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Abstract 

The purpose of this study is to investigate the effect of an elastic wall on the 

peristaltic flow of Williamson fluid between two concentric cylinders, where the 

inner tube is cylindrical with an inelastic wall and the outer wall is a regular elastic 

sine wave.  For this problem, cylindrical coordinates are used with a short 

wavelength relative to channel width for its length, as well as the governing 

equations of Williamson fluid in the Navier-Stokes equations. The results evaluated 

using the Mathematica software program. The Mathematica program used by 

entering the various data for the parameters, where the program shows the graphs, 

then the effect of these parameters became clear and the results mentioned in the 

conclusion. Williamson fluid peristaltic flow through an elastic conduit is the subject 

of this investigation. For a number of significant elements, such as velocity 

distribution, stress and wave frame streamlines, graphic findings are supplied at the 

end of the article. 

 

Keywords: Williamson fluid, peristaltic flow, wall properties, cylindrical 

coordinates. 

 

 ويليامسون عبر قناة مرنة مائعالتدفق التمعجي ل
 

 ولاء ناصر خضير الدلفي ، *غازي صالح الخفاجي ضياء
 قسم الرياضيات ، كلية العلوم ، جامعة القادسية ، الديوانية ، العراق  

 

الخلاصة
الغرض من هذه الدراسة هو التحقق من تأثير الجدار المرن على التدفق التمعجي لسائل ويليامسون بين      

المركز ، حيث يكون الأنبوب الداخلي أسطوانيًا بجدار غير مرن والجدار الخارجي عبارة أسطوانتين متحدتين 
عن موجة جيبية مرنة منتظمة. لهذه المشكلة ، تم استخدام الإحداثيات الأسطوانية ، بالإضافة إلى الطول 

ليامسون في معادلات الموجي القصير بالنسبة لعرض القناة لطولها بالإضافة إلى المعادلات الحاكمة لسائل وي
 Mathematica. تم استخدام برنامج Mathematicaستوكس ، وتم تقييم النتائج باستخدام برنامج -نافيير

عن طريق إدخال البيانات المختلفة للمعلمات ، حيث أظهر البرنامج الرسوم البيانية ، ثم أصبح تأثير هذه 
لتدفق التمعجي لسائل ويليامسون عبر قناة مرنة هو إن ا .المعلمات واضحًا وتم ذكر النتائج في الخاتمة

موضوع هذا التحقيق. بالنسبة لعدد من العناصر المهمة ، مثل توزيع السرعة والإجهاد وتبسيط إطار الموجة ، 
 يتم توفير النتائج الرسومية في نهاية المقالة.
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1. Introduction 

    Predicated by the wave of area contraction and expansion that travels together with the 

distensible tube or channel, peristaltic flow occurs. Bolus formation, ureter flow, chyme 

advancement in the gastrointestinal system, embryo transport in the uterine cavity, and blood 

flow in arteries are all examples of peristalsis. For example, in the nuclear sector, researchers 

have used this mechanism to describe peristaltic and roller pumps, as well as the 

transportation of dangerous and destructive fluids and heart-lung machines. Numerous 

scholars have studied peristaltic transport in a varied configuration because of its widespread 

usage in a variety of scientific domains. Peristaltic transport of non-Newtonian fluid has been 

of paramount importance to researchers in bioengineering and medicine because of its wide 

range of applications in sectors such as biotechnology and physiology [1–6]. 

 

      Latham’s [7] initial investigation on peristalsis paved way for many scholars to study and 

analyze the peristaltic motion (Shapiro [8], Yin and Fung [9]). Tang and Fung [10] are among 

the numerous writers who have presented their research with the opinion that many 

physiological fluids, including blood, flow under peristalsis behave like a Newtonian fluid. 

Although he proposed Newtonian and non-Newtonian fluid models for physiological flow. 

Salman & Ali studied the combined effects of the porous medium and heat transfer on MHD 

Jeffery fluid which flows through a two dimensional asymmetric, inclined tapered channel 

[11], in his work they have results show a parabolic behavior, it rises in the central part of the 

channel and decreases due to the effect of Hartmann's number, while the opposite behavior 

appears through the effect of the porosity modulus. Almusawi and Abdulhadi presented and 

discussed a Ree–Eyring fluid’s peristaltic transport in a rotating frame and examines the 

impacts of MHD [12]. 

 

     The peristaltic flow of fluids through a rubber channel has an important role in the food 

and medical industries, in addition to the movement of blood in the arteries, food in the 

intestines and liquids in the human body. All this suggests the elasticity of the wall of the flow 

channel has an important role in the movement of fluids. Al-Khafajy and Abdulhadi studied 

the effects of wall properties and heat transfer on the peristaltic transport of Jeffrey, Carreau, 

and Williamson fluids through a porous medium channel in three different studies [13-15]. 

