Ahmed and Batah

Iraqi Journal of Science, 2023, Vol. 64, No. 2, pp: 809-822 DOI: 10.24996/ijs.2023.64.2.27

the Estimation of Stress-Strength Model Reliability Parameter of Power Rayleigh Distribution

Abdulrhaman A.J.Ahmed*, Feras Sh. M. Batah

Department of Mathematics, College of Education for pure Science, University Of Anbar, Anbar, Iraq

Received: 26/2/2022 Accepted: 7/6/2022 Published: 28/2/2023

Abstract

The aim of this paper is to estimate a single reliability system (R = P, Z > W) with a strength Z subjected to a stress W in a stress-strength model that follows a power Rayleigh distribution. It proposes, generates and examines eight methods and techniques for estimating distribution parameters and reliability functions. These methods are the maximum likelihood estimation(MLE), the exact moment estimation (EMME), the percentile estimation (PE), the least-squares estimation (LSE), the weighted least squares estimation (WLSE) and three shrinkage estimation methods (sh1) (sh2) (sh3). We also use the mean square error (MSE) Bias and the mean absolute percentage error (MAPE) to compare the estimation methods. Both theoretical comparison, simulation and real data are used. The results in light of this distribution show the advantage of the proposed methods.

Keywords: Power Rayleigh Distribution, Stress-Strength Reliability, Maximum Likelihood, Exact estimators of moments, Percentile, ordinary and weighted Least squares estimators, and the Shrinkage method.

حول تقدير معلمة وموثوقية نموذج المتانة - الإجهاد، لتوزيع Power Rayleigh

عبد الرحمن احمد جاسم احمد *, فراس شاكر محمود بطاح قسم الرياضيات, كلية التربية للعلوم الصرفة, جامعة الانبار, الانبار, العراق

الخلاصة

تقدير نظام موثوقية واحد (R = P (Z> W) مع متانه Z معرضة لإجهاد W في نموذج المتانة والإجهاد الذي يتبع توزيع power Rayleigh هو موضوع هذا البحث. يقوم باقتراح وتوليد وفحص تقنيات ثمان طرق لتقدير معلمات التوزيع ودالة الموثوقية مثل [تقدير الاحتمالية القصوى (MLE) ، والتقدير الدقيق للحظة (EMME) ، والتقدير المئوي (PE) ، وتقدير المربعات الصغرى (LSE) ، وتقدير المربعات الصغرى الموزونة (WLSE) ، وثلاث طرق لتقدير الانكماش (sh2) (sh2) ((sh1) . تم استخدام معياري متوسط الخطأ التربيعي (MSE) ومتوسط النسبة المئوية للخطأ المطلق (mape) لمقارنة طرق التقدير الموزيات الدراسة. تم استخدام كل من المقارنة النظرية والمحاكاة وبيانات الحقيقية. وأظهرت النتائج في ظل هذا التوزيع افضلية الطرق المقترحة.

^{*}Email: ferashaker2001@uoanbar.edu.iq

1. Introduction

The Rayleigh distribution is recognized as a lifetime distribution that is effective. Rayleigh was the first one who used it in 1980 in communication theory, physical science, engineering and medical imaging. It is utilized as a model. In aircraft, the authors [6] used this distribution to compute the lifetime of components that are dependent on their age, like resistors, transformers and capacitors. The stress-strength (S.S) model is utilized in a variety of engineering and scientific applications. The Rayleigh distribution with the transformation of the random variable $z = s^{\frac{1}{k}}$ yields the two-parameters power Rayleigh distribution PR(3,k) [2]. The probability density function (P.D.F.) of the PR(3,k), the cumulative function (CDF), the reliability function (R) , the cumulative function(CDF), the reliability function(R) and the Hazard(H) are given as follows:

$$f(z;k;g) = \frac{k}{g^2} z^{2k-1} \exp\left(-\frac{z^{2k}}{2g^2}\right); z > 0, k > 0, g > 0,$$
(1)

$$F(z; k; g) = = 1 - exp\left(-\frac{z^{2k}}{2g^2}\right); z > 0, k > 0, g > 0 \quad ,$$
(2)

$$R(z; k; g) = 1 - F(z; k, g) = exp\left(-\frac{z^{2k}}{2g^2}\right); z > 0, k > 0, g > 0 , \qquad (3)$$

$$H(z;k;g) = \frac{f(z;k,g)}{1 - F(z;k,g)} = \frac{k}{g^2} z^{2k-1} .$$
(4)

