

ISSN: 0067-2904

Properties of J-Regular modules

Rafid M. AL - Shaibani *, Nuhad S. AL-Mothafar
Department of Mathematic, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

The present study introduces the concept of \mathbf{J}-pure submodules as a generalization of pure submodules. We study some of its basic properties and by using this concept we define the class of J-regular modules, where an R-module \mathbf{M} is called J-regular module if every submodule of \mathbf{M} is J-pure submodule. Many results about this concept are proved.

Keywords: pure submodules, J-pure submodules, regular modules and J-regular modules.

$$
\begin{aligned}
& \text { J- المقاسات المنتظمة من النمط } \\
& \text { رافٍ مالك عطي *، نهاد سالم عبد الكريم } \\
& \text { قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق }
\end{aligned}
$$

الخلاصة

1- Introduction

Throughout this paper, all rings are a commutative with identity and every R-module is a unitary. The notion pure submodule is well known and there are several authors deal with this concept. For example [1] and [2]. Let M be an R -module. A submodule N of M is called pure if the sequence $0 \longrightarrow$ $\mathrm{E} \otimes \mathrm{N} \rightarrow \mathrm{E} \otimes \mathrm{M}$ is exact for every R-module E . Cohn [1]. Equivalently if for each $\sum_{i=1}^{n} \mathrm{r}_{\mathrm{ji}} \mathrm{m}_{\mathrm{i}} \in \mathrm{N}, \mathrm{r}_{\mathrm{ji}}$ $\in \mathrm{R}, \mathrm{m}_{\mathrm{i}} \in \mathrm{M}, \mathrm{j}=1,2, \ldots, \mathrm{k}$, there exist $x_{\mathrm{i}} \in \mathrm{N}, \mathrm{i}=1,2, \ldots, \mathrm{n}$ such that $\sum_{i=1}^{n} \mathrm{r}_{\mathrm{ji}} \mathrm{m}_{\mathrm{i}}=\sum_{i=1}^{n} \mathrm{r}_{\mathrm{ji}} x_{\mathrm{i}}$ for each j . A submodule N of an R -module M is called pure in M if $\mathrm{IN}=\mathrm{N} \cap \mathrm{IM}$ for every ideal I of R [3]. Recall that an R - module M is called regular module if every submodule of M is pure [2]. M is called a Von Neumann regular module if every cyclic submodule of M is a direct summand of M, [4].
This paper is structured in two sections. In section one we give a comprehensive study of J-pure submodules. Some results are analogous to the properties of pure submodules. In section two, we study the concept of J-regular modules.

Recall that an R - module M is called F - regular if for each submodule of M is pure. (Equivalently) an R-module M is said to be F - regular R - module if for each $m \in M, r \in R$, there exist $t \in R$ such that \quad r m $=$ rtrm. [5]. The intersection of all maximal submodules of M denoted by $J(M)$ is called the Jacobson radical of M [4]. Recall that, a ring R is said to be a good ring if $J(R) \cdot M=J(M)$; M be an R - module. (Equivalently), if R is a good ring, then $J(M) \cap N=$

[^0]J (N), [4.p.234].
Recall that the annihilator of an element X of an R-module M denoted by ann (X) is defined to be $\operatorname{ann}(\mathcal{X})=\{r \in R: r \mathcal{X}=0\}$ and the annihilator of M denoted by $\operatorname{ann}(M)$ is defined to be ann $(M)=\{r$ $\in \mathrm{R}: \mathrm{r} \mathcal{X}=0$ for every $\mathcal{X} \in \mathrm{M}\}$. Clearly $\mathrm{ann}(X)$ and $\operatorname{ann}(\mathrm{M})$ are ideals of R , [3]. An R -module M is simple if 0 and M are the only submodules of M , and an R-module M is said to be semisimple if M is a sum of simple modules (may be infinite). A ring R is semisimple if it is semisimple as an R-module [4]. It is known that over any ring R, a semisimple R-module is F regular $[6,7]$.
It is clear that every F- regular module is J-regular, but the converse is not true (see Remarks and Examples (3.3) (1).