These and other studies were in Cartesian coordinates, this prompted us to study the 

peristaltic flow of Williamson's fluid between two concentric cylinders, an inner tube is 

cylindrical with an inelastic wall and an outer wall is a regular elastic sine wave in the 

cylindrical coordinates. 

 

2. Mathematical Formulation 

      Consider the peristaltic flow of Williamson fluid through two concentric cylinders, the 

inside tube is cylindrical and the outside is a regular elastic wall in the shape of a sine wave. 

The cylindrical coordinates are represented by R along the radius of the tube and Z 

synchronously with the axis of the tube as in Figure 1. We know the geometry of the wall 

surface as follows; 

Inner wall 
  �̅� =  𝑟1̅  = 𝑎1    
Outer wall  

  �̅� =  𝑟2̅(𝑧̅, 𝑡̅) = 𝑎2 + 𝑏 𝑆𝑖𝑛 (
2𝜋

ℒ
(𝑧̅ − 𝑠𝑡̅))  
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       where 𝑎2 is the average radius of the undisturbed tube, 𝑏 is the amplitude of a peristaltic 

wave,ℒ is a wavelength,𝑠 is a wave propagation speed, and 𝑡̅ is a time. 

 

3. Constitutive Equations  

   Basic equations governing continuity and the Navier-Stokes equations are 

      ∇�̅� = 0                                                                                                                    (1) 

𝜌(�̅� . ∇̅ )�̅� = ∇̅(−�̅� 𝐼 ̅  + 𝜏̅)                                                                                      (2)  

 

     Where �̅� is the velocity field, 𝜌  is density,  �̅�  is pressure, 𝐼 ̅ identity tensor, 𝜏 ̅ is extra 

stress tensor and  ∇̅�̅� the fluid velocity gradient of Williamson's fluid is defined as: 

𝜏̅ = −[𝜇∞ + (𝜇0 + 𝜇∞)(1 − Γ�̅̇�)−1]�̅̇�   .                                                                    (3)  

   here 𝜇∞ is an infinite shear viscosity, 𝜇0 is a zero shear rate viscosity, Γ is the time constant 

and �̇� is shear strain. 

     

     Let �̅�(𝑣1, 𝑣2, 𝑣3) be the velocity vector at cylindrical coordinates(r, ϑ, z). The shear strain 

tensor is illustrated as follows: 

 

�̇� = 2𝐸 =

[
 
 
 
 
 2

𝜕𝑣1

𝜕𝑟

1

𝑟
(
𝜕𝑣1

𝜕𝜗
− 𝑣2 + 𝑟

𝜕𝑣2

𝜕𝑟
)

𝜕𝑣1

𝜕𝑧
+

𝜕𝑣3

𝜕𝑟
1

𝑟
(
𝜕𝑣2

𝜕𝜗
− 𝑣2 + 𝑟

𝜕𝑣2

𝜕𝑟
)

2

𝑟
(
𝜕𝑣2

𝜕𝜗
+ 𝑣1)

𝜕𝑣2

𝜕𝑧
+

1

𝑟

𝜕𝑣3

𝜕𝜗
𝜕𝑣1

𝜕𝑧
+

𝜕𝑣3

𝜕𝑟

𝜕𝑣2

𝜕𝑧
+

1

𝑟

𝜕𝑣3

𝜕𝜗
2

𝜕𝑣3

𝜕𝑧 ]
 
 
 
 
 

 

  

4. Flexible wall 

     The equation governing the motion of an elastic wall can be expressed as 𝐿∗ = �̅� − �̅�0, 

where 𝐿∗ is an operator, which is used to represent the motion of stretched membrane with 

viscosity damping forces such that  

𝐿∗ = 𝐴
𝜕4

𝜕𝑍4
− 𝐵

𝜕2

𝜕𝑍2
+ 𝐶

𝜕2

𝜕�̅�2
+ 𝐷

𝜕

𝜕�̅�
+ 𝐸𝐿                                                                                  

 

      where 𝐴 is a flexural rigidity of a wall, 𝐵 is a longitudinal tension per unit width, 𝐶 is a 

mass per unit area, 𝐷 is a coefficient of viscous damping and 𝐸𝐿 is a spring stiffness. 

The governing equation for flexible wall canal properties at �̅� =  𝑟2̅  is found; 
∂P̅

∂z̅
=

∂

∂Z̅
(𝐴

𝜕4

𝜕𝑍4
− 𝐵

𝜕2

𝜕𝑍2
+ 𝐶

𝜕2

𝜕�̅�2
+ 𝐷

𝜕

𝜕�̅�
+ 𝐸𝐿) (𝑟2̅).   