Where k is the shape parameter and \mathfrak{z} is the scale parameter. The rest of the paper is organized as follows: In Section 2, we provide the single reliability system PR(\mathfrak{z},k) in the Stress-Strength model. We also derived the eight estimation methods. The numerical studies (simulation and real data) are presented in Sections 3 and 4. Finally, the conclusions and discussions appear in Section 5.

2. Reliability of the Systems for PR Stress-Strength Models

Let Z be the strength and W be the stress random variable independent and each other by $PR(\mathfrak{z},k_1) \text{ and } PR(\mathfrak{z},k_2) \text{ respectively, with two different parameters when } \mathcal{G} = \frac{1}{\mathfrak{z}^2} \text{ . Then}$ $R = \int_0^\infty \int_0^z f(w)f(z)dwdz = 1 - \int_0^\infty \mathcal{G}k1z^{2k_1-1}\exp\left(-\frac{\mathcal{G}}{2}z^{2k_1}\right)\exp\left(-\frac{\mathcal{G}}{2}z^{2k_2}\right)dz$ $= 1 - \sum_{r=0}^\infty \frac{-1^r C}{r!} \Gamma \frac{k_2}{k_1}r + 1.$ (5) Where $C = \left[\frac{\mathcal{G}}{2}\left(\frac{2}{\mathcal{G}}\right)^{\frac{k_2}{k_1}}\right].$

2.1 Maximum Likelihood Estimator (MLE)[3]

The MLE carefully estimates the parameters of an entire sample power Rayleigh distribution. Let $z_1, z_2, ..., z_{n1}$ be a random sample for PR(\mathfrak{z} , k). When \mathfrak{z} is known and the shape parameter k is unknown then the likelihood function $f(z_i; k; \mathfrak{z})$ in equation (2) is

$$L = \prod_{i=1}^{n1} f(z_i; k; g)$$
$$= \prod_{i=1}^{n1} \frac{k}{g^2} z^{2k-1} \exp\left(-\frac{z^{2k}}{2g^2}\right)$$

Taking the logarithm of both sides, then k_1

$$\ln l = n \ln k_1 - 2n \ln z + (2k_1 - 1) \sum_{i=1}^n \ln z_i - \frac{1}{2z^2} \sum_{i=1}^n (z_i)^{2Z_1}$$
(6)

The partial derivative of equation (6) with regard to k_1 and the equivalence of the results to zero then we get

$$\hat{k}_{1_{MLE}} = \frac{2\mathfrak{z}^2 n}{\sum_{i=1}^n (zi)^{2k_{10}} \ln(zi) - 4\mathfrak{z}^2 \sum_{i=1}^n \ln(zi)}$$
(7)

In the same way, let $w_1, w_2, ..., w_{n2}$ be a random sample from the stress w which is distributed as power Rayleigh distribution when z is known and shape parameter k_2 unknown then the likelihood function $f(w_i; k_2; z)$ in equation (2) is done, then the MLE method is presented by

$$\hat{k}_{2_{MLE}} = \frac{2g^2m}{\sum_{i=1}^{m} (wi)^{2k^2 \ 0} \ \ln(wi) - 4g^2 \sum_{i=1}^{m} \ln(wi)}$$
(8)

Where n and m are the size of Z and W samples, respectively. Now we substitute equations (7) and (8) into equation (5) we obtain.

