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Abstract 

      In this article, a numerical study of compressible and weak compressible 

Newtonian flows is achieved for a time marching, Galerkin algorithm. A comparison 

between two numerical techniques for such flows, namely the artificial 

compressibility method (AC–method) and the fully artificial compressibility method 

(FAC–method) is performed. In the first artificial compressibility parameter (C2) is 

added to the continuity equation, while this parameter is added to both continuity and 

momentum equations in the second technique. This strategy is implemented to treat 

the governing equations of Newtonian flow in cylindrical coordinates (axisymmetric). 

Particularly, this study concerns with the effect of the artificial compressibility 

parameters on the convergence level of solutions components. To confirm the 

analysis of these approaches, Poiseuille flow along a circular channel under an 

isothermal state is used as a simple test problem. The results show that when the 

AC-method is used there is a significant reduction in the level of time convergence of 

pressure and axial velocity compared to that with FAC-method. Here, for 

compressible flow the Tail model of state is employed to relate the pressure to density. 

In this context, the effect of Tail parameters and Reynolds number on the time 

convergence of solution components is also investigated in the present study. The 

results indicate a significant reduction in the time-stepping convergence as increasing 

in the {B,m}-value. In contrast, more difficulties are faced in the convergence when 

the level of the Reynolds number is increasing. 

     

Keywords: Artificial Compressibility Method, Compressible Fluid Flow, 

FullyArtificial Compressibility Method ,Newtonian Fluids, Numerical Methods.  
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 ACتطبيق طريقتين رقميتين لدراسة مثل هذه الجريانات؛ حيث تم تطبيق طريقة الانضغاط الاصطناعي )طريقة 
(. في الطريقة الاولى يضاف معامل انضغاط اصطناعي FAC( وطريقة الانضغاط الاصطناعي الكامل )طريقة 

(C2.إلى معادلة الاستمرارية فقط، بينما يضاف هذا المعامل إلى معادلات الاستمرارية والزخم في الطريقة الثانية ) 
ن السوائل النيوتونية في إحداثيات أسطوانية )محور تم تطبيق هذه الاستراتيجية لمعالجة المعادلات الحاكمة لجريا

متماثل(. تهتم هذه الدراسة بشكل خاص بدراسة تأثير معلمات الانضغاط الاصطناعي على مستوى تقارب مكونات 
( على طول قناة دائرية تحت ظروف (Poiseuilleالحل. للتأكيد من تحليل هذه الطرق، يتم استخدام جريان برنولي 

انسة كمسألة بسيطة يتم اختبارها. أظهرت النتائج ان استخدام طريقة الانضغاط الاصطناعي )طريقة حرارية متج
AC  يحدث انخفاض كبير في مستوى تقارب الوقت للضغط والسرعة المحورية مقارنة مع طريقة الانضغاط )

 Tailستخدام نموذج تايل )(. بالنسبة لجريان السوائل القابلة للانضغاط، تم اFACالاصطناعي بالكامل )طريقة 
model للحالة لربط الضغط بالكثافة. في هذا السياق ، تم أيضًا دراسة تأثير معلمات تايل ورقم رينولدز على تقارب )

)معلمات B,{mالوقت لمكونات الحل. تشير النتائج أيضا إلى انخفاض كبير في تقارب الوقت مع زيادة في قيمة }
 مواجهة المزيد من الصعوبة في التقارب عندما تزداد قيمة رقم رينولدز.تايل( في المقابل ، يتم 

 

1. Introduction 

     Compressible flow techniques have been obtained more attention due to the various and 

useful applications in the practical fields. However, over the latest years, the involvement of 

complicated geometries leads to an increase in the demand for flow simulation products. The 

artificial compressibility method (AC -method) was originally introduced by Chorin (1967) 

with the objective of solving Navier-Stokes equations, the pressure components can be 

computed both inside and at the boundaries of the domain when the velocity is given [1]. This 

method was presented as one of many approaches that were planned for acclimating 

computational grids to complex geometries by unstructured meshes [2]. The use of AC method 

gives extra facilities. These facilities helped to overcome such problems as extra terms in the 

equations, extra insinuation, larger computational molecules and problems associated with the 

transfer of information across grid interfaces. The main idea of this method is to add a fictitious 

time derivative of pressure to the continuity to transform the system of equations from an 

elliptic incompressible system to a hyperbolic compressible system [2,3]. In this technique, 

there is an artificial continuity equation with the pressure time derivative [4]. A new 

transformed equation will be formed, but this equation can be directly solved by the standard 

time-dependent approach that is not complicated to apply to the solution, so the solution is 

obtained much quicker than other primitive variable methods that require the solution of 

another derived equation at each time step. The addition of the artificial compressibility term 

will be disappeared when the steady state solution is reached [5]. In his study, Chorin 

introduced his method in order to solve the steady state incompressible Navier-Stokes 

differential equations, while other researchers tried to extend this method to include unsteady 

state such as Peyret and Taylor [6] and Kao and Yang [7]. Annually, there are many studies that 

discuss the applications of using the artificial compressibility method. Its applications are 

almost limited to solve the velocity-pressure formulation for incompressible fluids. The novelty 

in the present study is to add an artificial term derivative to both continuity and momentum 

equations of compressible fluids as fully artificial compressibility (FAC), which has not been 

addressed before. The present study aims to provide a study for compressible Newtonian fluid 

flows by finite element method dependent on simple shear-rate. In this context, Poiseuille (Ps) 

flow along a two dimensional planar straight channel under isothermal conditions is studied. 

