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Abstract

In this article, a numerical study of compressible and weak compressible
Newtonian flows is achieved for a time marching, Galerkin algorithm. A comparison
between two numerical techniques for such flows, namely the artificial
compressibility method (AC—method) and the fully artificial compressibility method
(FAC—method) is performed. In the first artificial compressibility parameter (C2) is
added to the continuity equation, while this parameter is added to both continuity and
momentum equations in the second technique. This strategy is implemented to treat
the governing equations of Newtonian flow in cylindrical coordinates (axisymmetric).
Particularly, this study concerns with the effect of the artificial compressibility
parameters on the convergence level of solutions components. To confirm the
analysis of these approaches, Poiseuille flow along a circular channel under an
isothermal state is used as a simple test problem. The results show that when the
AC-method is used there is a significant reduction in the level of time convergence of
pressure and axial velocity compared to that with FAC-method. Here, for
compressible flow the Tail model of state is employed to relate the pressure to density.
In this context, the effect of Tail parameters and Reynolds number on the time
convergence of solution components is also investigated in the present study. The
results indicate a significant reduction in the time-stepping convergence as increasing
in the {B,m}-value. In contrast, more difficulties are faced in the convergence when
the level of the Reynolds number is increasing.

Keywords: Artificial Compressibility Method, Compressible Fluid Flow,
FullyArtificial Compressibility Method ,Newtonian Fluids, Numerical Methods.
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1. Introduction

Compressible flow techniques have been obtained more attention due to the various and
useful applications in the practical fields. However, over the latest years, the involvement of
complicated geometries leads to an increase in the demand for flow simulation products. The
artificial compressibility method (AC -method) was originally introduced by Chorin (1967)
with the objective of solving Navier-Stokes equations, the pressure components can be
computed both inside and at the boundaries of the domain when the velocity is given [1]. This
method was presented as one of many approaches that were planned for acclimating
computational grids to complex geometries by unstructured meshes [2]. The use of AC method
gives extra facilities. These facilities helped to overcome such problems as extra terms in the
equations, extra insinuation, larger computational molecules and problems associated with the
transfer of information across grid interfaces. The main idea of this method is to add a fictitious
time derivative of pressure to the continuity to transform the system of equations from an
elliptic incompressible system to a hyperbolic compressible system [2,3]. In this technique,
there is an artificial continuity equation with the pressure time derivative [4]. A new
transformed equation will be formed, but this equation can be directly solved by the standard
time-dependent approach that is not complicated to apply to the solution, so the solution is
obtained much quicker than other primitive variable methods that require the solution of
another derived equation at each time step. The addition of the artificial compressibility term
will be disappeared when the steady state solution is reached [5]. In his study, Chorin
introduced his method in order to solve the steady state incompressible Navier-Stokes
differential equations, while other researchers tried to extend this method to include unsteady
state such as Peyret and Taylor [6] and Kao and Yang [7]. Annually, there are many studies that
discuss the applications of using the artificial compressibility method. Its applications are
almost limited to solve the velocity-pressure formulation for incompressible fluids. The novelty
in the present study is to add an artificial term derivative to both continuity and momentum
equations of compressible fluids as fully artificial compressibility (FAC), which has not been
addressed before. The present study aims to provide a study for compressible Newtonian fluid
flows by finite element method dependent on simple shear-rate. In this context, Poiseuille (Ps)
flow along a two dimensional planar straight channel under isothermal conditions is studied.
The main results of the current study are focused on making a comparison between the effect of
the use of fully artificial compressibility beside artificial compressibility on the convergence of
pressure and velocity components. Numerical treatments are presented for the governing
system, where we have utilized the Galerkin finite element method based on AC-method and
FAC-method, which has also not been addressed before. For the numerical solution, the
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iterative method of Newton-Raphson will be used to solve the set of non-linear equations and
the backward different scheme will be employed as the time-integration approach to deal with
the time dependent term.

2. Mathematical modeling

The dimensionless form of continuity and momentum equations of compressible
Newtonian flow under the isothermal conditions with omitting the body forces can be given in
cylindrical coordinates as follows [8,9]:
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Where u,., ug and u, are the velocity components in r-direction, the 6-direction and
the z-direction, respectively, p is the pressure and p is the fluid density ,for more details see

[8].

3. AC-method and FAC-method
AC-mathod: In this technique, the incompressible elliptic differential equation is transformed
into the hyperbolic compressible partial differential by adding the artificial term into the
continuity equation. The addition of the artificial compressibility term will vanish when the
steady state solution is reached [21,23]. For more detials on applying this method, see [8].
FAC-mathod: In order to describe this method, let us apply the artificial term into continuity
and momentum equations. Here, the artificial density is related to the pressure by the artificial
Tait equation of state [22].