2-Properties of J-pure submodules

In this section we introduce the concept of J-pure submodule. Also we investigate the basic properties of this type of submodules some of these properties are analogous to the properties of pure submodules.

Definition (2.1):

A submodule N of an R-module M is called a J-pure if N is pure in $J(M)$, i.e. for each ideal I of R, I $\mathrm{J}(\mathrm{M}) \cap \mathrm{N}=\mathrm{IN}$, where $\mathrm{J}(\mathrm{M})$ is the Jacobson radical of M .
Remarks and Examples (2.2):
(1) It is clear that every pure submodule is J-pure but the converse is not true in general. For example the submodule $\{\overline{0}, \overline{2}\}$ of the module Z_{4} as Z-module is J-pure submodule since if $\mathrm{I}=2 \mathrm{Z}$ is an ideal of Z , then $\mathrm{I}\{\overline{0}, \overline{2}\} \cap\{\overline{0}, \overline{2}\}=2\{\overline{0}, \overline{2}\} \cap\{\overline{0}, \overline{2}\}=\{\overline{0}\}$.
On the other hand, I $\{\overline{0}, \overline{2}\}=2\{\overline{0}, \overline{2}\}=\{\overline{0}\}$. By the similar simple calculation one can easily show that $\mathrm{IJ}\left(Z_{4}\right) \cap\{\overline{0}, \overline{2}\}=\mathrm{I}\{\overline{0}, \overline{2}\}$ for every ideal $\mathrm{I}=\mathrm{nZ}$ of Z where n is any positive integer. Thus $\{\overline{0}, \overline{2}\}$ is a J -pure submodule of Z_{4} but is not pure since if $\mathrm{I}=2 \mathrm{Z}$, then $\mathrm{I} Z_{4} \cap\{\overline{0}, \overline{2}\}=2 Z_{4} \cap$ $\{\overline{0}, \overline{2}\}=\{\overline{0}, \overline{2}\}$ but $I\{\overline{0}, \overline{2}\}=2\{\overline{0}, \overline{2}\}=\{\overline{0}\}$.
(2) Every direct summand of an R - module M is J-pure, since every direct summand of M is a pure submodule in M , [2] hence by remark (1) is J-pure submodule. But, the converse is not true, for example the submodule $\{\overline{0}, \overline{3}, \overline{6}\}$ of the module Z_{9} as Z-module. It is easily to check that $\mathrm{IJ}\left(\mathrm{Z}_{9}\right) \cap\{\overline{0}, \overline{3}, \overline{6}\}=\mathrm{I}\{\overline{0}, \overline{3}, \overline{6}\}$ for each ideal I of Z. So, $\{\overline{0}, \overline{3}, \overline{6}\}$ is J -pure in Z_{9} but not direct summand.
(3) Every nonzero cyclic submodule of the module Q as Z-module is not J-pure submodule.

Proof:

Let N be a cyclic submodule of Q as Z -module, generated by an element $\frac{a}{b}$ where a and b are two nonzero elements in Z. If we take an ideal $<\mathrm{n}>$ of Z where n is greater than one, then $<\mathrm{n}>\frac{a}{b}=$ $\left\langle\frac{n a}{b}\right\rangle$. Also $\mathrm{Q}=\langle\mathrm{n}\rangle \mathrm{Q}$, because for any element $\frac{x}{y} \in \mathrm{Q}$ we have $\frac{x}{y}=\frac{x}{n y} n \in<\mathrm{n}>\mathrm{Q}$, thus $\mathrm{Q}=$ $<\mathrm{n}>\mathrm{Q}$. Therefore $\langle\mathrm{n}\rangle \mathrm{J}(\mathrm{Q}) \cap\left\langle\frac{a}{b}\right\rangle=\left\langle\frac{a}{b}\right\rangle$ implies that $\left\langle n>\mathrm{Q} \cap\left\langle\frac{a}{b}\right\rangle \neq\langle n\rangle\left\langle\frac{a}{b}\right\rangle\right.$.
(4) If N_{1} and N_{2} are J-pure submodule of an R-module M , then $N_{1} \cap N_{2}$ is not necessarily J-pure. For example: Let $\mathrm{M}=Z_{8} \oplus Z_{2}$ as a Z-module, and let $N_{1}=Z_{8} \oplus 0$ and $N_{2}=\mathrm{Z}(2,1)$.It is easily seen that N_{1} and N_{2} are J-pure. But $N_{1} \cap N_{2}=\{(0,0),(4,0)\}$ is not J-pure.
(5) The sum of two J-pure submodules may not be J-pure. To show this consider $\mathrm{M}=Z_{4} \oplus Z_{2}$ as a Z-module, and let $A=Z(2,1)$ and $B=Z(2,0)$. It is easily seen that A is pure, hence it is J-pure and B is J-pure. But $\mathrm{A}+\mathrm{B}=\{(0,0),(2,0),(2,1),(0,1)\}$ is not J -pure.