The main results of the current study are focused on making a comparison between the effect of 

the use of fully artificial compressibility beside artificial compressibility on the convergence of 

pressure and velocity components. Numerical treatments are presented for the governing 

system, where we have utilized the Galerkin finite element method based on AC-method and 

FAC-method, which has also not been addressed before. For the numerical solution, the 
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iterative method of Newton-Raphson will be used to solve the set of non-linear equations and 

the backward different scheme will be employed as the time-integration approach to deal with 

the time dependent term.  

 

2. Mathematical modeling 

      The dimensionless form of continuity and momentum equations of compressible 

Newtonian flow under the  isothermal conditions with omitting the body forces can be given in 

cylindrical coordinates as follows [8,9]:  

 
𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑢𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑢𝜃) +

𝜕

𝜕𝑧
(𝜌𝑢𝑧) = 0.                     (1) 

 

 The r-direction  

 𝜌(
𝜕𝑈𝑟

𝜕𝑡
+ 𝑈𝑟

𝜕𝑈𝑟

𝜕𝑟
+

𝑈𝜃

𝑟

𝜕𝑈𝑟

𝜕𝜃
+ 𝑈𝑧

𝜕𝑈𝑟

𝜕𝑧
−

𝑈𝜃𝑈𝜃

𝑟
) 

 = −
𝜕𝑝

𝜕𝑟
+

4𝜇

3

𝜕2𝑈𝑟

𝜕𝑟2
+

4𝜇

3𝑟

𝜕𝑈𝑟

𝜕𝑟
−

4𝜇

3𝑟2
𝑈𝑟 +

𝜇

3𝑟

𝜕2𝑈𝜃

𝜕𝑟𝜕𝜃
−

4𝜇

3𝑟2

𝜕𝑈𝜃

𝜕𝜃
 

 

 +
𝜇

𝑟2

𝜕2𝑈𝑟

𝜕𝜃2 + 𝜇
𝜕2𝑈𝑟

𝜕𝑧2 +
𝜇

3

𝜕2𝑈𝑧

𝜕𝑟𝜕𝑧
−

𝜇

𝑟2

𝜕𝑈𝑟

𝜕𝑟
                     (2) 

The 𝜽-direction  

 𝜌(
𝜕𝑈𝜃

𝜕𝑡
+ 𝑈𝑟

𝜕𝑈𝜃

𝜕𝑟
+

𝑈𝜃

𝑟

𝜕𝑈𝜃

𝜕𝜃
+ 𝑈𝑧

𝜕𝑈𝜃

𝜕𝑧
+

𝜕𝑈𝑟𝑈𝜃

𝑟
) 

 

 = −
1

𝑟

𝜕𝑝

𝜕𝜃
+

𝜇

3𝑟

𝜕2𝑈𝑟

𝜕𝑟𝜕𝜃
+

7𝜇

3𝑟2

𝜕𝑈𝑟

𝜕𝜃
+

4𝜇

3𝑟2

𝜕2𝑈𝜃

𝜕𝜃2  

 

 +
𝜇

3𝑟

𝜕2𝑈𝑧

𝜕𝜃𝜕𝑧
+ 𝜇

𝜕2𝑢𝜃

𝜕𝑧2 + 𝜇
𝜕2𝑢𝜃

𝜕𝑟2 +
𝜇

𝑟

𝜕𝑈𝜃

𝜕𝑟
−

𝜇

𝑟2 𝑈𝜃                     (3) 

The z-direction  

 𝜌(
𝜕𝑈𝑧

𝜕𝑡
+ 𝑈𝑟

𝜕𝑈𝑧

𝜕𝑟
+

𝑈𝜃

𝑟

𝜕𝑈𝑧

𝜕𝜃
+ 𝑈𝑧

𝜕𝑈𝑧

𝜕𝑧
) 

 

 = −
𝜕𝑝

𝜕𝑧
−

2𝜇

3

𝜕2𝑈𝑟

𝜕𝑟𝜕𝑧
+

𝜇

3𝑟

𝜕𝑈𝑟

𝜕𝑧
+

𝜇

3𝑟

𝜕2𝑈𝜃

𝜕𝜃𝜕𝑧
+

4𝜇

3

𝜕2𝑈𝑧

𝜕𝑧2  

 

 +𝜇
𝜕2𝑈𝑧

𝜕𝑟2
+ 𝜇

𝜕2𝑈𝑧

𝜕𝑟𝜕𝑧
+

𝜇

𝑟2

𝜕2𝑈𝑧

𝜕𝜃2
+

𝜇

𝑟

𝜕𝑈𝑧

𝜕𝑟
                           (4) 

 

      Where 𝑢𝑟, 𝑢𝜃 and 𝑢𝑧 are the velocity components in 𝑟-direction, the  𝜃-direction and 

the 𝑧-direction, respectively, 𝑝 is the pressure and 𝜌 is the fluid density ,for more details see 

[8].  

