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Abstract

M is viewed as a right module over an arbitrary ring R with identity. The
essential second modules is defined in this paper. We call M is essential second
when for any a € R, either Ma =0 or Ma <, M. Number of conclusions are
gained and some connections between these modules and other related modules are
studied.
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1. Introduction

R is denoted a ring has identity and M is studied as a left S- right R-bimodule where S =
Endgz(M). 0 # M is coprime (sometimes second) if all 0 # a € R then either Ma =M or Ma =0
[1]. The idea of small coprime was presented and studied in [3] as a new type of the concept coprime.
M is called small coprime if for each 0 # a € R then either Ma =M or Ma K M. N is small
submodule in M abbreviated N «< M in case any submodule K of M with N + K = M implies
K = M [2]. Accordingly the notion of essential second as another type of coprime modules. A non-
zero R-module M is essential second when whole a € R, either Ma =0 or Ma <, M. N of M is
essential submodule in M abbreviated N <, M if Nn K # 0 for each 0 #= K = M [2]. Other studies
within [4-14] is related topics.

The paper consists of two parts. Within part two, we investigate the essential second idea and we
supply examples and needful features of this concept. We give a characterization of essential second
modules (Thearem 2.4). The direct sum of essential second modules is discussed (Proposition 2.8).
Among other results we look for many relationships between essential second modules and related
modules such as (Proposition 2.9 and Proposition 2.13). Finally we define endo essential second
modules and give basic properties about this modules (Remarks and Examples 2.17).

2. Essential Second Modules
Main facts of this type of modules are introduced.

Email: ghaleb.a.h@ihcoedu.uobaghdad.edu.iq
633



Ahmed Iragi Journal of Science, 2019, Vol. 60, No.3, pp: 633-637

Definition 2.1. A non-zero R-module M is essential second when each a € R, either Ma =0 or
Ma <, M.

Remarks and Examples 2.2

(1) Obviously that every simple module is a coprime module and hence it is an essential second
module while the opposite is not run. M is simple when M = < 0 > and it has no submodules except
<0>and M [2]. For example, Z as Z-module is essential second since for each a € Z , then
Za =0 or Za <, Z while Z is not coprime because 0 # Za # Z foreach 0 # a # 1,—1. Further
Z is not simple.

(2) Clearly that every divisible module is faithful coprime module and hence it is a faithful essential
second module where M over a domain R, is divisible when Ma = M for each 0 # a € R [2]. Also M
is faithful whenever anng(M) = {a € R:ma = 0 foranym € M} = 0 [2].

Proof: Presume M is divisible over a domain R means Ma = M for each 0 # a € R. Thus M is
coprime and hence it is essential second since Ma = M <, M for each 0 # a € R. On the other side
Ma + 0 for each 0 # a € R this means anng (M) = 0 so M is faithful.

(3)Clearly every uniform module is essential second while the converse is not true where 0 = M is
uniform when any non-zero submodule is essential in M [2]. For example, Z, @ Z, as Z-module is
essential second since foreach a € Z, (Z, @ Z,)a is either Z, ® Z, <, Z, D Z, or <0 >D
< 0 >but Z, @ Z, is not uniform.

(4) The essential second and small coprime concepts do not imply from each one to another. The Z-
module Z is essential second while it is not small coprime since Za +# Z foreach —1,1#a€Z
and Za is not small of Z for each 0 # a € Z. Further, Z, @ Z, as Z-module is small coprime
since for each a €Z , (Z, @ Z,)a is either Z, D Z, or <2>PH< 0 > or <0>P< 0 >
while Z, @ Z, is not essential second because < 2 >@< 0 > is not essential in Z, @ Z, .

(5) The essential second and S-coprime concepts are different where M is S-coprime if Ma <K M
where 0 # a € R implies that Ma = 0 [14]. For example, M = Z, as Z-module is essential second
since for each a € Z , then Ma is one in three cases, Z,, < 2 > or < 0 > while Z, is not S-coprime
because < 2 > « Z,. furthermore M = Z, as Z-module is S-coprime because for each a € Z , we
have Ma one in four cases, Z,, <2 >,<3>0r<0>where Zs, <2>,<3> arenotsmall
while Zg is not essential second since M2 =< 2 > is not essential in Z.