Remark (2.3):

Let M be an R -module and N be a \mathbf{J}-pure submodule of M . If B is a J -pure submodule of N , then B is a J-pure submodule of M .

Proof:

Let I be an ideal of R. Since N is a \mathbf{J}-pure sub module in M and B is a \mathbf{J}-pure submodule in N, then I $\mathrm{J}(\mathrm{M}) \cap \mathrm{N}=\mathrm{IN}$ and $\mathrm{IJ}(\mathrm{N}) \cap B=I B$.
Now
$\mathrm{IJ}(\mathrm{M}) \cap \mathrm{B} \subseteq \mathrm{IJ}(\mathrm{M}) \cap N=I N$, implies that $\mathrm{IJ}(\mathrm{M}) \cap \mathrm{B} \subseteq I N$, then
$\mathrm{IJ}(\mathrm{M}) \cap \mathrm{B}=(\mathrm{IJ}(\mathrm{M}) \cap \mathrm{B}) \cap I N$
$=(\mathrm{I} \mathrm{J}(\mathrm{M}) \cap I N) \cap \mathrm{B}$.
$=\mathrm{I}(\mathrm{J}(\mathrm{M}) \cap N) \cap \mathrm{B}$ [since N is J -pure in M$]$.
Hence, $\mathrm{I} \mathrm{J}(\mathrm{M}) \cap \mathrm{B}=\mathrm{IN} \cap B=\mathrm{IB}$ and $\mathrm{IB} \subseteq \mathrm{IN} \cap B \subseteq \mathrm{IJ}(\mathrm{M}) \cap \mathrm{B}$.

Proposition (2.4):

Let R be a good ring. Suppose that M be an R -module and N is a J -pure submodule of M . If B is a J pure submodule of M containing N , then N is a J -pure submodule of B .

Proof:

Let I be an ideal of R . Since N is \mathbf{J}-pure submodule in \mathbf{M}, hence $\mathrm{I} \mathbf{J}(\mathrm{M}) \cap N=I N$, now
$\mathrm{I} J(\mathrm{~B}) \cap \mathrm{N} \subseteq \mathrm{I} \mathrm{J}(\mathrm{M}) \cap \mathrm{N}=I N$, implies that $\mathrm{I} \mathrm{J}(\mathrm{B}) \cap N \subseteq I N$. Since N is J -pure submodule in M, then $N \subseteq J(M)$ and $N \subseteq B$ implies that $N \subseteq J(M) \cap B$. Since R is a good ring, then $J(M) \cap B=J(B)$. [4]. Hence I J (B) $\cap N=\mathrm{IN}$.

Proposition (2.5):

Let Me be an R-module and N is a \mathbf{J}-pure submodule of M . If K is small a submodule of N , then $\frac{N}{K}$ is a J-pure submodule in $\frac{M}{K}$.