             Figure 1: The problem Geometry 
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5. Solution Method 

     We write the speed components in an unstable two-dimensional flow as follows: V̅ =

( 𝑉1̅(�̅�, 𝑧̅, 𝑡̅), 0, 𝑉3̅(�̅�, 𝑧̅, 𝑡̅)), here 𝑉1̅ and 𝑉3̅ represent speed components corresponding to the 

radial and axial direction in a given frame, respectively.  

   The governing equations are got for fluid motion after replacing the velocity components in 

the shear stress equations for Williamson's fluid, then in Eq. (1) and Eq.(2), we have 

 
𝜕𝑉1̅̅ ̅

𝜕�̅�
+

𝑉1̅̅ ̅

�̅�
+

𝜕𝑉3̅̅ ̅

𝜕𝑍
= 0                                                                                                   (4) 

𝜌 (
𝜕𝑉1̅̅ ̅

𝜕�̅�
+ 𝑉1̅

𝜕𝑉1̅̅ ̅

𝜕�̅�
+ 𝑉3̅

𝜕𝑉1̅̅ ̅

𝜕𝑍
) = −

𝜕�̅�

𝜕�̅�
+

1

�̅�

𝜕

𝜕�̅�
(�̅�𝜏̅�̅��̅�) +

𝜕

𝜕𝑍
(𝜏̅�̅��̅�) −

�̅��̅��̅�

�̅�
                         (5) 

𝜌 (
𝜕𝑉3̅̅ ̅

𝜕�̅�
+ 𝑉1̅

𝜕𝑉3̅̅ ̅

𝜕�̅�
+ 𝑉3̅

𝜕𝑉3̅̅ ̅

𝜕𝑍
) = −

𝜕�̅�

𝜕𝑍
+

1

�̅�

𝜕

𝜕�̅�
(�̅�𝜏̅�̅�𝑍) +

𝜕

𝜕𝑍
(𝜏�̅̅��̅�)                                   (6) 

and the components of the extra stress are; 

𝜏�̅̅� �̅� = 2(μ0 + (μ0 − μ0)Γγ̇) (2
∂𝑉1̅̅ ̅

∂R̅
)                                                                       (7)                                                              

     𝜏�̅̅� �̅� = (μ0 + (μ0 − μ∞)Γγ̇) (
∂𝑉1̅̅ ̅

∂Z̅
+

∂𝑉3̅̅ ̅

∂R̅
)                                                                 (8)                                                            

𝜏�̅̅�𝑍 = 2(μ0 + (μ0 − μ∞)Γγ̇) 
 

The corresponding boundary conditions are: 

      
𝑉3̅ = 𝑉1̅ = 0 , 𝑎𝑡   �̅� =  𝑟1̅  = 𝑎1                                                

𝑉3̅ = 𝑉1̅ = 0  , 𝑎𝑡 �̅� =  𝑟2̅(𝑧̅, 𝑡̅) = 𝑎2 + 𝑏 𝑆𝑖𝑛 (
2𝜋

ℒ
(𝑧̅ − 𝑠𝑡̅))

}                            (10) 

General and special two-frame coordinate transformations are given as follows; 

 

       �̅� = �̅�, 𝑧̅  =  �̅� − 𝑠𝑡̅                                                                                               (11)       

       𝑣1̅̅ ̅ = 𝑉1̅, 𝑣3̅̅ ̅  = 𝑉3̅ − 𝑠                                                                                            (12)    

For (�̅�, 𝑧̅) and (𝑉1̅, 𝑉3̅) are also the components of velocity in the moving and static frames, 

respectively. By using these transforms, the equations the problem are: 
𝜕𝑣1̅̅ ̅

𝜕�̅�
+

𝑣1̅̅ ̅

�̅�
+

𝜕(𝑣3̅̅ ̅+𝑠)

𝜕�̅�
= 0                                                                                              (13) 

𝜌 (
𝜕𝑣1̅̅ ̅

𝜕�̅�
+ 𝑣1̅̅ ̅ 

𝜕𝑣1̅̅ ̅

𝜕�̅�
+ (𝑣3̅̅ ̅ + 𝑠)

𝜕𝑣1̅̅ ̅

𝜕�̅�
) = − 

𝜕�̅�

𝜕�̅�
+

1

�̅�

𝜕

𝜕�̅�
(�̅�𝜏̅�̅��̅� ) +  

𝜕

𝜕�̅�
(𝜏̅�̅��̅� ) −

�̅��̅��̅�

�̅�
              (14) 

𝜌 (
𝜕(𝑣3̅̅ ̅+𝑠)

𝜕�̅�
+ 𝑣1̅̅ ̅ 

𝜕(𝑣3̅̅ ̅+𝑠)

𝜕�̅�
+ (𝑣3̅̅ ̅ + 𝑠)