$$\hat{R}_{MLE} = 1 - \sum_{r=0}^{\infty} \frac{(-1)^r C_{MLE}}{r!} \Gamma\left(\frac{\hat{k}_{2_{MLE}} r + 1}{\hat{k}_{1_{MLE}}}\right).$$

$$= \left[\frac{g}{2} \left(\frac{2}{c}\right)^{\frac{k2MLE}{k1MLE}}\right].$$
(9)

Where, $C_{MLE} = \left[\frac{g}{2} \left(\frac{2}{g}\right)^{\frac{k2MLI}{k1MLI}}\right]$

2.2 The Exact Estimators of Moments Method (EMME)[11]

We provide the expectation and variance of the power Rayleigh distribution as follows:

$$E(z) = (2^{\frac{1}{2k}}) \left(\frac{1}{z^2}\right)^{\frac{-1}{2k}} \Gamma(1 + \frac{1}{2k})$$
(10)

$$\operatorname{Var} = \frac{\left(2^{\frac{1}{k}}\right)\left(\frac{1}{z^{2}}\right)^{\frac{-1}{k}}\left[-k\,\Gamma\left(1+\frac{1}{2k}\right)^{2}+\Gamma\left(\frac{1}{k}\right)\right]}{k} \tag{11}$$

And then the coefficient of variation is given by

$$cv = \frac{\sqrt{Var}}{E(z)} = \frac{\sqrt{\frac{\left[\frac{1}{(2^{k})}(\frac{1}{3^{2}})^{\frac{-1}{k}}\left[-k\Gamma(1+\frac{1}{2k})^{2}+\Gamma(\frac{1}{k})\right]}{k}}{\left[\frac{1}{(2^{\frac{1}{2^{k}}})(\frac{1}{3^{2}})^{\frac{-1}{2^{k}}}\Gamma(1+\frac{1}{2^{\frac{1}{2^{k}}}})}\right]}$$
(12)

$$\hat{k}_{1_{EMME}} = \frac{\sqrt{\frac{\left(2^{\frac{1}{k}}\right)\left(\frac{1}{3^{2}}\right)^{\frac{-1}{k}}\left[-k\Gamma\left(1+\frac{1}{2k}\right)^{2}+\Gamma\left(\frac{1}{k}\right)\right]}{k}}{\left(2^{\frac{1}{2k}}\right)\left(\frac{1}{3^{2}}\right)^{\frac{-1}{2k}}\Gamma\left(1+\frac{1}{2k}\right)}}$$

$$\hat{k}_{1_{EMME}} = \frac{\left(2^{\frac{1}{k_{01}}}\right)\left(\frac{1}{3^{2}}\right)^{-\frac{1}{k_{01}}}\left[-k\Gamma\left(1+\frac{1}{k_{01}}\right)^{2}+\Gamma\left(\frac{1}{k}\right)\right]\left[\left(\sum_{i=1}^{n}\frac{z_{i}}{n}\right)^{2}\right]}{\sum_{1}^{n}\frac{(z\mathbb{B}-\overline{z})^{2}}{(n-1)}\left[\left(2^{\frac{1}{2k_{01}}}\right)\left(\frac{1}{3^{2}}\right)^{-\frac{1}{k_{01}}}\Gamma\left(1+\frac{1}{2k_{01}}\right)\right]^{2}}}$$
(13)

where $s^2 = \sum_{1}^{n} \frac{(z^i - \bar{z})^2}{(n-1)}$ and $\bar{y} = \sum_{i=1}^{n} \frac{z_i}{n}$ and $k_{o2} = k_{o2} = k + \epsilon$ and with respect to W, we obtain

$$\hat{k}_{2_{EMME}} = \frac{\left(2^{\frac{1}{k_{02}}}\right)\left(\frac{1}{3^2}\right)^{-\frac{1}{k_{02}}}\left[-k\,\Gamma\left(1+\frac{1}{k_{02}}\right)^2+\Gamma\left(\frac{1}{k}\right)\right]\left[\left(\sum_{i=1}^{n}\frac{wi}{n}\right)^2\right]}{\sum_{1}^{n}\frac{(w\mathbb{Z}-\bar{w})^2}{(n-1)}\left[\left(2^{\frac{1}{2k_{02}}}\left(\frac{1}{3^2}\right)^{-\frac{1}{k_{02}}}\Gamma\left(1+\frac{1}{2k_{02}}\right)\right]^2}\right]}$$
(14)