(6) The essentially coprime and essential second concepts are not the same where M is an essentially
coprime module when each a € R Ma = M or anny(a) <, M[3]. via the following examples. Let us
discuss the module Z, @ Z, as Z-module is essentially coprime as follows

If a=0 = (Zy® Zy)a+# Z, D Z, while anny, gz, (a) = Zy D Z; <, Z, D Z,

If a=1 = (Z;D Z)a=7Z, D 7, <, 7, ® 7,

If a=2 = (Zy®D Zy)a = <2>PB< 0> #7Z,D 7, but
anng,g 7, (@) = {(0,0),(0,1),(2,0),(2,1)} <, Z, @ Z,. For each r € Z , if we continue by this
way we obtain the same results. This means Z, @ Z, is essentially coprime as Z-module but not
essential second as reported in example (3). As well Z as Z-module is essential second as we
mentioned before in example (1). But Z as Z-module is not essentially coprime because if we take
a=2E€ZimpliesZ2 # Z and annz(2) = 0 is not essential in Z. Further since Z as Z-module is a
uniform, this means if M is uniform, then M may be not essentially coprime. Can be compared with
example (3).

(7)Every essentially coprime torsion free module over a domain is faithful essential second. M is
called torsion free over a domain R when anng(m) ={a € R:ma =0 } =0 for every non-zero
element m € M [2].

Proof. Assume M is an essentially coprime over a domain R, each a€R, Ma=M or
anny(a) <, M. But M is torsion free implies anny(a) = 0 is not essential in M so Ma = M. This
means that M is divisible, so via example (2), M is faithful essential second.

(8) Homomorphic image of essential second module need not be essential second. The natural

epimorphism Z — Zl = Z¢ as Z-modules we have Z is essential second but Zg is not essential

6

second as discussed in example (4).
Lemma 2.3 [2] Consider N and K as submodules M where K € N. K <, Niff K <, N <, M.
Theorem 2.4 Statements are tantamount
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(1) M is essential second.
(2) Eachlof R,MI=0 or MI <, M.
Proof: (1) = (2) Study I as an ideal of R and MI # 0, so there is a € I, Ma # 0 implies Ma <, M
since M is essential second. Via lemma (2.3), we have MI <, M as desired.

(2) = (1) clear.
Proposition 2.5 The essential second property under an isomorphism is moved.
Proof: Discuss, N as modules over R where N is essential second with f: N - M is an
isomorphism. To prove for each a € R, either Ma =0 or Ma <, M. Since N is essential second,
we have either Ma = f(N)a = f(Na) = f(0) =0 or Ma=f(N)a=f(Na) <, f(N) =M as
required.
Examples 2.6
(1) Whenever M is essential second with N a submodule in M, implies N need not essential second.
Consider Z, @ Z, as Z-module is essential second since for each € Z , (Z, ® Z,) a is either
Z,D Z, or <2>P<2>o0r <0>P< 0 >. Now take the submodule N generated by (1,0)
and (0,2). So we have N = Z, @ Z, is not an essential second as Z-module as we mentioned in
example (3).
(2) If each proper submodule in M is essential second, then M need not be essential second. For
example Zg over Z in which every proper submodule is simple module, so they are coprime and
hence essential second by example (1), while Zg itself not essential second as shown in example(4).
(3)Let M and Z, be an essential second module over Z with 0 # M # Z, for each n € Z with
n & anng(M). Yield M @ Z, is not essential second over Z.
Proof. Take a = n € Z such that n & anngx(M) implies <0 >@< 0 > (M @ Z,)a = Ma H<
0 > isnotessential in M @ Z, because (Ma®< 0 >)N(K0>P Z,)=<0>H< 0 >.
Thus M @ Z, is not essential second.
4 Z, ® Z,, as Z-module is not essential second for each n # m since if a =n then (Z, @
Zm)a=0@ Z,, #0P 0and 0 P Z,, isa direct summand of Z, @ Z,, thatis 0 @ Z,, is not
essential in Z, @ Z,,. Similarly if a=m then(Z, & Z,,)a=7Z, @0 is not essential in
Ly ® Z,,.
Lemma 2.7 [2] In case M =@, M, is a direct sum of modules M, (a« €A) with N, <, M, for each
a Enthen @, N, <, M.
Proposition 2.8 M is essential second iff M @ M essential second.
Proof: Assume M is an essential second module overR. For eacha € R, either Ma = 0 implies
(M @ M)a=Ma®Ma=<0>P< 0 > or Ma<, M. Via result (2.7),(M @ M)a = Ma ®
Ma <, M @ M. For theother side. Suppose M is not essential second so there is a € R such that
Ma # 0 and Ma is not essential in M implies Ma N N = 0 for a submodule N of M. This implies
Ma@®Ma)N(NDN)=<0>P< 0 > and (MO M)a=Ma@® Ma+#<0>PH< 0 > s0
Ma @ Ma is not essential in M @ M that is M @ M is not essential second which is contradicts the
hypothesis and hence M is essential second.
Remind N is pure in M when NI = MI n N for any I of R [16]. M is called regular when every
submodule is pure [16].
Proposition 2.9 Every pure submodule of an essential second module inherits essential second
property.
Proof: Consider N as pure in essential second M over R. For each ideal I of R, MI = 0 implies
NI =MINN=0or MI <, MimpliesNI =MINN <, MNN = N as required.
Corollary 2.10: Every summand submodule of an essential second module inherits essential second
property.
Corollary 2.11 Each submodule of a regular essential second module is also essential second.
Corollary 2.12 Any submodule of a semisimple essential second module is also essential second.
Examples 2.13
(1) The condition in the corollaries (2.9), (2.10) that the module M must be essential second is
necessary. Let M = Z,, be as Z-module and N = 4Z,, is a summand of M where M and N is not
essential second as Z-modules. If we take a = 2 then 0 # Na is not essential in N because N2 n
N3 = 0 implies N is not essential second Z-module. Further if a = 8 implies 0 # Ma is not essential
in M because M8 N M12 = 0 and hence M is not essential second Z-module.
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(2) A submodule of a semisimple module is not needful essential second. Discuss M = Z, as Z-
module is semisimple then M @ M as Z-module is semisimple because every sum of semisimple
modules is semisimple [2]. We see that N = M2 @ M is not essential second Z-module because if we
take a=2 then aN #0 and aN = M2 @ M2 is not essential in N since (M2@ M2 )n
OAM3)=00.