 

3. AC-method and FAC-method 

AC-mathod: In this technique, the incompressible elliptic differential equation is transformed 

into the hyperbolic compressible partial differential by adding the artificial term into the 

continuity equation. The addition of the artificial compressibility term will vanish when the 

steady state solution is reached [21,23]. For more detials on  applying this method, see [8]. 

FAC-mathod: In order to describe this method, let us apply the artificial term into continuity 

and momentum equations. Here, the artificial density is related to the pressure by the artificial 

Tait equation of state [22]. 

                      P = 𝑐2                                                 (5) 

So that 

  

                       𝜌 =
1

𝑐2 𝑝                                              (6) 
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Where as 

  
                 𝑐2 = m(p + B)                                             (7) 

 

      where ( C2)  is the artificial compressibility parameter such that  0 < 
1

𝑐2
< 1. By 

substituting equation (6) into equations 1,2,3  and 4, we get the new form of fully artificial 

compressibility continuity and momentum equations as follows: 

    
1

𝑐2

𝜕𝑝

𝜕𝑡
+

1

𝑐2 𝑝
𝜕𝑈𝑟

𝜕𝑟
+ 𝑢𝑟

𝜕𝜌

𝜕𝑟
+

1

𝑐2

𝑝

𝑟
𝑢𝑟 +

1

𝑐2

𝑝

𝑟

𝜕𝑈𝜃

𝜕𝜃
+

𝑈𝜃

𝑟

𝜕𝜌

𝜕𝜃
+

1

𝑐2 p
𝜕𝑈𝑧

𝜕𝑧
+ 𝑈𝑧

𝜕𝜌

𝜕𝑧
= 0            (8) 

 

The r-direction  

 
𝟏

𝒄𝟐 𝒑(
𝝏𝑼𝒓

𝝏𝒕
+ 𝑼𝒓

𝝏𝑼𝒓

𝝏𝒓
+

𝑼𝜽

𝒓

𝝏𝑼𝒓

𝝏𝜽
+ 𝑼𝒛

𝝏𝑼𝒓

𝝏𝒛
−

𝑼𝜽𝑼𝜽

𝒓
) 

 

 = −
𝝏𝝆

𝝏𝒓
+

𝟒𝝁

𝟑

𝝏𝟐𝑼𝒓

𝝏𝒓𝟐 +
𝟒𝝁

𝟑𝒓

𝝏𝑼𝒓

𝝏𝒓
−

𝟒𝝁

𝟑𝒓𝟐 𝑼𝒓 +
𝝁

𝟑𝒓

𝝏𝟐𝑼𝜽

𝝏𝒓𝝏𝜽
−

𝟒𝝁

𝟑𝒓𝟐

𝝏𝑼𝜽

𝝏𝜽
 

 

 +
𝝁

𝒓𝟐

𝝏𝟐𝑼𝒓

𝝏𝜽𝟐
+ 𝝁

𝝏𝟐𝑼𝒓

𝝏𝒛𝟐
+

𝝁

𝟑

𝝏𝟐𝑼𝒛

𝝏𝒓𝝏𝒛
−

𝝁

𝒓𝟐

𝝏𝑼𝒓

𝝏𝒓
                       (9) 

The 𝜽-direction  

 
𝟏

𝒄𝟐 𝒑(
𝝏𝑼𝜽

𝝏𝒕
+ 𝑼𝒓

𝝏𝑼𝜽

𝝏𝒓
+

𝑼𝜽

𝒓

𝝏𝑼𝜽

𝝏𝜽
+ 𝑼𝒛

𝝏𝑼𝜽

𝝏𝒛
+

𝝏𝑼𝒓𝑼𝜽

𝒓
) 

 

 = −
𝟏

𝒓

𝝏𝝆

𝝏𝜽
+

𝝁

𝟑𝒓

𝝏𝟐𝑼𝒓

𝝏𝒓𝝏𝜽
+

𝟕𝝁

𝟑𝒓𝟐

𝝏𝑼𝒓

𝝏𝜽
+

𝟒𝝁

𝟑𝒓𝟐

𝝏𝟐𝑼𝜽

𝝏𝜽𝟐  

 