From the equation (12) and (13) in (5) we obtain.

$$\hat{R}_{EMME} = 1 - \sum_{r=0}^{\infty} \frac{(-1)^r C_{EMME}}{r!} \Gamma\left(\frac{\hat{k}_{2_{EMME}} r + 1}{\hat{k}_{1_{EMME}}}\right)$$
Where $C_{EMME} = \left[\frac{g}{2} \left(\frac{2}{g}\right)^{\frac{k2EMME}{k1EMME}}\right].$
(15)

2.3 The Percentile Estimator (PE)

Let $F(z_i, z_i, k_1)$ and $F(w_i, z_i, k_2)$ be two c. d. f. for the random variables of the strength and the stress, respectively.

$$s_{1} = \sum_{i=1}^{n} (F(zi) - qi)^{2}$$

$$s_{1} = \sum_{j=1}^{m} (F(wj) - qj)^{2}$$
(16)
(17)

Where, $qi = \frac{i}{n+1}$, i=1,2,3,...,n, and $qj = \frac{j}{m+1}$, j=1,2,3,... represent the expected values of F(zi) and F(wi), respectively [7]. From equation (2) we obtain

$$s_{1} = \sum_{i=1}^{n} (F(zi) - qi)^{2}$$

$$s_{1} = \sum_{i=1}^{n} [2k \ 1 \ln z - \ln(-2g^{2} \ln(1 - qi))]^{2}$$

$$\frac{ds_{1}}{dk_{1}} = 2\sum_{i=1}^{n} 2\ln z \ [k1 \ \ln z - \ln(-2g^{2} \ln(1 - qi))]^{1}$$

$$\hat{k}_{1pE} = \frac{\sum_{i=1}^{n} [\ln(-2g^{2} \ln(1 - qi))]}{2\sum_{i=1}^{n} (\ln z)^{2}}$$
(18)

Let W_1 , W_2 , W_3 , ..., W_m be a random sample of size m from the strength w which is distributed as PR $(3, k_2)$ with unknown shape parameter k_2 . We can obtain the following PE estimators:

$$\hat{k}_{2pE} = \frac{\sum_{i=1}^{n} [\ln(-2g^2 \ln(1-qi))]}{2\sum_{i=1}^{n} (\ln w)^2}$$
(19)

We substitute equation (18) and (19) into equation (5) we obtain.

$$\hat{R}_{PE} = 1 - \sum_{r=0}^{\infty} \frac{(-1)^r C_{pE}}{r!} \Gamma\left(\frac{\hat{k}_{2pE} r + 1}{\hat{k}_{1pE}}\right).$$

$$, C_{pE} = \left[\frac{g}{2} \left(\frac{2}{c}\right)^{\frac{k2pE}{k1pE}}\right].$$
(20)

Where `G

2.4 The Least Squares Estimator Method (LSE).

By minimizing the sum of square error between the value and its predicted value, least squares technique estimators can be created. The LS approach is frequently used to fit models and solve mathematical and engineering issues, in particular, in linear and non-linear regression [5].

$$s = \sum_{i=1}^{n} (\in i)^2$$
 when $\in i = (wi - z - \beta zi)$,

n

$$s = \sum_{i=1}^{n} (wi - g - \beta zi)^2,$$
(21)

$$\sum_{1}^{n} wi = ng + \beta \sum_{i=1}^{n} zi, \qquad (22)$$

$$\sum_{i}^{n} \text{wizi} = g \sum_{i=1}^{n} zi - \beta \sum_{i=n}^{n} (zi)^{2} .$$
(23)

