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Abstract 

     Optimal control methods are used to get an optimal policy for harvesting 

renewable resources. In particular, we investigate a discretization fractional-order 

biological model, as well as its behavior through its fixed points, is analyzed. We 

also employ the maximal Pontryagin principle to obtain the optimal solutions. 

Finally, numerical results confirm our theoretical outcomes.  
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كسري متقطع بايولوجي استراتيجية الحصاد الامثل لنموذج  
 

ناصر صادق ال  
، كلية العلوم، جامعة بغداد، بغداد، العراققسم الرياضيات  

 

 الخلاصه
, البحث تم استعمال طرق السيطرة المثلى للحصول على السياسة المثلى لحصاد الموارد المتجددة في هذا      

خلال نقاط اتزانه. كذلك تم على وجه الخصوص  تم دراسة وتحليل سلوك  نموذج كسري متقطع بايولوجي من 
الأقصى للحصول على الحلول المثلى . أخيرًا ، تؤكد النتائج العددية نتائجنا Pontryagin استعمال  مبدأ

  النظرية.
 

1-Introduction 

      Harvesting is an important theme in renewable resources management, so that the 

dilemma of harvest biological systems have been analyzed and investigated by many 

researchers to get optimal exploitation polices. 

 

       The books of C.W. Clark [1], and Mark Kot [2] are extremely applicable and relevant to 

the optimal harvesting problems.  Rassi and  Jerry[3]  related to the maximization of the total  

net gains derived by the harvesting of the resources.  They also developed and studied the 

exploitation policy to the optimal control problems. 

 

       The original work of Lotka and Volterra [4, 5] is inception of the prey-predator theory, 

then after it became the most important subject in mathematical ecology. So that many 
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authors have been adapted the work of Lotka-Volterra system employing  difference 

equations, ordinary differential equations or partial differential equations, as well as 

fractional-order derivative [6-13], and references therein. However, there are many types of 

functional response , namely Holling type I , II, III, and type IV, Beddington-Deaugelis, 

Leslie-Gower, Corwley-Marin, and others [8,14,15,16].  

 

     Fractional-order derivative provides a precise description of the dynamics of biological or 

epidemiological models due to in consideration of information about a population memory 

compared to the other descriptions for that many researchers prefer to model their systems by 

fractional-order derivative. For more details about the fractional-order derivative we refer to 

these references [6, 11, 12, 17-19]. 

 

      A general system of two dimensional prey-predator without harvesting is described by 

ordinary differential equations is as following:  

 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥𝑓(𝑥) − 𝑔(𝑥, 𝑦)y

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑑𝑔(𝑥, 𝑦)y − 𝑐(𝑦)𝑦(𝑡)

      (1) 

  

      Here the variables  𝑥(𝑡), and  𝑦(𝑡) denote to the size of prey and predator population at 

time 𝑡, respectively. Parameter  𝑑 is the conversion rate. Parameter   𝑐 denotes the death 

natural rate of predator species. The function 𝑓 represents growth rate of prey , while the 

function  𝑔(𝑥, y) is called the functional response of predator to prey density. 

This work is organized as follows: The fractional-order derivative model is described in 

section 2, as well as its discretization is analyzed and investigated through its fixed points. 

Then we extend the discretization system to an optimal control problem, this is done in 

section 3. In section 4 numerical results are presented to clarify the theoretical analysis. A 

discussion follows in section 5. 

 

2-The fractional-order derivative system, and its discretization 

Definition 1 [20]  The θ − order Caputo differential operator is defined as follows: 

Dt
θf(x) = Il−θf(x),    θ > 0 

Such that  l = [θ], and Iβu(t) =
1

Γ(β)
∫  

t

0
(t − μ)β−lu(t)dt,    β > 0. 

Iβ represents  the β order Riemann-Liuouville integral operator, Γ(. ) denotes  the Gamma 

function. 

In this work the ratio-dependent predator–prey or Michaelis–Menten type prey–predator 

model [21] is modified to the following fractional-order model. 