𝜕(𝑣3̅̅ ̅+𝑠)

𝜕�̅�
) = −  

𝜕�̅�

𝜕�̅�
 +  

1

�̅�

𝜕

𝜕�̅�
(�̅�𝜏�̅̅��̅� ) +

𝜕

𝜕�̅�
(𝜏�̅̅��̅� )            (15) 

 

with the governing motion equation on the elastic wall, we get 

    (𝐴
𝜕5

𝜕�̅�5
− 𝐵

𝜕3

𝜕�̅�3
+ 𝐶

𝜕3

𝜕�̅�𝜕𝑡2
+ 𝐷

𝜕2

𝜕𝑍2
+ 𝐸𝑙

𝜕

𝜕�̅�
) (𝑟2̅) =

1

𝑟

𝜕

𝜕�̅�
(�̅�𝜏̅�̅��̅�) +

𝜕

𝜕�̅�
(𝜏̅�̅��̅�) 

                                              −𝜌 (
𝑑(𝑣3̅̅ ̅+𝑠)

𝜕�̅�
+ 𝑣1̅̅ ̅

𝑑(𝑣3̅̅ ̅+𝑠)

𝜕�̅�
+ (𝑣3̅̅ ̅ + 𝑠)

𝜕(𝑣3̅̅ ̅+𝑠)

𝜕�̅�
)                           (16) 

 

     In order to solve the equations controlling motion, we present non-dimensional equations 

to simplify these equations 

 

𝑣1 =
𝑣1̅̅ ̅𝐿

𝑎2𝑠
, 𝑣3 =

𝑣3̅̅ ̅

𝑠
, 𝑟 =

�̅�

𝑎2
, 𝑧 =

�̅�

𝐿
, 𝑡 =

𝑠�̅�

𝐿
, 𝜏 =

𝑎2�̅�

𝑠𝜇0
, 𝛿 =

𝑎2

𝐿
,𝑊𝑒 =

Γ𝑠

𝑎2
, �̇� =

𝑎2�̅̇�

𝑠

𝑝 =
𝑎2

2�̅�

𝑠𝐿𝜇0
, 𝑅𝑒 =

𝜌𝑠𝑎2

𝜇0
, 𝑟1 =

�̅�1

𝑎2
= 𝜀 < 1, ∅ =

𝑏

𝑎2
, 𝑟2 =

�̅�2

𝑎2
= 1 + ∅sin(2𝜋𝑧̅)

 }            (17) 

 

       where ∅ the amplitude ratio, 𝑅𝑒 Reynolds number, 𝛿 the dimensionless wave number, 

and 𝑊𝑒Weissenberg number.  
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Substituting equation (17) into the components of the extra stress equations (7-9), equations 

(13-16), and  the boundary conditions (10), respectively. We have  

 

 (
𝑆

𝐿
) (

𝜕𝑣1

𝜕𝑟
+

𝑣1

𝑟
+

𝜕𝑣3

𝜕𝑧
) = 0                                                                                          (18)   

𝑅𝑒𝛿3 (
𝜕𝑣1

𝜕𝑡
+ 𝑣1

𝜕𝑣1

𝜕𝑟
+ (𝑣3 + 1)

𝜕𝑣1

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑟
+ 𝛿

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑟) + 𝛿

𝜕

𝜕𝑧
(𝜏𝑟𝑧) − 𝛿

𝜏𝜃𝜃

𝑟
    (19) 

𝑅𝑒𝛿 (
𝜕𝑣3

𝜕𝑡
+ 𝑣1

𝜕𝑣3

𝜕𝑟
+ (𝑣3 + 1)

𝜕𝑣3

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) + 𝛿

𝜕

𝜕𝑧
𝜏𝑧𝑧                         (20) 

And the equation of motion governing the elastic wall 

(
𝐴𝑎2

3

𝜇𝑠𝐿5
)

𝜕5𝑟2

𝜕𝑧5
− (

𝐵𝑎2
3

𝜇𝑠𝐿3
)

𝜕3𝑟2

𝜕𝑧3
+ (

𝐶𝑠𝑎2
3

𝜇𝐿3
)

𝜕3𝑟2

𝜕𝑧𝜕𝑡2
+ (

𝐷𝑎2
3

𝜇𝐿2
)

𝜕2𝑟2

𝜕𝑧𝜕𝑡
+ (

𝐸𝐿𝑎2
3

𝜇𝑠𝐿
)

𝜕𝑟2

𝜕𝑧
  

=
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) + 𝛿

𝜕

𝜕𝑧
𝜏𝑧𝑧 − 𝑅𝑒𝛿 (

𝜕𝑣3

𝜕𝑡
+ 𝑣1

𝜕𝑣3

𝜕𝑟
+ (𝑣3 + 1)