 +
𝝁

𝟑𝒓

𝝏𝟐𝑼𝒛

𝝏𝜽𝝏𝒛
+ 𝝁

𝝏𝟐𝒖𝜽

𝝏𝒛𝟐 + 𝝁
𝝏𝟐𝒖𝜽

𝝏𝒓𝟐 +
𝝁

𝒓

𝝏𝑼𝜽

𝝏𝒓
−

𝝁

𝒓𝟐 𝑼𝜽                      (10) 

The Z-direction  

 
𝟏

𝒄𝟐 𝒑(
𝝏𝑼𝒛

𝝏𝒕
+ 𝑼𝒓

𝝏𝑼𝒛

𝝏𝒓
+

𝑼𝜽

𝒓

𝝏𝑼𝒛

𝝏𝜽
+ 𝑼𝒛

𝝏𝑼𝒛

𝝏𝒛
) 

 

 = −
𝝏𝝆

𝝏𝒛
−

𝟐𝝁

𝟑

𝝏𝟐𝑼𝒓

𝝏𝒓𝝏𝒛
+

𝝁

𝟑𝒓

𝝏𝑼𝒓

𝝏𝒛
+

𝝁

𝟑𝒓

𝝏𝟐𝑼𝜽

𝝏𝜽𝝏𝒛
+

𝟒𝝁

𝟑

𝝏𝟐𝑼𝒛

𝝏𝒛𝟐  

 

 +𝝁
𝝏𝟐𝑼𝒛

𝝏𝒓𝟐 + 𝝁
𝝏𝟐𝑼𝒛

𝝏𝒓𝝏𝒛
+

𝝁

𝒓𝟐

𝝏𝟐𝑼𝒛

𝝏𝜽𝟐 +
𝝁

𝒓

𝝏𝑼𝒛

𝝏𝒓
                           (11) 

 

       Now, the weak form the discretization of (5) is based on artificial compressibility 

method, it can 

be expressed as 

 

∫ 𝑞
𝛺

(
1

𝑐2

𝜕𝑝

𝜕𝑡
+

1

𝑐2
𝑝

𝜕𝑈𝑟

𝜕𝑟
+ 𝑢𝑟

𝜕𝜌

𝜕𝑟
+

1

𝑐2

𝑝

𝑟
𝑢𝑟 +

1

𝑐2

𝑝

𝑟

𝜕𝑈𝜃

𝜕𝜃
+

𝑈𝜃

𝑟

𝜕𝜌

𝜕𝜃
+

1

𝑐2
𝑝

𝜕𝑈𝑧

𝜕𝑧
+ 𝑈𝑧

𝜕𝜌

𝜕𝑧
)𝜕𝛺 = 0   (12) 

 

r-direction  

 ∫
𝟏

𝒄𝟐 𝒘
𝜴

𝒑(
𝝏𝑼𝒓

𝝏𝒕
+ 𝑼𝒓

𝝏𝑼𝒓

𝝏𝒓
+

𝑼𝜽

𝒓

𝝏𝑼𝒓

𝝏𝜽
+ 𝑼𝒛

𝝏𝑼𝒓

𝝏𝒛
−

𝑼𝜽𝑼𝜽

𝒓
) 𝝏𝜴 

 

 = ∫
𝑾

𝑹𝒆
(

𝜴

−
𝝏𝝆

𝝏𝒓
+

𝟒𝝁

𝟑

𝝏𝟐𝑼𝒓

𝝏𝒓𝟐 +
𝟒𝝁

𝟑𝒓

𝝏𝑼𝒓

𝝏𝒓
−

𝟒𝝁

𝟑𝒓𝟐 𝑼𝒓 +
𝝁

𝟑𝒓

𝝏𝟐𝑼𝜽

𝝏𝒓𝝏𝜽
−

𝟒𝝁

𝟑𝒓𝟐

𝝏𝑼𝜽

𝝏𝜽
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 +
𝝁

𝒓𝟐

𝝏𝟐𝑼𝒓

𝝏𝜽𝟐
+ 𝝁

𝝏𝟐𝑼𝒓

𝝏𝒛𝟐
+

𝝁

𝟑

𝝏𝟐𝑼𝒛

𝝏𝒓𝝏𝒛
−

𝝁

𝒓𝟐

𝝏𝑼𝒓

𝝏𝒓
)𝝏𝜴 = 𝟎                         (13) 

𝜽-direction  

 ∫
𝟏

𝒄𝟐
𝜴

𝒘𝒑(
𝝏𝑼𝜽

𝝏𝒕
+ 𝑼𝒓

𝝏𝑼𝜽

𝝏𝒓
+

𝑼𝜽

𝒓

𝝏𝑼𝜽

𝝏𝜽
+ 𝑼𝒛

𝝏𝑼𝜽

𝝏𝒛
+

𝝏𝑼𝒓𝑼𝜽

𝒓
) 