Now, we solve the two equations (24) and (25) so we get

$$\hat{\beta}_{LS} = \frac{n \sum_{i=1}^{n} zi \, wi - \sum_{i=1}^{n} zi \, \sum_{i=1}^{n} wi}{n \, \sum_{i=1}^{n} (zi)^2 - (\sum_{i=1}^{n} zi)^2}$$
(24)

where Zi is the PR distribution's strength random variable with sample size n, and W is the PR distribution's stress random variable with sample size m. A distribution function is derived (CDF) we obtain.

$$1 - \exp(-\frac{zi^{2k}}{2z^2}) = F(zi)$$

F(zi)] + ln[2z²]. (25)

 $\ln(zi^{2k}) = ln[-ln(1 - F(z) + F(z))]$ From the equation (25) we get

wi = ln(zi),
$$a = \frac{\ln(23^2)}{2k}$$
, $b = \frac{1}{k}$, zi = $\frac{\ln[-\ln(1 - F(zi))]}{2}$ (26)

Now from equation (26), the LS method for the shape parameter k can get the LS estimators of \hat{k}_{1LS} is presented by:

$$\hat{k}_{1LS} = \frac{n\sum_{i=1}^{n} \left[\frac{\ln[-\ln(1-F(zi))]}{2}\right]^2 - \left(\sum_{i=1}^{n} \left[\frac{\ln[-\ln(1-F(zi))]}{2}\right]\right)^2}{n\sum_{i=1}^{n} \left[\frac{\ln[-\ln(1-F(zi))]}{2}\right] \ln(zi) - \sum_{i=1}^{n} \left[\frac{\ln[-\ln(1-F(zi))]}{2}\right] \sum_{i=1}^{n} \ln(zi)} \quad i = 1, 2, 3 \dots n$$
(27)

And

$$\hat{k}_{2LS} = \frac{m \sum_{i=1}^{m} [\frac{\ln[-\ln(1-F(wi))}{2}]^2 - (\sum_{i=1}^{m} [\frac{\ln[-\ln(1-F(wi))}{2}])^2}{m \sum_{i=1}^{m} [\frac{\ln[-\ln(1-F(wi))}{2}] \ln(wi) - \sum_{i=1}^{m} [\frac{\ln[-\ln(1-F(wi))}{2}] \sum_{i=1}^{n} \ln(wi)}{2} \qquad i = 1,2,3 \dots m$$
(28)

We substitute equations (27)and (28)into equation (5) we obtain.

$$\hat{R}_{LS} = 1 - \sum_{r=0}^{\infty} \frac{(-1)^{r} C_{LS}}{r!} \Gamma\left(\frac{\hat{k}_{2LS} r + 1}{\hat{k}_{1LS}}\right).$$

$$_{S} = \left[\frac{\mathcal{G}}{2} \left(\frac{2}{G}\right)^{\frac{k_{2LS}}{k_{1LS}}}\right].$$
(29)

Where $C_{LS} = \left[\frac{9}{2} \left(\frac{2}{g}\right)^{\overline{k_1 LS}}\right]$

2.5 Weighted least squares (LSE) estimators

The weighted least squares estimators of k and k_2 are \hat{k}_{2WLSE} and \hat{k}_{2WLSE} , respectively. They can be obtained by minimizing from the equation as follows:

$$s_{1} = \sum_{i=1}^{n} WS[(F(zi) - qi)^{2}].$$
(30)
Where Ws = $\frac{1}{var(F(zi))} = \frac{(n+1)^{2}(n+2)}{(j(n-j+1))}$ and $qi = \frac{i}{n+1}$, i=1,2,3....n, then we get

$$\hat{k}_{1 \, WLSE} = \left[\frac{\sum_{i=1}^{n} ws[\ln(-23^{2}\ln(1-qi))]}{2\sum_{i=1}^{n} ws(\ln z)^{2}} \right]$$
(31)

$$\hat{k}_{2WLSE} = \frac{\sum_{i=1}^{n} ws[\ln(-2g^2\ln(1-qi))]}{2\sum_{i=1}^{n} ws(\ln w)^2}$$
(32)