P = ¢? (5)
So that

p=3p (6)
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Where as
c2=m(p+B) (7)

where (C?) is the artificial compressibility parameter such that 0 < =< 1. By

substituting equation (6) into equations 1,2,3 and 4, we get the new form of fully artificial

compressibility continuity and momentum equations as follows:
1 ap 10Uy 1 pdUg Ug 0p 10U, op
c2at | c2 6r+ r6r+ 2r r+czr89+r89+czpaz+Uzaz_0 (8)
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Now, the weak form the discretization of (5) is based on artificial compressibility

method, it can

be expressed as
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Thus, from divergence theorem and rearranglng the terms, we obtain the weak form of the
continuity equation in the case of weak incompressible flow as follows:
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[HT][NT]
[QZ] = 2Ty, R_lecizAarea [N] [C] [E] [ET]
By taking equations 16,17,18 and 19 we can see that a new system of matrix form appeares. As
a result, we get the final matrix form of three dimensional unsteady incompressible
Navier-Stokes equation based on the artificial compressibility method expressed as:
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4. Problem discretization

The problem in this article includes the flow of compressible Newtonian fluid selected
to be a 2D channel connected to upstream and downstream cylinders. A Poiseuille flow through
a 2D-axisymmetric channel is considered in this context, under isothermal conditions. For the
numerical porpose, the triangular finite element is applied in this study. In addition, the
findings are presented for At~0(10~3) and the error criteria are taken as TOL = 10710,

5. Numerical results

The numerical results concerned with the rate of convergence of the problem under
consideration by using the Galerkin finite element method based on the artificial
compressibility method (AC—method) and the fully artificial compressibility method (FAC—
method). The effect of using the artificial compressibility method and fully artificial
compressibility method on the convergence rate of pressure for different values of artificial
compressibility (C?=5, 100, 500), is illustrated in Figure 1. In both cases, one can see that the
level of pressure convergence is decreased as the artificial parameter (C?) increases.
Consequently, the profiles reveal that the level of time increments for the AC—method is less
than that with FAC—method due to that in AC—method the artificial term is added to the
continuity equation only, while this term is added to continuity and momemtum equation
simultaneously. For instance, with C?=100 we need around 3100 time-step to get the pressure
convergence compared to 12100 time-step for FAC—method; almost (74%) rising. Also, this
comparison is very clear for C>=100, where the level of time increments to reach convergence
with for FAC—-method is five times more than with AC-method (1100 time-step for AC-
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method and 5000 time-step for FAC—method), what is found is match with [8,14,15,16].
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Figure 1: Convergence of pressure; C2-variation, Re = 1.
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In addition, Figure 2 is provided a similar feature for axial velocity convergence, where
the level of time increments decreaeses as the artificial parameter (C2) rises with a noticeable
increase in the case of using the FAC—method because the AC-method gives artificial time,
which in turn leads reduce the time that it needs to resolve equations, so it is clear that the values
of time steps are less under the artificial compressibility. The level of convergence for the
velocity component is high compared to pressure because of the influence of nonlinearity
behavior. Thus, we can conclude that the use of AC-method is much easier than FAC-method
or direct method [8,14,15,16]. More details are presented in Tablel.
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Figure 2: Convergence of axial velocity; C%-variation, Re = 1.
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Table 1: Comparison of error and time; C2-variation, Re = 1.

‘ AC-Method ‘ FAC-Method
C?  Time-step  Time Ipll., lull,, ~ Time-step  Time Ipll., NIz,
5 13000 13 1.34x10°  1.80x10°® 15000 15 1.57x10°® 7.8x10°®
100 4600 4.6 2.77x10°  2.41x107 12100 12.1 1.18x10°  1.18x10°
500 3100 3.1 3.63x10°  2.51x107 11600 11.6 1.02x10°  5.13x10™

6. The effect of AC parameters

Here, we describe the results of the effect of Tail parameters variation on the behavior of
the solution. In this regard, the focused interest lies in identifying effective of selected
parameters {B, m} and Re on the level of time stepping convergence and solution components.