𝜕𝑣3

𝜕𝑧
)                                               (21) 

where: 

     𝜏�̅̅��̅� = 2𝜇°(1 + Γ|�̅̇�|) (2
𝜕𝑣1̅̅ ̅

𝜕�̅�
)  

     𝜏�̅̅��̅� = 𝜇°(1 + Γ|�̅̇�|) (
𝜕𝑣1̅̅ ̅

𝜕�̅�
+

𝜕𝑣3̅̅ ̅

𝜕�̅�
)                                                                           

 𝜏�̅̅��̅� = 2𝜇°(1 + Γ|�̅̇�|) (2
𝜕(𝑣3̅̅ ̅+𝑠)

𝜕�̅�
) 

 

       This gives boundary conditions with respect to dimensionless variables in the wave 

framework: 

 
𝑣3 = −1,  𝑣1 = 0, 𝑎𝑡   𝑟𝑎2 = 𝑟1𝑎2 = 𝑎2𝑎1                                                 

𝑣3 = −1,  𝑣1 = 0, 𝑎𝑡  𝑟𝑎2 = 𝑟2𝑎2(𝑧̅, 𝑡̅) = 𝑎2 + 𝑏 𝑆𝑖𝑛 (
2𝜋

ℒ
(𝑧ℒ − 𝑠

ℒ𝑡

𝑠
))  

}            (22) 

 

6. Solutions of the Problem 

     It is very difficult to solve the problem in the latter form so we assume a very small wave-

number (𝛿 ≪ 1), hence equations (18-21) become:    
𝜕𝑣1

𝜕𝑟
+

𝑣1

𝑟
+

𝜕𝑣3

𝜕𝑧
= 0                                                                                                    (23) 

𝜕𝑝

𝜕𝑟
= 0                                                                                                                       (24) 

 
𝜕𝑝

𝜕𝑧
=

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧)                                                                                                        (25) 

𝐿1
𝜕5𝑟2

𝜕𝑧5 + 𝐿2
𝜕3𝑟2

𝜕𝑧3 + 𝐿3
𝜕3𝑟2

𝜕𝑧𝜕𝑡2 + 𝐿4
𝜕2𝑟2

𝜕𝑧𝜕𝑡
+ 𝐿5

𝜕𝑟2

𝜕𝑧
=

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧)                                   (26) 

 

      where 𝐿1 =
𝐴𝑎2

3

𝜇𝑠𝐿5 is a flexural stiffness of the wall, 𝐿2 = −
𝐵𝑎2

3

𝜇𝑠𝐿3 is a longitudinal tension per 

unit width, 𝐿3 =
𝐶𝑠𝑎2

3

𝜇𝐿3  is a mass per unit area, 𝐿4 =
𝐷𝑎2

3

𝜇𝐿2  is a coefficient of viscid damping, and  

𝐿5 =
𝐸𝐿𝑎2

3

𝜇𝑠𝐿
 is spring stiffness is the spring stiffness. The components of the extra stress, are 

𝜏𝑟𝑟 = 𝜏𝑧𝑧 = 0 𝑎𝑛𝑑  𝜏𝑟𝑧 = (
𝜕𝑣3

𝜕𝑟
+ 𝑊𝑒 (

𝜕𝑣3

𝜕𝑟
)
2

). 

Using the accepted assumption (𝛿 ≪ 1), the components of the additional shear stress will be 

dimensionless as follow; 

𝜏𝑟𝑧 = (
𝜕𝑣3

𝜕𝑟
+ 𝑊𝑒 (

𝜕𝑣3

𝜕𝑟
)
2

)                                                                                          (27) 

Replacing 𝜏𝑟𝑧 into equation (26), we have; 

𝑟
𝜕2𝑣3

𝜕𝑟2 +
𝜕𝑣3

𝜕𝑟
+ 𝑊𝑒 (

𝜕𝑣3

𝜕𝑟
)
2

+ 2𝑟𝑊𝑒 (
𝜕𝑣3

𝜕𝑟
) (

𝜕2𝑣3

𝜕𝑟2 ) = 𝑟𝐾                                             (28) 

with boundary conditions is 𝑣3(𝜀) = 𝑣3(𝑟2) = −1.  
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where 𝐾 = 𝐿1
𝜕5𝑟2

𝜕𝑧5
+ 𝐿2

𝜕3𝑟2

𝜕𝑧3
+ 𝐿3

𝜕3𝑟2

𝜕𝑧𝜕𝑡2
+ 𝐿4

𝜕2𝑟2

𝜕𝑧𝜕𝑡
+ 𝐿5

𝜕𝑟2

𝜕𝑧
. 