 = ∫
𝑾

𝑹𝒆
𝜴

(−
𝟏

𝒓

𝝏𝝆

𝝏𝜽
+

𝝁

𝟑𝒓

𝝏𝟐𝑼𝒓

𝝏𝒓𝝏𝜽
+

𝟕𝝁

𝟑𝒓𝟐

𝝏𝑼𝒓

𝝏𝜽
+

𝟒𝝁

𝟑𝒓𝟐

𝝏𝟐𝑼𝜽

𝝏𝜽𝟐  

 

 +
𝝁

𝟑𝒓

𝝏𝟐𝑼𝒛

𝝏𝜽𝝏𝒛
+ 𝝁

𝝏𝟐𝒖𝜽

𝝏𝒛𝟐 + 𝝁
𝝏𝟐𝒖𝜽

𝝏𝒓𝟐 +
𝝁

𝒓

𝝏𝑼𝜽

𝝏𝒓
−

𝝁

𝒓𝟐 𝑼𝜽)𝝏𝜴 = 𝟎                 (14) 

 Z-direction  

 ∫
𝟏

𝒄𝟐 𝒘
𝜴

𝒑(
𝝏𝑼𝒛

𝝏𝒕
+ 𝑼𝒓

𝝏𝑼𝒛

𝝏𝒓
+

𝑼𝜽

𝒓

𝝏𝑼𝒛

𝝏𝜽
+ 𝑼𝒛

𝝏𝑼𝒛

𝝏𝒛
) 

 = ∫
𝑾

𝑹𝒆
𝛺

(−
𝜕𝜌

𝜕𝑧
−

2𝜇

3

𝜕2𝑈𝑟

𝜕𝑟𝜕𝑧
+

𝜇

3𝑟

𝜕𝑈𝑟

𝜕𝑧
+

𝜇

3𝑟

𝜕2𝑈𝜃

𝜕𝜃𝜕𝑧
+

4𝜇

3

𝜕2𝑈𝑧

𝜕𝑧2
 

 +𝜇
𝜕2𝑈𝑧

𝜕𝑟2
+ 𝜇

𝜕2𝑈𝑧

𝜕𝑟𝜕𝑧
+

𝜇

𝑟2

𝜕2𝑈𝑧

𝜕𝜃2
+

𝜇

𝑟

𝜕𝑈𝑧

𝜕𝑟
)𝜕𝛺 = 0                                   (15) 

Thus, from divergence theorem and rearranging the terms, we obtain the weak form of the 

continuity equation in the case of weak incompressible flow as follows: 

[𝑀𝜌][𝜌.] + [𝑄1][𝑈𝑟] + [𝑞1][𝜌] + [𝑆][𝑈𝑟] + [𝑄2][𝑈∀] + [𝑞2][𝜌] + [𝑄3][𝑈𝑧] + [𝑞3][𝜌] = 0            
(16) 

[𝑀][𝑈𝑟] + [𝐶𝑟(𝑈𝑟)][𝑈𝑟] + [𝐶𝑧(𝑈𝑧)][𝑈𝑟] − [𝐶𝜃][𝑈𝜃] −
1

Re
[𝑄𝑟][𝜌] +

4

3
[𝐾𝑟𝑟

][𝑈𝑟] 

          +
4

3
[𝐾𝑟][𝑈𝑟] +

4

3
[𝑞𝑟][𝑈𝑟] + [𝐾𝑧𝑧

][𝑈𝑟] +
1

3
[𝐾𝑟𝑧

][𝑈𝑧] = 0                      (17)  

           [𝑀][𝑈𝜃] + [𝐶𝑟(𝑈𝑟)][𝑈𝜃] + [𝐶𝑧(𝑈𝑧)][𝑈𝜃] − [𝐶𝑟][𝑈𝜃] + [𝐾𝑧𝑧
][𝑈𝜃] 

 +[𝐾𝑟𝑟
][𝑈𝜃] + [𝐾𝑟][𝑈𝜃] + [𝑞𝜃][𝑈𝜃] =0                        (18) 

 [𝑀][𝑈𝑧] + [𝐶𝑟(𝑈𝑟)][𝑈𝑧] + [𝐶𝑧(𝑈𝑧)][𝑈𝑧] −
1

𝑅𝑒
[𝑄𝑧][𝜌] −

2

3
[𝐾𝑟𝑧][𝑈𝑟] +

1

3
[𝐾𝑧][𝑈𝑟] +

4

3
[𝐾𝑧𝑧

][𝑈𝑧] 

 +[𝐾𝑟𝑟
][𝑈𝑧] + [𝐾𝑟𝑧

][𝑈𝑧] + [𝐾𝑟][𝑈𝑧] = 0                           (19)  