We substitute equations (32)and (33)into equation (10) we obtain

$$\hat{R}_{1_{WLSE}}$$

$$= 1 - \sum_{r=0}^{\infty} \frac{(-1)^r C_{WLSE}}{r!} \Gamma\left(\frac{\hat{k}_{2WLSE} r + 1}{\hat{k}_{1WLSE}}\right)$$
Where $C_{WLSE} = \left[\frac{g}{2}\left(\frac{2}{g}\right)^{\frac{k_2WLSE}{k_1WLSE}}\right].$
(33)

2.6 The Shrinkage Estimator (Sh) [4].

The shrinkage estimation method can be thought of as a Bayesian strategy that relies on prior knowledge. Thompson had introduced the main arguments for utilizing previous estimating [4]. The parameter was utilized as a starting value k_0 where $[k_0 = k \mp \epsilon], \epsilon = 0.001$ from the past in the shrinkage estimation method, and the normal estimator(\hat{k}_{MLE}) was employed to them by shrinkage weight factor $\Omega(\hat{k})$, $0 \le \Omega$ (k) ≤ 1 , which can be written as:

$$\hat{k}_{sh} = \Omega\left(\hat{k}\right)k_{MLE} + \left(1 - \Omega\left(\hat{k}\right)\right)k_{0}.$$
(34)

2.6.1 The Shrinkage Weight function (Sh1) [9]

The weight shrinking function will be considered. In this subsection the function form is denoted by $\Omega(\hat{k}) = \left[\frac{\sin n}{n}\right]$, $0 \le \Omega(\hat{k}) \le 1$ where \hat{k} is the sample size and n is the number of participants. Taking the forms below as $\Omega(\hat{k}_1) = \left[\frac{\sin n}{n}\right]$ and $\Omega(\hat{k}_1) = \left[\frac{\sin m}{m}\right]$, $0 \le \Omega(\hat{k}_1) \le 1$, where n and m refer to the w and z sample sizes as a result, the shrinkage estimator employs the \hat{k}_1 and \hat{k}_2 shrinkage weight functions, which are specified in equation (34) that will be

$$\hat{k}_{1 \ sh1} = \left(\left[\frac{\sin n}{n} \right] \hat{K}_{1 \ MLE} + \left(1 - \left| \frac{\sin n}{n} \right| \right) k_{1_0} \right), \tag{35}$$

$$\hat{k}_{2 \ sh1} = \left(\left[\frac{\sin m}{m}\right] \hat{K}_{2 \ MLE} + \left(1 - \left|\frac{\sin m}{m}\right|\right) k_{2_0}\right).$$
(36)
We substitute equations (35) and (36) into equation (5) we obtain

We substitute equations (35)and (36)into equation (5) we obtain \hat{R}_{sh} .

$$= 1 - \sum_{r=0}^{\infty} \frac{(-1)^{r} C_{sh1}}{r!} \Gamma\left(\frac{\hat{k}_{2 \ sh1} \ r+1}{\hat{k}_{1 sh1}}\right).$$
Where $C_{sh1} = \left[\frac{g}{2} \left(\frac{2}{g}\right)^{\frac{k2sh1}{k1sh1}}\right].$
(37)

2.6.2 The Constant Shrinkage Estimate (Sh2). [9]

In constant shrinkage factor case, it can be assumed that $\Omega(\hat{k}) = 0.001$ $0 \le \Omega(\hat{k}) \le$ 1. To get the constant shrinkage estimators, we put into equation (34) \hat{k}_1 and k_2 as follows: $\hat{k}_{1_{sh2}} = (0.001) \hat{k}_{1_{MLE}} + (1 - (0.001)k_{1_0})$ (38)

