Delfi Iraqi Journal of Science, 2023, Vol. 64, No. 2, pp: 865-877

1.4F 1.4F
1.2H 120
1.0F 10¢
. osf . . oaf
ol ner
o4l 04
oz B
01300 250 400 S50 500 550 600 65

0.300 250400 450 500 550 600 .65 0,200,250 400 450 500 550 600 65
-4

Figure 14: Wave frame streamlines for different values of ¢ = {0.1,0.11,0.12} at ¢ = 0.12,
w,=0.01,L, =0.1,L, =05,L;=0.1,L, =0.1,L; =0.1,t = 0.
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Figure 15: Wave frame streamlines for different values of W, = {0.1,0.15,0.2} at € = 0.12,
¢ =012,L, =01,L,=05,L;=0.1,L,=0.1,L; =0.1,t= 0.
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Figure 16: Wave frame streamlines for different values of L; = {0.1,0.11,0.12} at e = 0.12,
¢ =012, W, =0.01,L, =05 Ly =0.1,L, = 0.1, Lg = 0.1, t = 0.
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Figure 17: Wave frame streamlines for different values of L, = {0.3,0.4,0.5} at £ = 0.12,
¢ =0.12, W, =0.01,L; =0.1,L,=0.1,L, = 0.1, Ls = 0.1, t = 0.
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Figure 18: Wave frame streamlines for different values of Ls = {0.1,1.1,2.1} at € = 0.12,
¢ =012,W,=0.01,L, =0.1,L, =0.5,L;=0.1,L, =0.1,t = 0.
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Figure 19: Wave frame streamlines for different values of L; = {0.1,0.2,0.3} at € = 0.12,
¢ =012,W, =0.01,L, =01,L, =0.5,L, =0.1,Ls =0.1,t = 0.
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Figure 20: Wave frame streamlines for different values of L, = {0.1,1.1,2.1} at ¢ = 0.12,
¢ =012,W,=0.01,L, =0.1,L, =0.5,L3; =0.1,Ls; = 0.1, t = 0.
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Figure 21: Wave frame streamlines for different values of ¢ = {0.1,0.12,0.14} at ¢ = 0.12,
W,=0011, =01,L,=0.5L; =0.1,L, =0.1,Ls = 0.1, t = 0.

9. Concluding Remarks

Significant results have been obtained by studying the effect of peristaltic flow of
Williamson fluid through a channel of two overlapping tubes having the same center the inner
is cylindrical solid and the outer is elastic rubber. Here are some results in brief :

e The effect Weissenberg number, outer wall, flexural stiffness of the wall, longitudinal
tension per unit width and spring stiffness on fluid velocity direct, while the effect mass per
unit area, coefficient of viscid damping, and inner wall are indirect.

e It was noted that the velocity curve is in the form of a parabola and that the greatest
velocity of the fluid is in the center of the flow channel, while in the sides of the channel (the
channel wall) the flow is the least.

e As for the shear stress, we note that its value fluctuates in the middle of the channel, where
its amount at the solid wall is positive and is negative at the flexible wall. In addition, it is
increasing at the solid wall and decreasing at the elastic wall when the increased outer wall,
flexural stiffness of the wall, longitudinal tension per unit width, spring stiffness and vice
versa for mass per unit area and coefficient of viscid damping, while the stress increases with
the increase of inner wall and Weissenberg number.

e The trapped bolus increases and grows in the center of the channel and expands to the
outer wall (elastic) with increasing outer wall, Weissenberg number, flexural stiffness,
longitudinal tension per unit width, spring stiffness and vice versa for mass per unit area and
coefficient of viscid damping the trapped bolus shrank.
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