The corresponding stream function is 𝑣1 = −
1

𝑟

𝜕𝜓

𝜕𝑧
 and 𝑣3 =

1

𝑟

𝜕𝜓

𝜕𝑟
. 

 

7. Perturbation Method Solution  

      In this section, we find the momentum function, shear stress function and stream function. 

The equation (28) is a nonlinear equation and the exact solution may not be possible, 

therefore, in order to find the solution, we employ the regular perturbation method in terms of 

a variant of 𝑊𝑒 Weissenberg number for a second order. For perturbation solution, we expand 

as 

𝑣3 = 𝑣03 + 𝑊𝑒𝑣13 + 𝑊𝑒2𝑣23 + 𝑂(𝑊𝑒3)                                                              (29) 

Substituting equation (29) into equation (28) with boundary conditions, then equating the like 

powers of 𝑊𝑒, we obtain 

 

7.1. Zero order 

𝑟
𝜕2𝑣03

𝜕𝑟2 +
𝜕𝑣03

𝜕𝑟
= 𝑟𝐾       

With boundary conditions  𝑣03 = −1 at 𝑟 = 𝜀 and 𝑟 = 1 + ∅. 𝑆𝑖𝑛(2𝜋(𝑧 − 𝑡)). 

 

7.2. First order 

𝑟
𝜕2𝑣13

𝜕𝑟2 +
𝜕𝑣13

𝜕𝑟
= −2r (

𝜕2𝑣03

𝜕𝑟2 ) (
𝜕𝑣03

𝜕𝑟
) − (

𝜕𝑣03

𝜕𝑟
)
2

       

With boundary conditions  𝑣13 = 0 at 𝑟 = 𝜀 and 𝑟 = 1 + ∅. 𝑆𝑖𝑛(2𝜋(𝑧 − 𝑡)). 

 

7.3. Second order 

𝑟
𝜕2𝑣23

𝜕𝑟2 +
𝜕𝑣23

𝜕𝑟
= −2r (

𝜕2𝑣03

𝜕𝑟2 ) (
𝜕𝑣13

𝜕𝑟
) − 2r (

𝜕2𝑣13

𝜕𝑟2 ) (
𝜕𝑣03

𝜕𝑟
) − 2 (

𝜕𝑣03

𝜕𝑟
) (

𝜕𝑣13

𝜕𝑟
)        

 

With boundary conditions  𝑣23 = 0 at 𝑟 = 𝜀 and 𝑟 = 1 + ∅. 𝑆𝑖𝑛(2𝜋(𝑧 − 𝑡)). 

 

      The formula for the solutions obtained (velocity , shear stress, and stream function) is too 

long. The accompanying constants can be determined using the accompanying boundary 

conditions. Thus, we will discuss these solutions through graphs in the following section. 

 

8. Discussion and Results  

     In this section, we discuss the results that we obtained after solving the equations of the 

problem using the perturbation method and then using a MATHEMATICA program to draw 

these results. This section has been divided into three parts: the first discusses the influence of 

parameters on the movement of the fluid through the flow channel, the second includes a 

discussion of the influence of parameters on shear stress and the last discusses the influence of 

parameters on the fluid flow paths. 

 

8.1. Velocity profile 

     Figures 2-5 illustrate effect parameters 𝑊𝑒, ∅, 𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5, and ε on the distribution 

of velocity 𝑣3 vs. r, respectively. We notice in Figure 2 and 3 that the velocity is positively 

affected by the increase with parameters 𝑊𝑒, ∅, 𝐿1 and 𝐿2, respectively. Figure 4 shows that 

the velocity distribution decreases with the increasing of parameters 𝐿3 and 𝐿4, respectively. 

In Figure 5, observed that the velocity distribution rises with increasing parameter 𝐿5 and falls 

down with increasing ε. 
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8.2. Shear Stress  

      In this section, we discuss the effect of parameters ∅, 𝐿1, 𝐿2, 𝐿5, 𝐿3, 𝐿4, ε, and 𝑊𝑒 on the 

shear stress, as we notice in  Figures 6-9 that the stress increases on the solid wall (the inner 

wall of the channel) where its value is positive and in the middle of the channel the stress 

turns into a negative amount and its value decreases at the wall elastic (the outer wall of the 

channel) under the influence of the increase in the parameters ∅, 𝐿1, 𝐿2, and 𝐿5, respectively. 

While in Figures 10 and 11,we notice the effect of parameters 𝐿3 and 𝐿4 opposite to the 

previous parameters as the stress decreases on the solid wall (the inner wall of the channel) 

where its value is positive and in the center of the channel, the stress turns into a negative 

amount and its value increases at the elastic wall (the outer wall of the channel). We note the 

effect of parameters ε and 𝑊𝑒 on stress directly according to Figures 12, 13. 