Proof:

Let I be an ideal of R. Since N is a J-pure submodule of M , then $\mathrm{I} \mathbf{J}(\mathrm{M}) \cap N=I N$
I J $\left(\frac{M}{K}\right) \cap \frac{N}{K}=\frac{I J(M)+K}{K} \cap \frac{N}{K} \quad\left[\right.$ since $\left.\quad \mathrm{J}\left(\frac{M}{N}\right)=\frac{\mathrm{J}(M)}{N}\right]$

$$
=\frac{(I J(M)+K) \cap N}{K}
$$

I J $\left(\frac{M}{K}\right) \cap \frac{N}{K}=\frac{(I J(M) \cap N)+(K \cap N)}{K} \quad$ [by Modular law]
$=\frac{I N+K}{K}=I\left(\frac{N}{K}\right)$.
Proposition (2.6):
If N_{1} is a \mathbf{J}-pure submodule of M_{1} and N_{2} is a \mathbf{J}-pure submodule of M_{2}, then $N_{1} \oplus N_{2}$ is J-pure submodule in $M_{1} \oplus M_{2}$.

Proof:

Let $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ be an R-module, let I be an ideal of R. We have to show I $\mathrm{J}(\mathrm{M}) \cap\left(N_{1} \oplus N_{2}\right)=\mathrm{I}$ $\left(N_{1} \oplus N_{2}\right)$. Let $x \in \mathrm{I} \mathbf{J}(\mathrm{M}) \cap\left(N_{1} \oplus N_{2}\right)$, then $x=\sum_{i=1}^{n} r_{i}\left(a_{i}, b_{i}\right)=\left(x_{1}, x_{2}\right)$, where $a_{i} \in \mathrm{~J}\left(\mathrm{M}_{1}\right), b_{i} \in$ $\mathrm{J}\left(\mathrm{M}_{2}\right)$ and $x_{1} \in N_{1}, x_{2} \in N_{2}$, so $\left(\sum_{i=1}^{n} r_{i} a_{i}, \sum_{i=1}^{n} r_{i} b_{i}\right)=\left(x_{1}, x_{2}\right)$ then $\sum_{i=1}^{n} r_{i} a_{i}=x_{1} \in \mathrm{I} N_{1}$, since N_{1} is J-pure submodule of M_{1} then $\sum_{i=1}^{n} r_{i} b_{i}=x_{2} \in \mathrm{I} N_{2}$, since N_{1} is J-pure submodule of M_{2} then $\left(\sum_{i=1}^{n} r_{i} a_{i}, \sum_{i=1}^{n} r_{i} b_{i}\right) \in \mathrm{I} N_{1} \oplus \mathrm{I} N_{2}=\mathrm{I}\left(N_{1} \oplus N_{2}\right)$. Hence $\sum_{i=1}^{n} r_{i}\left(a_{i}, b_{i}\right) \in \mathrm{I}\left(N_{1} \oplus N_{2}\right)$. Thus $\left(N_{1} \oplus N_{2}\right)$ is J - pure submodule of $\mathrm{M}_{1} \oplus \mathrm{M}_{2}$.

3- Basic Results for J-regular modules

In this section, we introduce and study the class of J-regular modules.

Definition (3.1):

An R-module M is said to be J-regular module if for each $m \in J(M), r \in R$, there exists $t \in R$ such that $\mathrm{rm}=\mathrm{rtrm}$.

Proposition (3.2):

An R- module M is J-regular if and only if every submodule of $\mathbf{J}(\mathrm{M})$ is pure.

Proof:

Suppose that \mathbf{M} is a \mathbf{J}-regular R-module and let N be any submodule of $\mathrm{J}(\mathrm{M})$. For each $r \in R$, let x $\in I J(M) \cap N$, then there exists $y \in J(M)$ such that $x=r y$. Since M is J-regular, then there exists $t \in$ R such $r y=r t r y$. Put $\mathrm{e}=t r$, then $r y=e r y$ which implies that $x=e x$, but $x \in \mathrm{~N}$, so $x=e x \in$ IN and hence $I J(M) \cap N \subseteq I N$. On the other hand, it is clear that $I N \subseteq I J(M) \cap N$, thus $I J(M) \cap$ $\mathrm{N}=\mathrm{IN}$. Thus, N is a pure submodule of $\mathrm{J}(\mathrm{M})$.
Conversely, assume that every submodule of $J(M)$ is pure. Let $x \in J(M)$ and $r \in R$ such that $\operatorname{Rr} x=N$ which is a J-pure submodule of M, then $I J(M) \cap N=I N$. For each $I \in R$. In particular, if $I=<r>$ we get $r x \in \mathrm{IJ}(\mathrm{M}) \cap \mathrm{N} \subseteq \mathrm{IN}=r R r x$. Therefor there exists $\mathrm{t} \in \mathrm{R}$ such that $r t=x$, so M is J-regular R - module.