Recall that M is multiplication when each submodule N of M, then N = MI for I of R. we able to
take I = (N :x M) [17]. M is torsion when anng(m) # 0 forallm € M [17].

Proposition 2.14 Every multiplication essential second module is either torsion or uniform.

Proof: Assume M is essential second over R.Then for each a € R, either Ma =0 or Ma <, M. In
case Ma = 0 then for each m € M, annz(m) # 0 and hence M is torsion or Ma <, M for each
a € R and since M is multiplication then each 0 = N of M, N = MI for I of R so there exists a € I
such that 0 # Ma <, M for a € R, hence Ma <, N <, M. Thus M is uniform.

Corollary 2.15 Every cyclic essential second module is either torsion or uniform.

Examples 2.16 Investigate M as essential second

(1) anngz (M) may not be a prime ideal of R. See Z, as Z-module is essential second as we recorded in
example (4) but annyz(Z,) = Z4 which is not prime in Z.

(2) Generally, anng(M) +# annR(%) for some submodule N of M. For example, Z, © Z, as Z-
module is essential second as we have seen in in example 2.6(1). Take N =< 2 >@< 2 > implies
anng(Ty @ Ty) = 74 # anng () = [Nig M] = [<2>B<Z >3 L, ® L] =12.

Definition 2.17 0 # M is an endo essential second module when every f € End(M) either f(M) =0
or f(M) <, M.

Remarks and Examples 2.18

(1) Every endo essential second module is essential second.

Proof. Assume M is endo essential second over R then for every f € End(M) either f(M) =0 or
f(M) <, M. postulate a € R and define f, : M - M by f,(M) = ma for any m € M. It is clear f,
is well-dfined and f, € End(M). Then Ma = f,(M) = Imf, =0 or Ma = f,(M) = Imf, <, M as
required.

(2) The reverse of (1) is not hold broadly. Z, @ Z, as Z-module is essential second as we mentioned
in example 2.6(1) but Z, @ Z, is not endo essential second module since we have f € End(Z, D
Z4) by f(x,y) = (x,0) implies that f(Z, & Z,) = Z, @ 0 is not essential in Z, B Z,.
Proposition 2.19 Every multiplication essential second module is endo essential second.

Proof: Assume M is multiplication essential second over R and f € End(M) then f(M) = MI for I
of R.But MI =0 or MI <, M implies f(M) =0 or f(M) <, M as desired.

Recall M is a scalar module when all f € End(M) there is a € R with f(m) = ma forany m e M
[18].

Proposition 2.20 Every scalar essential second module is endo essential second.

Proof: is similar to Proposition (2.19).
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