B-effect: The level of time increments for the AC—method is presented in Figure 3 as a function
Tail parameter (m) with different values of Tail Parameter B and Reynolds number Re= {1, 5,
10}. Generally, the results reveal that the level of time-step is decreased as B and m increase,
which gives an important indicator of convergence behavior in time. Moreover, as we
anticipated, the level of time increments also increased as the level of Re increased. For
example, with B=100, Re=1 and m=1 we need around 6200 time-step to get the convergence
level compared to 24000 time-step for B=100, Re=10 and m=1; rising by around four times,
that because the increase in Reynolds number leads to the velocity gradients will be developed
the matter which leads to elongation the time-step, (more detail are also presented in Figure 3).
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Figure 3:Time-step as function of m ; B-variation, Re=1, 5, 10.
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Re-Effect: In Figure 4 we show the effect of Reynolds number (Re) variation on the behaviors
of the solution for B={100, 200, 300, 400} and (1<m<5). As anticipated, the profiles provided
that, for all values of m the time increments increase as the level of Re increases, which reflects
the difficulties of the numerical simulation with high level of Re. In addition, one can see that
the time increments is reduced as the level of B increases because the increase in B value leads
to indirect increase in the C?, this reduces the effect of the increase in the value of Re, (see
Figure 4b,4c,4d).

240000 F E 240000
220000 ;— I Ee:é’ 2:188 _; 220000 ;. —a—— Re=1, B=200
200000 - e: e 3 200000 £ ——— Re=5, B=200
g Re=10,B=100 1 g Re=10, B=200
180000 |- ] 180000 [
o, 160000 - . 160000
L 1 % ok
& 140000@ 4 & 140000 F
@ N 1 o L
£ 120000 |- J £ 120000F
[ - 1 F .
100000 [ 3 100000 -
80000 |- E .
60000 60000 |-
40000 40000 \\*sh_v_‘_g
20000:\\\\|\\\\|\\\\|\\\\|\\\\|\\\\|\\\\|\\\ 200001;”“1.I5‘H‘é””2!5‘”‘3””3.5 4 4I5HH
1 15 2 2.5 3 3.5 4 4.5 5 m
m
(a) (b)
240000 F 5 240000
E £ R- 1 220000 F
220000 ——— Re=5,B=300 . i ——0—— Re=1, B=400
200000 |- v geijgfggo 4 2o0000F ———— Re=5, B=400
180000 =0, b= 1 so000 ——v—— Re=10, B=400
160000 |- 4 o000
& g 1 2 140000 F
o 1 9 =
;;;140000 - 1 5 §
& 20000 3 & 120000 F
= 1 .
100000 [~ -
80000 |~ e
60000 |- 4
40000‘?\1\,—,_,__._4 i
20000 0 T M RN AT
1 15 2 25 3 35 4 45 5 0AAAAIAAAAIAAAAIAAAAlAAAAlAAAAlAAAAlAAAA
m 1 15 2 25 3 35 4 15
m
() (d)

Figure 4: Time-step as function of m ; Re-variation, B=100, 200, 300, 400.

In Figure 5, the axial velocity, pressure drop and density profiles through the centerline are
presented for different B-value, m=2 and Re=1. The results show that the level of velocity
increases as B decreases, reaching to the maximum value of around 2.15 units at the outlet of
the channel. Same observations in pressure and density clearly appeared, where the maximum
level of pressure of around 16 units and 1.08 units for density are found at the inlet of the
channel (see Figure 5b). Table 2 presents more details about the solution components.
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Figure 5: Solution components (a) axial velocity, (b) pressure, (c) density; B-variation Re=1, m=2.

Table 2: Solution components; B-variation Re=1, m=2.

m=2 Uy 0.0004 0.0002 0.0001 0.0001
u, 2.06 2.03 2.02 2.017
P 16.43 16.31 16.27 16.24
DEN 1.031 1.016 1.011 1.008
Mach 0.092 0.064 0.052 0.045
m=3 Ur 0.0007 0.0003 0.0002 0.0001
Uz 2.1 2.05 2.03 2.02
P 16.61 16.41 16.33 16.29
DEN 1.052 1.026 1.017 1.013
Mach 0.12 0.08 0.06 0.05
m=4 Ur 0.0005 0.0002 0.0001 0.0001
Uz 2.07 2.04 2.02 2.02
P 16.5 16.34 16.29 16.26
DEN 1.03 1.019 1.013 1.01
Mach 0.1 0.07 0.05 0.05
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7. Conclusions

In this study, the Galerkin finite element method has been used to simulate compressible
and weak-compressible fluid flow based on the artificial compressibility method (AC-mathod)
and fully artificial compressibility method (FAC-method). Through the work, we found out that
there is a great role of using of AC-method compared to FAC-method in treating compressible
and weak compressible fluids, in which convergence of both methods has been assessed. In this
context, the convergence rate to steady-state of the AC-method is much better, as compared to
that of the FAC-method. In addition,the influence of Tail parameters and Re on the acceleration
of convergence was done. The findings show that there is a significant effect of these Tail
parameters on the time-stepping convergence and the solution, where the level of time
convergence is reduced as the Tail parameters rise, such this is an agreement with the findings
of others. In contrast, the level of convergence becomes a higher with higher Re-value.
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