Remarks and Examples (3.3):
(1) It is clear that every F-regular module is J-regular, but the converse may not be true in general for example, the module Z_{4} as Z-module is J-regular since every submodule of Z_{4} is \mathbf{J}-pure submodule in Z_{4}, but Z_{4} is not F-regular since the submodule $\{\overline{0}, \overline{2}\}$ of Z_{4} is not pure, see remark and example (2.2)(1).
(2) The module Q as Z-modules are not J-regular modules, see remarks and examples (2.2) (3).
(3) The module Z_{9} as Z-module is J-regular since every submodule of Z_{9} is J-pure, but Z_{9} is not regular since the submodule $\{\overline{0}, \overline{3}, \overline{6}\}$ is not pure, see remarks and examples (2.2) (2).
(4) It is clear that if N_{1} and N_{2} are two J-regular submodules of an R-module M, then $N_{1} \cap N_{2}$ is J -regular submodules in M .
(5) It is not necessarily that if every submodule of an R-module M is J - regular implies M is J- regular. For example: the module Z_{8} as Z-module is not J-regular. We know that $\langle\overline{4}\rangle 4$ is not J pure submodule of Z_{8} because 2.J $\left(Z_{8}\right) \cap\langle\overline{4}\rangle=\langle\overline{4}\rangle$ while 2. $\langle\overline{4}\rangle=\langle\overline{0}\rangle$, implies 2.J $\left(Z_{8}\right) \cap\langle\overline{4}\rangle \neq$ 2. $\langle\overline{4}\rangle$. While every proper submodule of Z_{8} is J-regular, since $\langle\overline{2}\rangle \cong Z_{4}$ and $\langle\overline{4}\rangle \cong Z_{2}$ are J-regular modules.
(6) It is clear that, if every submodule N of an R-module M is J - regular with $J(M)=J(N)$, then M is \mathbf{J} - regular.
(7) If $J(M)=0$, then M is J - regular R-module. For example: In Z as Z - module, $J(M)=0$, hence Z is J - regular R -module, but not regular.
(8) Every submodule N of J - regular R-module M such; that $\mathrm{J}(\mathrm{N})$ is J - pure in M is J - regular.

Proof:

Let K be a submodule in N and I be an ideal of R . To show that K is J - pure in N , we have:
$\mathrm{IJ}(\mathrm{N}) \cap \mathrm{K}=(\mathrm{IJ}(\mathrm{M}) \cap \mathrm{N}) \cap \mathrm{K} \quad[$ since $\mathrm{J}(\mathrm{N})$ is J - pure in M$]$.
$=I J(M) \cap(N \cap K)=I J(M) \cap K=I K \quad[$ since K is J-pure in $M]$.
Therefore, K is \mathbf{J} - pure in N implies N is \mathbf{J} - regular.
The following theorem shows that the cyclic J-pure submodules is enough to make the module be

J-regular.

Theorem (3.4):
Let Me be an R-module. The following statements are equivalent:
(1) M is J-regular module.
(2) Every cyclic submodule of M is J -pure submodule of M .
(3) Every finitely generated sub module of M is \mathbf{J}-pure submodule.
(4) Every submodule of M is a J-pure submodule of M.