                        [𝑀𝜌] =
1

𝑐2 ∫ ∅∅
𝛺

τ ∂𝛺                                                    

                         [𝑀𝜌] =
1

𝑐2 ∫ ∫ [𝑁][𝐻][𝐸𝑇][𝜌][𝐻𝑇[𝑁𝑇2𝜋

0𝛺
]𝑟𝑑𝜃𝑑𝐴𝛺  

                         [𝑀𝜌] = 2𝜋𝑟𝑚
1

𝑐2
[𝑁][𝐻][𝐸𝑇][𝜌][𝐻𝑇][𝑁𝑇]  

                         [𝐶𝑟(𝑈𝑟)] =
1

𝑐2 ∫ 𝜓
𝛺

∅𝑇𝜌𝜓𝑇𝑈𝑟𝜕𝛺  

                         [𝐶𝑍(𝑈𝑍)] =
1

𝑐2 ∫ 𝜓
𝛺

∅𝑇𝜌𝜓𝑇𝑈𝑍
𝜕𝜓𝑇

𝜕𝑍
𝜕𝛺  

                          [𝑄𝑟] =
1

𝑅𝑒

1

𝑐2 ∫
𝜕𝜓

𝜕𝑟𝛺
∅𝑇𝜕𝛺                                   (21) 

                          [𝐶𝑟] =
1

𝑅𝑒

1

𝑐2 ∫
1

𝑟
𝜓

𝛺
∅𝑇𝜓𝑇𝑈𝑟𝜕𝛺  

                          [𝑄𝑧] =
1

𝑅𝑒

1

𝑐2 ∫
𝜕𝜓

𝜕𝑧𝛺
∅𝑇𝜕𝛺                                       (23)                          

[𝐶𝑟(𝑈𝑟)] = 2𝜋𝑟𝑚
1

𝑐2 𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐸][𝜌][𝐻𝑇][𝑁𝑇][𝑈𝑟]     

                          [𝐸𝑇][𝐵𝑇][𝑁𝑇]                

                           [𝐶𝑍(𝑈𝑍)] = 2𝜋𝑟𝑚
1

𝑐2 𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐸][𝜌][𝐻𝑇][𝑁𝑇][𝑈𝑍]     

                           [𝐸𝑇][𝐶𝑇][𝑁𝑇]                

                           [𝑄] = 2𝜋𝑟𝑚
1

𝑅𝑒

1

𝑐2 𝐴𝑎𝑟𝑒𝑎[𝑁][𝐵][𝐸][𝐸𝑇]     

                           [𝐶𝑟] = 2𝜋𝑟𝑚
1

𝑅𝑒

1

𝑐2 𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐸𝑇][𝜌][𝐻𝑇][𝑁𝑇][𝑈𝑟]     
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                          [𝐻𝑇][𝑁𝑇]                

                          [𝑄𝑍] = 2𝜋𝑟𝑚
1

𝑅𝑒

1

𝑐2
𝐴𝑎𝑟𝑒𝑎[𝑁][𝐶][𝐸][𝐸𝑇]     

By taking equations 16,17,18 and 19 we can see that a new system of matrix form appeares. As 

a result, we get the final matrix form of three dimensional unsteady incompressible 

Navier-Stokes equation based on the artificial compressibility method expressed as: 

[

𝑀 0 0 0 0
0 𝑀 0 0 0
0 0 𝑀 0 0
0 0 0 0 𝑀𝑝

]

[
 
 
 
 
𝜇𝑟

.  
𝜇𝜃

.  
𝜇𝑧

.  
𝜌.

𝜌. ]
 
 
 
 

+ 

[
 
 
 
 
 
 
 
 
 
 
 −𝐶𝑟(𝑈𝑟) + 𝐶𝑧(𝑈𝑧) +

4

3𝑅𝑒
𝐾𝑟𝑟           𝐶𝜃          

1

3𝑅𝑒
𝐾𝑟𝑧      −

1

𝑅𝑒
𝑄𝑟        0

+
4

3𝑅𝑒
𝐾𝑟 +

4

3𝑅𝑒
𝑞𝑟 + 𝐾𝑧𝑧

  
                                           

    0             𝐶𝑟(𝑈𝑟) + 𝐶𝑧(𝑈𝑧) +
1

𝑅𝑒
𝐶𝑟 +

1

𝑅𝑒
𝐾𝑍𝑍    0        0         0

+
1

𝑅𝑒
𝐾𝑟𝑟 +

1

𝑅𝑒
𝐾𝑟 +

1

𝑅𝑒
𝑞𝜃   

−
3

4𝑅𝑒
𝐾𝑟𝑧 +

1

3𝑅𝑒
𝐾𝑍                    0       𝐶𝑟(𝑈𝑟) + 𝐶𝑧(𝑈𝑧)    −

1

𝑅𝑒
𝑄𝑍      0

                       
1

𝑅𝑒
𝐾𝑟𝑟 +

1

𝑅𝑒
𝐾𝑍𝑧 +

1

𝑅𝑒
𝐾𝑟𝑧 +

1

𝑅𝑒
𝐾𝑟

  𝑄1 + 𝑆                          0               𝑄3        0         0 ]
 