And

$$\hat{k}_{1_{sh2}} = (0.001) \, \hat{k}_{1_{MLE}} + (1 - (0.001) \, k_{1_0}$$
(39)

from equations (38) and (39) are substituted into equation (5) we obtain.

$$= 1 - \sum_{r=0}^{\infty} \frac{(-1)^{r} C_{sh1}}{r!} \Gamma\left(\frac{\hat{k}_{2 \ sh2} \ r+1}{\hat{k}_{1 sh2}}\right).$$
(40)
Where $C_{sh2} = \left[\frac{g}{2} \left(\frac{2}{g}\right)^{\frac{k2 sh2}{k_{1 sh2}}}\right].$

2.6.3 The Shrinkage function (fSh)(sh3) [3]

We consider the shrinkage weight factor as a function of the sizes g and h in this situation such that $(\Omega(k_1) = e^{-g}) = \text{and } (\Omega(k_2) = e^{-h})$, where $(\Omega(\hat{k}) = 0 \le \Omega(\hat{k}) \le 1$. Therefore, the shrinkage estimator uses shrinkage function of k_1 and k_2 which is defined in equation (34) as follows:

$$\hat{k}_{1_{sh3}} = (e^{-g})\hat{k}_{1_{MLE}} + (1 - (e^{-g}))k_{1_0} , \qquad (41)$$

And

$$\hat{k}_{2_{sh3}} = (e^{-h})\hat{k}_{2_{MLE}} + (1 - (e^{-h}))k_{2_0}.$$
(42)

To get the shrinkage function estimator form (40) and (41) into equation (5) as follows:

$$\widehat{R}_{sh3} = 1 - \sum_{\substack{r=0\\r=0}}^{\infty} \frac{(-1)^{r} C_{sh3}}{r!} \Gamma\left(\frac{\widehat{k}_{2_{sh3}} r + 1}{\widehat{k}_{1_{sh3}}}\right),$$
where $C_{sh3} = \left[\frac{g}{2} \left(\frac{2}{g}\right)^{\frac{k_{2sh3}}{k_{1sh3}}}\right].$
(43)

3. Monte Carlo Simulation Study and it's Results

Simulation is a numerical technique of performing experiments on a computer while the Monte Carlo simulation is a computer experiment that involves random sampling of probability distributions. In order to verify the performance of the proposed estimation method that was introduced for estimating the single component reliability system, the Monte Carlo simulation was used. The proposed eight estimation methods are implemented using diverse samples (25, 50, 75, 100). Statistical results for each sample are based on bias, mean absolute percentage error and mean squared error criteria with 1000 replicates. Therefore, the following steps explain the Monte Carlo simulations for each model.

Step1: To find the performance, initialize and generate random samples that follow a continuous uniform distribution defined on the interval (0,1). Z (strength) and W(stress) as $g_1, g_2, ..., g_{n1}$ and $h_1, h_2, ..., h_{n2}$, respectively as follows U~ Uniform(0,1).

Step2: : Transform the above uniform random sample to a random samples of power Rayleigh distribution using the cumulative distribution function (cdf) as $F(z,3,k) = [1 - \exp(-\frac{z^{2k}}{23^2})]$ then $Z_i = ln(1 - ui)^{\frac{-23^2}{2k}}$, for i = 1, 2, ..., n and $Z_j = ln(1 - sj)^{\frac{-23^2}{2k}}$, for j = 1, 2, ..., n m where (u, and s) are random variables of uniform (0,1).

Step 3: The z is considered the known parameter as the mean of the sample and k is considered as the unknown parameter. The MLE estimators $\hat{k}_{1_{MLE}}$ and $\hat{k}_{2_{MLE}}$ have been calculated respectively from equations (7) and (8).

Step 4: The exact estimators $\hat{k}_{1_{EMME}}$ and $\hat{k}_{2_{EMME}}$ have been calculated from equations (13) and (14), respectively.

Step 5: The percentile estimator, \hat{k}_{1pE} and \hat{k}_{2pE} have been calculated from equations (18) and (19), respectively.