Proof:

$\mathbf{(1)} \Rightarrow \mathbf{(2)}$ it follows by definition (2.1).
$\mathbf{(2)} \Rightarrow \mathbf{(1)}$ Assume that every cyclic submodule of M is \mathbf{J}-pure.
Let N be a submodule of $\mathrm{J}(\mathrm{M})$ and I be an ideal of R . Let $x \in \mathrm{IJ}(\mathrm{M}) \cap \mathrm{N}$, implies that $x \in \mathrm{IJ}$ (M) and $x \in \mathrm{~N}$. Therefore $\in \mathrm{IJ}(\mathrm{M}) \cap<\mathrm{x}>=\mathrm{I}<\mathrm{x}>\subseteq \mathrm{IN}$.
(1) \Rightarrow (3) It follows by definition (2.1), and the proof of (2) \Rightarrow (1).
$(3) \Rightarrow(2)$ It is clear.
(1) \Leftrightarrow (4) It follows by proposition (2.2).

Proposition (3.5):

Let M and M^{\prime} be R - modules; and $f: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ be an R - epimorphism, $\operatorname{ker} f$ is small of M . If M is J -regular module, then M^{\prime} is J -regular.

Proof:

Let $f: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ be two R - epimorphism and Ker f is small of M . To show that M^{\prime} is J-regular. Let $\mathrm{y} \in \mathrm{J}\left(\mathrm{M}^{\prime}\right)$, since $f: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ be an R - epimorphism and Ker f is small of M , then $f(\mathrm{~J}(\mathrm{M}))=$ $\mathrm{J}\left(\mathrm{M}^{\prime}\right)$ [4] implies that $\mathrm{y} \in f(\mathrm{~J}(\mathrm{M})$, then there exist $x \in \mathrm{~J}(\mathrm{M})$ such that $f(x)=y$. Since M is J regular and $x \in \mathrm{~J}(\mathrm{M})$, then there exist $t \in R$ suth that $r x=r \operatorname{tr} x$ so

$$
\begin{aligned}
f(r x) & =f(r \operatorname{tr} x) \\
r f(x) & =\operatorname{rtrf}(x) \\
r y & =\operatorname{rtry}
\end{aligned}
$$

Hence, M^{\prime} is J-regular.
If M is F -regular R -module then $\mathrm{J}(\mathrm{R}) \cdot \mathrm{M}=0$, but if M is J - regular we have the following:
Proposition (3.6):

If M is J -regular R -module, then $\mathrm{J}(\mathrm{R}) . \mathrm{J}(\mathrm{M})=0$.

Proof:

For each $0 \neq x \in \mathbf{J}(\mathbf{M})$ and for each $0 \neq r \in \mathbf{J}(\mathrm{R})$, there exist $\mathrm{t} \in \mathrm{R}$ such that r trx=rx , then $r x$ $(r t-1)=0$. Since $r \in J(R)$, then $(r t-1)$ is invertible, hence, $r x=0$ which implies that $\mathrm{J}(\mathrm{R}) . \mathrm{J}(\mathrm{M})=0$.
Lemma (3.7):
Let $0 \neq x \in \mathrm{~J}(\mathrm{M})$. Then $\frac{\mathrm{R}}{\operatorname{ann}(x)}$ regular ring if and only if for each $\mathrm{r} \in \mathrm{R}$, there exist $\mathrm{t} \in \mathrm{R}$ such that $\mathrm{r} x=\operatorname{rtr} x$.
Proof:
$\Rightarrow)$ Let $0 \neq x \in \mathrm{~J}(\mathrm{M})$, let $\mathrm{r} \in \mathrm{R}, \overline{\mathrm{r}} \in \frac{\mathrm{R}}{\operatorname{ann}(\mathrm{x})}$ since $\frac{\mathrm{R}}{\operatorname{ann}(x)}$ is regular ring. Then there exist $\overline{\mathrm{t}} \in$ $\frac{\mathrm{R}}{\operatorname{ann}(x)}$, such that $\overline{\mathrm{r}} x=\overline{\mathrm{r}} \overline{\mathrm{r}}$ implies that $\mathrm{r}-\mathrm{rtr} \in$ ann (x), then $\mathrm{r} x=\mathrm{rtr} x$.
$(\Longleftarrow$ Let $0 \neq x \in \mathrm{~J}(\mathrm{M})$, let $\mathrm{r} \in \mathrm{R}$, since $\mathrm{r} x=\mathrm{rtr} x$ for some $\mathrm{t} \in \mathrm{R}$, implies that $\mathrm{r}-\mathrm{rtr} \in \operatorname{ann}(x)$. Thus $\overline{\mathrm{r}} x=\overline{\mathrm{r}} \overline{\mathrm{r}}$, then $\frac{\mathrm{R}}{\operatorname{ann}(x)}$ is regular ring.