 

8.3. Phenomena Trapping 
     The closed streamlines of the bolus are formed thanks to the peristaltic motion of the wall 

of the flow channel affecting the fluid flow within the channel. in this section we will discuss 

the effect of parameters ∅, 𝑊𝑒, 𝐿1, 𝐿2, 𝐿5, 𝐿3, 𝐿4, and ε on the trapped bolus. 

 

      Through Figures 14-18 we see that the trapped bolus increases and grows steadily in the 

center of the channel and expands to the outer wall (elastic wall) with increasing parameters 

∅, 𝑊𝑒, 𝐿1, 𝐿2, and 𝐿5, respectively, and vice versa for the parameters 𝐿3, 𝐿4, and ε where their 

effect is the contraction of the trapped bolus when these parameters are increased, 

respectively, in Figures 19-21. 

 

         
Figure 2: Velocity distribution for various values of 𝑊𝑒 and ∅ with  𝜀 = 0.15, 𝐿1 = 0.1, 

𝐿2 = 0.5, 𝐿3 = 0.1, 𝐿4 = 0.1, 𝐿5 = 0.1, 𝑡 = 0.1, 𝑧 = 0.4. 

 

             
Figure 3: Velocity distribution for various values of 𝐿1 and 𝐿2 with  ∅ = 0.15, 𝜀 = 0.15, 

𝑊𝑒 = 0.01, 𝐿3 = 0.1, 𝐿4 = 0.1, 𝐿5 = 0.1, 𝑡 = 0.1, 𝑧 = 0.4. 
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Figure 5 Velocity distribution for various values of 𝐿5 and 𝜀 with  ∅ = 0.15, 𝑊𝑒 = 0.01, 

𝐿1 = 0.1, 𝐿2 = 0.5, 𝐿3 = 0.1, 𝐿4 = 0.1, 𝑡 = 0.1, 𝑧 = 0.4. 
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Figure 6 Shear-Stress for various 

values of ∅ with 𝜀 = 0.15, 𝑡 = 0.1, 

𝐿1 = 0.1, 𝐿2 = 0.5, 𝐿3 = 0.1, 𝐿4 =
0.1, 𝐿5 = 0.1, 𝑊𝑒 = 0.01, 𝑧 = 0.4. 

Figure 7 Shear-Stress for various 

values of 𝐿1 with 𝜀 = 0.15, 𝑡 = 0.1, 

𝐿2 = 0.5, 𝐿3 = 0.1, 𝐿4 = 0.1, 

𝐿5 = 0.1, ∅ = 0.15, 𝑊𝑒 = 0.01, 

𝑧 = 0.4. 

Figure 4: Velocity distribution for various values of 𝐿3 and 𝐿4 with  ∅ = 0.15, 𝜀 = 0.15, 

𝑊𝑒 = 0.01, 𝐿1 = 0.1, 𝐿2 = 0.5, 𝐿5 = 0.1, 𝑡 = 0.1, 𝑧 = 0.4. 
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Figure 8 Shear-Stress for various 

values of 𝐿2 with 𝜀 = 0.15, 𝑡 = 0.1, 

𝐿1 = 0.1, 𝐿3 = 0.1, 𝐿4 = 0.1, 

𝐿5 = 0.1, ∅ = 0.15, 𝑊𝑒 = 0.01, 

𝑧 = 0.4. 

Figure 9 Shear-Stress for various 

values of 𝐿5 with 𝜀 = 0.15, 𝑡 = 0.1, 

𝐿1 = 0.1, 𝐿3 = 0.1, 𝐿4 = 0.1, 

𝐿5 = 0.1, ∅ = 0.15, 𝑊𝑒 = 0.01, 

𝑧 = 0.4. 

Figure 10 Shear-Stress for various 

values of 𝐿3 with 𝜀 = 0.15, 𝑡 = 0.1, 

𝐿1 = 0.1, 𝐿2 = 0.5, 𝐿4 = 0.1, 

𝐿5 = 0.1, ∅ = 0.15, 𝑊𝑒 = 0.01, 

𝑧 = 0.4. 

Figure 11 Shear-Stress for various 

values of 𝐿4 with 𝜀 = 0.15, 𝑡 = 0.1, 

𝐿1 = 0.1, 𝐿2 = 0.5, 𝐿3 = 0.1, 

𝐿5 = 0.1, ∅ = 0.15, 𝑊𝑒 = 0.01, 

𝑧 = 0.4. 

Figure 12 Shear-Stress for various 

values of 𝜀 with ∅ = 0.15, 𝑡 = 0.1, 

𝐿1 = 0.1, 𝐿2 = 0.5, 𝐿3 = 0.1, 

𝐿4 = 0.1, 𝐿5 = 0.1, 𝑊𝑒 = 0.01, 

𝑧 = 0.4. 