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
𝜇𝑟 
𝜇𝜃 
𝜇𝑧 
𝑝
𝜌 ]

 
 
 
 

=

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

                                                                              (20) 

  .                                                                                 

4. Problem discretization 

      The problem in this article includes the flow of compressible Newtonian fluid  selected 

to be a 2D channel connected to upstream and downstream cylinders. A Poiseuille flow through 

a 2D-axisymmetric channel is considered in this context, under isothermal conditions. For the 

numerical porpose, the  triangular finite element is applied in this study. In addition, the 

findings are presented for  Δ𝑡𝑂(10−3) and the error criteria are taken as 𝑇𝑂𝐿 = 10−10. 

 

5 . Numerical results 

      The numerical results concerned with the rate of convergence of the problem under 

consideration by using the Galerkin finite element method based on the artificial 

compressibility method (AC–method) and the fully artificial compressibility method (FAC–

method). The effect of using the artificial compressibility method and fully artificial 

compressibility method on the convergence rate of pressure for different values of artificial 

compressibility (C
2
=5, 100, 500), is illustrated in Figure 1. In both cases, one can see that the 

level of pressure convergence is decreased as the artificial parameter ( C2)  increases. 

Consequently, the profiles reveal that the level of time increments for the AC–method is less 

than that with FAC–method due to that in AC–method the artificial term is added to the 

continuity equation only, while this term is added to continuity and momemtum equation 

simultaneously. For instance, with C
2
=100 we need around 3100 time-step to get the pressure 

convergence compared to 12100 time-step for FAC–method; almost (74%) rising. Also, this 

comparison is very clear for C
2
=100, where the level of time increments to reach convergence 

with for FAC–method is five times more than with AC–method (1100 time-step for AC–
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method and 5000 time-step for FAC–method), what is found is match with [8,14,15,16].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Convergence of pressure; 𝐂𝟐-variation, 𝑅𝑒 = 1. 
 

FAC, 𝐂𝟐 = 𝟓 AC, 
𝐂𝟐 = 𝟓 

FAC, 𝐂𝟐 = 𝟏𝟎𝟎 AC, 𝐂𝟐 = 𝟏𝟎𝟎 

FAC, 𝐂𝟐 = 𝟓𝟎𝟎 AC, 𝐂𝟐 = 𝟓𝟎𝟎 

(a) (b) 

(c) (d) 

(e) (f) 
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       In addition, Figure 2 is provided a similar feature for axial velocity convergence, where 

the level of time increments  decreaeses as the artificial parameter (C2) rises with a noticeable 

increase in the case of using the FAC–method because the AC-method gives artificial time, 

which in turn leads reduce the time that it needs to resolve equations, so it is clear that the values 

of time steps are less under the artificial compressibility. The level of convergence for the 

velocity component is high compared to pressure because of the influence of nonlinearity 

behavior. Thus, we can conclude that the use of AC-method is much easier than FAC-method 

or direct method [8,14,15,16]. More details are presented in Table1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

FAC, 𝐂𝟐 = 𝟏𝟎𝟎 AC, 𝐂𝟐 = 𝟏𝟎𝟎 

FAC, 𝐂𝟐 = 𝟓𝟎𝟎 AC, 𝐂𝟐 = 𝟓𝟎𝟎 

FAC, 𝐂𝟐 = 𝟓 AC, 
𝐂𝟐 = 𝟓 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 2: Convergence of axial velocity; 𝐂𝟐-variation, 𝑅𝑒 = 1. 
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m

T
im

e
-S

te
p

1 1.5 2 2.5 3 3.5 4 4.5 5
10000

20000

30000

40000

50000

60000

70000

Re=1, B=100

Re=1, B=200

Re=1, B=300

Re=1, B=400

m

T
im

e
-S

te
p

1 1.5 2 2.5 3 3.5 4 4.5 5

20000

40000

60000

80000

100000

120000

140000

160000

Re=5, B=100

Re=5, B=200

Re=5, B=300

Re=5, B=400

m

T
im

e-
S

te
p

1 1.5 2 2.5 3 3.5 4 4.5 5

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

Re=10, B=100

Re=10, B=200

Re=10, B=300

Re=10, B=400

Table 1: Comparison of error and time; 𝐂𝟐-variation, 𝑅𝑒 = 1. 

FAC-Method AC-Method 
 

 

‖𝒖𝒛‖𝑳𝟐
 ‖𝑝‖𝐿2

 Time Time-step ‖𝑢𝑧‖𝐿2
 ‖𝑝‖𝐿2

 Time Time-step 𝑪𝟐 

7.810
-6

 1.5710
-6 15 15000 1.8010

-6 
1.3410

-6 13 13000 5 

1.1810
-5 1.1810

-5 12.1 12100 2.4110
-7 

2.7710
-6 4.6 4600 100 

5.1310
-4 1.0210

-5 11.6 11600 2.5110
-7 

3.6310
-6 3.1 3100 500 

 

6. The effect of AC parameters 

     Here, we describe the results of the effect of Tail parameters variation on the behavior of 

the solution. In this regard, the focused interest lies in identifying effective of selected 

parameters {B, m} and Re on the level of time stepping convergence and solution components.   