Proposition (3.8):

Let M be a \mathbf{J} - regular R - module. Then $\frac{\mathrm{R}}{\operatorname{ann}(x)}$ is regular ring for each $x \in \mathrm{~J}(\mathrm{M})$.

Proof:

Let $x \in J(M), r \in R$. Since M is J - regular R - module, then there exist $\mathrm{t} \in \mathrm{R}$ such that r t $r x=r x$, then r - r t $r \in \operatorname{ann}(x)$. Thus $\overline{\mathrm{r}} x=\overline{\mathrm{r}} \overline{\mathrm{r}} \overline{\mathrm{r}}$, which implies that $\frac{\mathrm{R}}{\operatorname{ann}(x)}$ is regular ring.

Theorem (3.9):

For any R-module M, The following statements are equivalent:
(1) M is a J - regular R -module.
(2) Every cyclic submodule of M is \mathbf{J} - regular.
(3) For every $0 \neq x \in \mathrm{~J}(\mathrm{M}), \frac{\mathrm{R}}{\operatorname{ann}(x)}$ regular ring.

Proof:
(1) \Rightarrow (2) It follows by Theorem (3.4).
(2) \Rightarrow (3) Let $0 \neq x \in \mathrm{~J}(\mathrm{M})$, and $\mathrm{r} \in \mathrm{R}$, then $\mathrm{P}=<\mathrm{r} x>$ the submodule generated by $\mathrm{r} x$. By (2), P is J - pure, then there exist $y=r x$ has a solution in P, i.e. There exist $z \in P$ such that $y=r x=r z, z$ $\in \mathrm{P}$ implies that $\mathrm{z}=\operatorname{tr} x ; \mathrm{t} \in \mathrm{R}$, hence $\mathrm{r} x=\operatorname{rtr} x$. By lemma (3.7), $\frac{\mathrm{R}}{\operatorname{ann}(x)}$ regular ring.
(3) \Rightarrow (1) Let N be any submodule of M , and I an ideal in R. Let $x \in \mathrm{~N} \cap \mathrm{IJ}(\mathrm{M})$,
$x=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{i}} x_{\mathrm{i}}, \mathrm{r}_{\mathrm{i}} \in \mathrm{I}, x_{\mathrm{i}} \in \mathrm{J}(\mathrm{M})$. By lemma (3.7), for each I , there exist $\mathrm{t} \in \mathrm{R}$ such that $\mathrm{r}_{\mathrm{i}} x_{\mathrm{i}}=$ $\mathrm{r}_{\mathrm{i}} t_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} x_{\mathrm{i}}$. If we put $\mathrm{e}_{\mathrm{i}}=t_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}$, and $\mathrm{e}=1-\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(1-\mathrm{e}_{\mathrm{i}}\right)$, then it can easily be seen that $\mathrm{e} \in \mathrm{I}, \mathrm{e}^{2}{ }_{\mathrm{i}} x_{\mathrm{i}}=$ $\mathrm{e}_{\mathrm{i}} x_{\mathrm{i}}, \quad \mathrm{r}_{\mathrm{i}} x_{\mathrm{i}}=\mathrm{e}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} x_{\mathrm{i}}$ and ee $\mathrm{e}_{\mathrm{i}} x_{\mathrm{i}}=\mathrm{e}_{\mathrm{i}} x_{\mathrm{i}}$. Thus e $x=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{e}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} x_{\mathrm{i}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{ee}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} x_{\mathrm{i}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{i}} x_{\mathrm{i}}=x$. Hence $x \in \mathrm{IN}$ and $\mathrm{N} \cap \mathrm{IJ}(\mathrm{M}) \subseteq \mathrm{IN}$. Thus, N is J - pure.