 

𝐷𝜃𝑥(𝑡) = 𝑥(𝑡)(1 − 𝑥(𝑡)) −
𝑥(𝑡)𝑦(𝑡)

𝑎𝑥(𝑡) + 𝑏𝑦(𝑡)
− h1𝑥(𝑡)                                           (2)

𝐷𝜃𝑦(𝑡) =
𝑑𝑥(𝑡)𝑦(𝑡)

a𝑥(𝑡) + 𝑏𝑦(𝑡)
− 𝑐𝑦(𝑡) − h2𝑦(𝑡)

 

      Where 𝑥(𝑡), and  𝑦(𝑡) denote the densities of prey, and predator species at time  𝑡, 

respectively. In this system the prey growths logistically. The parameter  𝑑 represents the 

conversion rate part from the prey species to the predator species. The parameter  𝑐 denotes 

the death rate of predator species. The  functional response is the ratio-dependent predator-

prey. a, 𝑎𝑛𝑑  b are the half saturation constants. h1, 𝑎𝑛𝑑  h2 are the rate harvesting or the 

removal rate of prey and  predator, respectively. Throughout this article we assume that 

h2 = 0,and h1 = ℎ. 
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      Applying discretization method to  the fractional-order  system (2). For more details we 

refer to [6,10]. The system (2) is reduced to 

xn+1 = xn +
Sθ

Γ(θ+1)
[xn(1 − xn) −

xnyn

(axn+byn)
− hxn]

yn+1 = yn +
Sθ

Γ(θ+1)
[

dxnyn

(axn+byn)
− cyn]

                                                           (3) 

 

Definition 2 [22]:  Let        xt+1⃑⃑ ⃑⃑ ⃑⃑⃑⃑ = f(xt ⃑⃑⃑⃑ )       t = ,2,3, . . .                                                          (4) 

         be  a discrete time system the point  e∗ is called a fixed point of equation (4)  if  e∗ =
f(e∗). If  |λi| < 1  for  i = 1,2, … . . , 𝑛  λi are the eigenvalues of the Jacobian matrix J  at e∗  
then it is called local stable point. Otherwise e∗  is called unstable point. While if   |λi| = 1 for 

some   1≤ i ≤ n  then e∗   is called a non-hyperbolic point.  

The system (3) has the following fixed points: 

1-  The  e0 = (0,0) is the trivial fixed point which always exists, while the fixed 

point e1 = (1 − h, 0) exists only when  1 > h. . 
2- The unique positive fixed point  e2=( xp,  yp) exits if bd(1 − h) > (d − ac) and 

d > ac  where  xp =
bd(1−h)−(d−ac) 

bd
, and  yp= 

(d−ac) 

bc
 xp. 

To discuss the dynamic behavior of the system (3) we have to compute the Jacobian matrix of  

(3). The Jacobian matrix   at  (x, y) is as follows :  

 J(x, y) = [
 j11  j12

 j21  j22
] 

Where j11 = 1 + m − 2mx −
mby2

k
− mh ,  j12 = −

max2

k
,  j21 =

mbdy2

k
,  j22 = 1 − mc +

madx2

k
 . 

For the local stability of the fixed points  e0, and e1 of system (3) we have the following 

theorem. 

 

Theorem 1 

1- The  e0  is never to be locally stable point. 

2- The  e1 is locally stable if  h ∈ (
m−2

m
, 1) , and c ∈ (

d

a
,
2a+md

am
)  

 

Proof:   The Jacobian matrices   at e0   and e1  are  

 Je0
= [

1 + m − mh 0
0 1 − mc

]  and  

  

Je1
= [

1 − m + mh     
−m

a

0 1 − mc +
md

a

]  , respectively. 

Now the eigenvalues of Je0
are   λ1 = 1 + m(1 − h), λ2 = 1 − mc. Since h is always less than 

1, therefore  λ1 > 1 ,and the point e0 is never to be stable point. 

The eigenvalues of Je1
are   λ1 = 1 − m + mh), λ2 = 1 − mc +

md

a
  hence  if h ∈ (

m−2

m
, 1), 

then  −2 + m < mh < m,  and  |λ1| < 1. Now we assume that c ∈ (
d

a
,
2a+md

am
)  this gives   

d

a
< c <

2a+md

am
 , and  |λ2| < 1. Therefore the e1  is locally stable. 

 

Lemma 1 [22] Let P(x) = x2 + p1x + q1 , if the following conditions hold:   

    1.  P(1) > 0 
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    2.  P(−1) > 0 

 

    3.  q1 < 1.  

Then the roots of  P(x) are inside the unit disk.  
 