 

B-effect: The level of time increments for the AC–method is presented in Figure 3 as a function 

Tail parameter (m) with different values of Tail Parameter B and Reynolds number Re= {1, 5, 

10}. Generally, the results reveal that the level of time-step is decreased as B and m increase, 

which gives an important indicator of convergence behavior in time. Moreover, as we 

anticipated, the level of time increments also increased as the level of Re increased. For 

example, with B=100, Re=1 and m=1 we need around 6200 time-step to get the convergence 

level compared to 24000 time-step for B=100, Re=10 and m=1; rising by around four times, 

that because the increase in Reynolds number leads to the velocity gradients will be developed 

the matter which leads to elongation the time-step, (more detail are also presented in Figure 3).  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

        

  

Figure 3:Time-step as function of m ; B-variation, Re=1, 5, 10. 
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20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

Re=1, B=100

Re=5, B=100

Re=10, B=100

m

T
im

e
-S

te
p

1 1.5 2 2.5 3 3.5 4 4.5 5
20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

Re=1, B=200

Re=5, B=200

Re=10, B=200

m

T
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e
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40000

60000

80000
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120000

140000

160000

180000

200000

220000

240000

Re=5, B=300

Re=1, B=300

Re=10, B=300

m

T
im

e
-S
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0

20000

40000
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80000

100000

120000

140000

160000
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200000

220000

240000

Re=1, B=400
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Re=10, B=400

Re-Effect: In Figure 4 we show the effect of Reynolds number (Re) variation on the behaviors 

of the solution for B={100, 200, 300, 400} and (1m5). As anticipated, the profiles provided 

that, for all values of m the time increments increase as the level of Re increases, which reflects 

the difficulties of the numerical simulation with high level of Re. In addition, one can see that 

the time increments is reduced as the level of B increases because the increase in B value leads 

to indirect increase in the C
2
, this reduces the effect of the increase in the value of Re, (see 

Figure 4b,4c,4d). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     In Figure 5, the axial velocity, pressure drop and density profiles through the centerline are 

presented for different B-value, m=2 and Re=1. The results show that the level of velocity 

increases as B decreases, reaching to the maximum value of around 2.15 units at the outlet of 

the channel. Same observations in pressure and density clearly appeared, where the maximum 

level of pressure of around 16 units and 1.08 units for density are found at the inlet of the 

channel (see Figure 5b). Table 2 presents more details about the solution components.  

 

 

      

(a) (b) 

(c) (d) 

Figure  4: Time-step as function of m ; Re-variation, B=100, 200, 300, 400. 
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Table 2: Solution components; B-variation Re=1, m=2.   
M Max value B=100 B=200 B=300 B=400 

m=2 ur 0.0004 0.0002 0.0001 0.0001 

uz 2.06 2.03 2.02 2.017 

P 16.43 16.31 16.27 16.24 

DEN 1.031 1.016 1.011 1.008 

Mach 0.092 0.064 0.052 0.045 

m=3 Ur 0.0007 0.0003 0.0002 0.0001 

Uz 2.1 2.05 2.03 2.02 

P 16.61 16.41 16.33 16.29 

DEN 1.052 1.026 1.017 1.013 

Mach 0.12 0.08 0.06 0.05 

m=4 Ur 0.0005 0.0002 0.0001 0.0001 

Uz 2.07 2.04 2.02 2.02 

P 16.5 16.34 16.29 16.26 

DEN 1.03 1.019 1.013 1.01 

Mach 0.1 0.07 0.05 0.05 

 

(a) (b) 

(c) 

Figure 5: Solution components (a) axial velocity, (b) pressure, (c) density; B-variation Re=1, m=2.   
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7. Conclusions 
      In this study, the Galerkin finite element method has been used to simulate compressible 

and weak-compressible fluid flow based on the artificial compressibility method (AC-mathod) 

and fully artificial compressibility method (FAC-method). Through the work, we found out that 

there is a great role of using of AC-method compared to FAC-method in treating compressible 

and weak compressible fluids, in which convergence of both methods has been assessed. In this 

context, the convergence rate to steady-state of the AC-method is much better, as compared to 

that of the FAC-method. In addition,the influence of Tail parameters and Re on the acceleration 

of convergence was done. The findings show that there is a significant effect of these Tail 

parameters on the time-stepping convergence and the solution, where the level of time 

convergence is reduced as the Tail parameters rise, such this is an agreement with the findings 

of others. In contrast, the level of convergence becomes a higher with higher Re-value. 
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