Proposition (3.10):

Let M be an R-module. If $\frac{R}{\operatorname{ann}(J(M))}$ is a regular ring, then M is \mathbf{J} - regular.
Proof:
Let $0 \neq x \in J(M)$, since $\operatorname{ann}(J(M)) \subseteq \operatorname{ann}(x)$, for each $x \in J(M)$, so there exist an R - epimorphism $\varphi: \frac{\mathrm{R}}{\operatorname{ann}(\mathrm{J}(\mathrm{M}))} \rightarrow \frac{\mathrm{R}}{\operatorname{ann}(x)}$ defined by $\varphi\left(\mathrm{r}+\operatorname{ann}(\mathrm{J}(\mathrm{M}))=\mathrm{r}+\operatorname{ann}(x)\right.$. Since $\frac{\mathrm{R}}{\operatorname{ann}(\mathrm{J}(\mathrm{M}))}$ is regular ring, then $\frac{\mathrm{R}}{\operatorname{ann}(x)}$ is a regular ring, then by Theorem (3.9). Therefor M is J - regular.
Consequently, it is J-regular. Furthermore, it is known that over a local ring, every F-regular module is semisimple [8]. We can generalize the latest statement as the following.

Proposition (3.11):

If \mathbf{M} is a \mathbf{J} - regular module over a local ring, then $\mathbf{J}(\mathrm{M})$ is a semisimple R- module.

Proof:

Let I be the only maximal ideal of R . Since M is J-regular, then for each $0 \neq x \in \mathrm{~J}(\mathrm{M})$ we have that $\mathrm{R} / \mathrm{ann}(x)$ is J-regular local ring, which implies that $\mathrm{R} / \mathrm{ann}(x)$ is a field [9] hence, ann (x) is a maximal ideal, so $\mathrm{I}=\operatorname{ann}(x)$ for each $0 \neq x \in \mathrm{~J}(\mathrm{M})$. Therefore, $\mathrm{I}=\operatorname{ann}(x)=\operatorname{ann}(\mathrm{J}(\mathrm{M})$).
On the other hand, $\mathrm{R} / \mathrm{I} \simeq \mathrm{R}$ /ann $(\mathrm{J}(\mathrm{M})$) is a field, which implies that $\mathrm{J}(\mathrm{M})$ is a vector space over the field R /ann $(\mathrm{J}(\mathrm{M})$) is simple ring. Then $\mathrm{J}(\mathrm{M})$ is a semisimple R-module over the ring $R / a n n(J(M))$. Thus, $J(M)$ is a semisimple R-module. [4].

References

1. Cohn, P.M. 1959. "On the free product of associative rings", math. Z. 380-398.
2. Fieldhous, D.J, 1969. "Pure Theories, Math". Ann. 184, 1-18.
3. Anderson, E.W. and Fuller, K.R. 1992. "Ring and categories of module", spring- verlager, New York.
4. Kasch, F. 1982. "Modules and Rings", Academic Press, New York.
5. cheathan, T.J. and Enochs, E.E. 1981."Regular modules", Math. Japonica: 9-12.
6. Ware, R. 1971. "Endomorphism rings of projective modules", Transactions of the American Mathematical Society, 155: 233-256.
7. Cheatham, T.J. and Smith, J.R. 1976. "Regular and semi simple modules," Pacific Journal of Mathematics, 65(2): 315-323.
8. Fieldhouse, D.J. 1971. "Regular Modules over Semilocal Rings," Colloquium Mathematical Society, : 193-196.
9. Abbas, M.S. and Abduldaim, A.M. 2001. " π-regularity and full π - stability on commutative rings," Al-Mustansiriya Science Journal, 12(2): 131-146.

[^0]: *Email: rafidmath22880@gmail.com