Figure 13 Shear-Stress for various 

values of 𝑊𝑒 with 𝜀 = 0.15, 𝑡 = 0.1, 

𝐿1 = 0.1, 𝐿2 = 0.5, 𝐿3 = 0.1, 

𝐿4 = 0.1, 𝐿5 = 0.1, ∅ = 0.15, 

𝑧 = 0.4. 
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 Figure 14: Wave frame streamlines for different values of 𝜙 = {0.1,0.11,0.12} at 𝜀 = 0.12, 

𝑊𝑒 = 0.01, 𝐿1  = 0.1, 𝐿2 = 0.5, 𝐿3 = 0.1, 𝐿4 = 0.1, 𝐿5 = 0.1, t = 0.   

  

 
Figure 15: Wave frame streamlines for different values of 𝑊𝑒 = {0.1,0.15,0.2} at 𝜀 = 0.12, 

𝜙 = 0.12, 𝐿1  = 0.1, 𝐿2 = 0.5, 𝐿3 = 0.1, 𝐿4 = 0.1, 𝐿5 = 0.1, t = 0.    

 

 
Figure 16: Wave frame streamlines for different values of 𝐿1 = {0.1,0.11,0.12} at 𝜀 = 0.12, 

𝜙 = 0.12, 𝑊𝑒 = 0.01, 𝐿2 = 0.5, 𝐿3 = 0.1, 𝐿4 = 0.1, 𝐿5 = 0.1, t = 0.    
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Figure 17: Wave frame streamlines for different values of 𝐿2 = {0.3,0.4,0.5} at 𝜀 = 0.12, 

𝜙 = 0.12, 𝑊𝑒 = 0.01, 𝐿1 = 0.1, 𝐿3 = 0.1, 𝐿4 = 0.1, 𝐿5 = 0.1, t = 0.  

   

  
Figure 18: Wave frame streamlines for different values of 𝐿5 = {0.1,1.1,2.1} at 𝜀 = 0.12, 

𝜙 = 0.12, 𝑊𝑒 = 0.01, 𝐿1 = 0.1, 𝐿2 = 0.5, 𝐿3 = 0.1, 𝐿4 = 0.1, t = 0.    

 

 
Figure 19: Wave frame streamlines for different values of 𝐿3 = {0.1,0.2,0.3} at 𝜀 = 0.12, 

𝜙 = 0.12, 𝑊𝑒 = 0.01, 𝐿1 = 0.1, 𝐿2 = 0.5, 𝐿4 = 0.1, 𝐿5 = 0.1, t = 0.    
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Figure 20: Wave frame streamlines for different values of 𝐿4 = {0.1,1.1,2.1} at 𝜀 = 0.12, 

𝜙 = 0.12, 𝑊𝑒 = 0.01, 𝐿1 = 0.1, 𝐿2 = 0.5, 𝐿3 = 0.1, 𝐿5 = 0.1, t = 0. 

 

 
Figure 21: Wave frame streamlines for different values of 𝜀 = {0.1,0.12,0.14} at 𝜙 = 0.12, 

𝑊𝑒 = 0.01, 𝐿1  = 0.1, 𝐿2 = 0.5, 𝐿3 = 0.1, 𝐿4 = 0.1, 𝐿5 = 0.1, t = 0.    

 

9. Concluding Remarks 

     Significant results have been obtained by studying the effect of peristaltic flow of 

Williamson fluid through a channel of two overlapping tubes having the same center the inner 

is cylindrical solid and the outer is elastic rubber. Here are some results in brief : 

 

 The effect Weissenberg number, outer wall, flexural stiffness of the wall, longitudinal 

tension per unit width and spring stiffness on fluid velocity direct, while the effect mass per 

unit area, coefficient of viscid damping, and inner wall are indirect. 

 It was noted that the velocity curve is in the form of a parabola and that the greatest 

velocity of the fluid is in the center of the flow channel, while in the sides of the channel (the 

channel wall) the flow is the least.  

 As for the shear stress, we note that its value fluctuates in the middle of the channel, where 

its amount at the solid wall is positive and is negative at the flexible wall. In addition, it is 

increasing at the solid wall and decreasing at the elastic wall when the increased outer wall, 

flexural stiffness of the wall, longitudinal tension per unit width, spring stiffness and vice 

versa for mass per unit area and coefficient of viscid damping, while the stress increases with 

the increase of inner wall and Weissenberg number.  

 The trapped bolus increases and grows in the center of the channel and expands to the 

outer wall (elastic) with increasing outer wall, Weissenberg number, flexural stiffness, 

longitudinal tension per unit width, spring stiffness and vice versa for mass per unit area and 

coefficient of viscid damping the trapped bolus shrank. 
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