Theorem 2  

     The point  e2 is locally stable if  h ∈ (𝑀𝑎𝑥{
z5

z6
,
z1

z2
},

z3

z4
), and   𝑐 ∈ (

adx∗2

k
, Max{

1

m
+

adx∗2

k
,
2

𝑚
+

adx∗2

k
 } where 

 z1 = −c + 2x∗c +
bcy∗2

k
+

adm2x∗2

k

−2adx3

k
, z2 =

adx∗2

k
− c, z3 = 4 − 2mc +

2madx∗2

k
+ 2m −

2mx∗ −
2bmy∗2

k
− 2m2c + 2m2x∗c +

2bcm2 y∗2

k
+

adm2x∗2

k
−

2adm2 x∗3

k
, z4 = 2m − m2c +

adm2 x∗3

k
, z5 = 1 − 2x∗ −

by∗2

k
− c − mc − 2mcx∗ +

bmy∗3

k
+

ad x∗3

k
+

admx∗3

k
−

2mad x∗3

k
, z6 =

1 − mc +
amd x∗3

k
 

Proof: Jacobian matrix at e2  is                                                       

The Je2
= [

1 + m − 2mx∗ −
mby∗2

k
− mh −

max∗2

k

mbdy∗2

k
1 − mc +

madx∗2

k

] 

Then the characteristic polynomial of  Je2
 is given as follows: 

P(λ) = λ2 + pλ + q,  where  p= −2 + mc −
madx∗2

k
− m + 2mx∗  +

bmy∗2

k
+ mh. And  

q = 1 + m − 2mx∗ −
bmy∗2

k
− mh − mc − m2c + 2m2x∗c +

bcm2 y∗2

k
+ m2ch +

madx∗2

k
+

adm2 x∗2

k
−

2adm2 x∗3

k
−

adhm2 x∗2

k
. So that  

If h <  Min { 
z1

z2
,
z3

z4
} , with  

adx∗2

k
> c  then the condition 1 and 2 in lemma 1 hold , while if 

  h >
z5

z6
  then the condition3 in lemma 1 holds . Therefore the point e2   is local stable point. 

 

3-Optimal harvesting approach.  

     This part of the article deals with the optimal harvesting amounts so that the system (3) 

becomes as follows 

xn+1 = xn +
Sθ

Γ(θ+1)
[xn(1 − xn) −

xnyn

(axn+byn)
− hnxn]

yn+1 = yn +
Sθ

Γ(θ+1)
[

dxnyn

(axn+byn)
− cyn]

                                                 (5) 

     The all parameter are the same previous interpolation, while the parameter hn represents 

the control variable. We form the objective functional as follows:  

J(hn) = ∑ c1hnxn −T−1
n=0 c2hn                                                                                       (6) 

      

      Subject to the considered system (5) the parameters  c1  and c2 are positive constants. 

Now we have to find out the optimal solution hn
∗  that satisfies  J(hn

∗  ) = Max J(hn)  for all   

0 ≤ hn ≤ hMax ,  hMax represents the maximum harvesting.  We apply the Pontryagin’s 

Maximum Principle [1,3, 23-25] to get the necessary conditions for the optimal variable 

control and corresponding states.  
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Theorem 3 

     If hn
∗   represents  an optimal solution  with the optimal  corresponding states   xn

∗   and  yn
∗  , 

then  for n = 1,2, . . . . T − 1   the  adjoint functions  λn, and μn   exist that satisfy: 

λn = c1hn + λn+1[1 + m − 2mx −
mby2

k
− mhn] + μn+1(

mbdy2

k
) 

                μn = λn+1 −
max2

k
+ μn+1[1 − mc +

madx2

k
] (7) 

 

    λT = 0, μT = 0, and  m =
Sθ

Γ(θ+1)
 . The  optimal control  is  given by   hn

∗ =
𝑐1𝑥𝑛− 𝜆𝑛+1𝑥𝑛

2𝑐2
 for  

0 <
𝑐1𝑥𝑛− 𝜆𝑛+1𝑥𝑛

2𝑐2
 < ℎ𝑚𝑎𝑥 ,while  hn

∗ = ℎ𝑚𝑎𝑥 if  
𝑐1𝑥𝑛− 𝜆𝑛+1𝑥𝑛

2𝑐2
> ℎ𝑚𝑎𝑥 

 

Proof:  
The Hamiltonian function is  

𝐻𝑛 = 𝑐1ℎ𝑛𝑥𝑛 − 𝑐2ℎ𝑛
2 + λn+1 [xn +

Sθ

Γ(θ+1)
[xn(1 − xn) −

xnyn

(axn+byn)
− hnxn] + μn+1[yn +

Sθ

Γ(θ+1)
[

dxnyn

(axn+byn)
− cyn].                                          

By the necessary conditions of Pontryagin maximum principle , we have for  𝑛 = 1,2, . . . . 𝑇 −
1 . 

λn = c1hn + λn+1[1 + m − 2mx −
mby2

k
− mh] + μn+1(

mbdy2

k
) 

 And μn = λn+1 −
max2

k
+ μn+1[1 − mc +

madx2

k
]  . Now the optimal variable will be   hn

∗ =
𝑐1𝑥𝑛− 𝜆𝑛+1𝑥𝑛

2𝑐2
 for  0 <

𝑐1𝑥𝑛− 𝜆𝑛+1𝑥𝑛

2𝑐2
 < ℎ𝑚𝑎𝑥 , and   hn

∗ = ℎ𝑚𝑎𝑥 if  
𝑐1𝑥𝑛− 𝜆𝑛+1𝑥𝑛

2𝑐2
> ℎ𝑚𝑎𝑥. 

 

4-Numerical results 

      This section verifies the effectiveness of our theoretical results, so that some numerical 

simulations are given. To confirm the behavior of the system (3) through the local stability of 

its fixed points. Some numerical simulations have been given. To confirm of the point 

 e1 = (1 − h, 0) is local stable point we use the following values of parameters : 𝑎 = 0.6;  𝑏 =
0.8 ; 𝑑 = 0.3; 𝑐 = 0.6; ℎ = 0.1; 𝛼 = 0.98 , and the initial point is (1.8, 1.9). Hence the 

condition 2 in Theorem (1) is established. Figure 1 displays the local stability of e1. 
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Figure 1:  Local stability of  e1is illustrated in this figure. 

 

     For the point  e2 the values of parameters are set as follows: 𝑎 = 0.4;  𝑏 = 0.8 ; 𝑑 =
0.33; 𝑐 = 0.4; ℎ = 0.15; 𝛼 = 0.98, and the initial point is (0.4,0.5). Hence the Theorem 2 is 

verified, and the point is stable. This is displayed in Figure 2. Trajectories of the prey species 

and the predator species as a function of time which 

Indicates that the point  e2  is local stability. This is done in Figure 3. 

 
Figure 2: This figure shows the point  e2 is locally stable  point. 
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Figure 3: This figure shows the time series of prey density and predator density that indicates 

the local stability of  e2. 
 

     We use and employ iterative method to find the optimal control solution. We use an 

iterative algorithm. For more details we refer to [5, 14, 25].  The values of parameters as 

follows: = 0.3;  𝑏 = 0.8 ; 𝑑 = 0.45; 𝑐 = 0.5; 𝛼 = 0.98,  c1 = 0.2, .  and  c2 = 0.2 with initial 

guess   𝑥0 = 0.4, 𝑎𝑛𝑑 𝑦0 =0.5 for  prey , and predator , respectively. We obtain the total net 

optimal harvesting is   𝐽(hn
∗ ) =  0.1090. Figure 4 shows the optimal solution variable as 

function of time, while Figures 5-6 indicate the effect of optimal solution and the fixed 

harvesting amount on the prey, predator, respectively.  

 
Figure 4: The optimal solution of the system 5  is plotted as function of time. 
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Figure 5: This figure shows prey species in system (6) with control, without control, and with 

fixed harvest amount. 

 
Figure 6: The predator species in system (6) is plotted with control, without control, and with 

fixed harvest amount. 

 

5- Discussions and Conclusions 

       In this paper, a discretization of fractional-order prey-predator system with ratio-

dependent predator–prey functional response has been presented and analyzed. The local 

stability of its fixed point is studied. Our analysis shows the considered system has three fixed 

points as well as the trivial fixed point is never to be stable point, while the other points are 
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locally stable under certain conditions. We also conclude that the equilibrium harvesting 

amount as well as any constant harvesting amount cannot be the optimal solution. We can see 

in Figures 4 and 5 that the level of prey species density, predator density with optimal control 

are lower than their equilibrium level. It is also seen that the heavily harvesting will lead to 

increase the possibility of extinction.    
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