Step 6: The Least Squares Estimator, \hat{k}_{1LS} and \hat{k}_{2LS} have been calculated from equations (27) and (28), respectively.

Step 7: The weighted least squares estimators $\hat{k}_{1 WLSE}$ and $\hat{k}_{2 WLSE}$ have been calculated from equations (31) and (32), respectively.

Step 8: The Shrinkage Estimators (Sh1), (Sh2) and (Sh3) have been calculated with (\hat{k}_{1sh1} , \hat{k}_{2sh1}), (\hat{k}_{1sh2} , \hat{k}_{2sh2}) and (\hat{k}_{1sh3} , \hat{k}_{2sh3}) from equations (35), (36),(38), (39), (41) and(42), respectively.

Step 9: The estimated reliability of stress – strength model of different types of the estimation methods such as \hat{R}_{MLE} , \hat{R}_{EMME} , \hat{R}_{PE} , \hat{R}_{LS} , $\hat{R}_{1_{WLSE}}$, \hat{R}_{sh_1} , \hat{R}_{sh_2} and \hat{R}_{sh_3} have been calculated from equations (9), (15), (20), (29), (33), (37), (40) and (43), respectively.

The results in Tables 1, 3 and 5 explain the reliability of estimation ,while the results in Tables 2, 4 and 6 show that the comparison between these methods when the criteria of biased MSE and MAPE are used. However, all estimators depend on the values of the samples size.

4. Real Data analysis [1] [2].

In this part, we have tested all the results above from a real data, as shown below

1.312	1.314	1.479	1.552	1.700	1.803	1.861	1.865	1.944	1.958
1.966	1.997	2.006	2.021	2.027	2.055	2.063	2.098	2.140	2.179
2.224	2.240	2.253	2.270	2.272	2.274	2.301	2.301	2.359	2.382
2.382	2.426	2.434	2.435	2.478	2.490	2.511	2.514	2.535	2.554
2.566	2.570	2.586	2.629	2.633	2.642	2.648	2.684	2.697	2.726
2.770	2.773	2.800	2.809	2.818	2.821	2.848	2.880	2.809	2.818
2.821	2.848	2.880	2.954	3.012	3.067	3.084	3.090	3.096	3.128
3.233	3.433	3.585	3.585						

 Table 1: Data set 1 (gauge lengths of 20 mm) [12].

		- (8	8].				
1.901	2.132	2.203	2.228	2.257	2.350	2.361	2.396	2.397	2.445
2.454	2.474	2.518	2.522	2.525	2.532	2.575	2.614	2.616	2.618
2.624	2.659	2.675	2.738	2.740	2.856	2.917	2.928	2.937	2.937
2.977	2.996	3.030	3.125	3.139	3.145	3.220	3.223	3.235	3.243
3.264	3.272	3.294	3.332	3.346	3.377	3.408	3.435	3.493	3.501
3.537	3.554	3.562	3.628	3.852	3.871	3.886	3.971	4.024	4.027
4.225	4.395	5.020							

We investigate strength data, which was originally reported by Badar and Priest [1] and represent strength that is measured in the GPA of mono and flooded 1000 - carbon fiber. Single fibers are tested under pressure at gauge lengths of 20 mm (data set 1) and 10 mm (data set 2), with sample sizes n = 74 and m = 63, with $k_1 = 1$, $k_2 = 1.5$, and g = 1, respectively. The data is shown in Tables 1 and 2. Several authors have analysed these data sets such as Surles and Padgett [10], Neck and Kondo[8].

Table 3: The Reliabilit	y Estimates Whe	n R=(0.647505398	880016) z=4	k1=2	k2 = 3
	2	`	, ,		

n,m	R [^] _{Mle}	$R_{Pe}^{^{\wedge}}$	$R_{Ls}^{^{\wedge}}$	R^{\wedge}_{wLse}	$R_{Sh1}^{'}$	R [^] _{Sh2}	R [^] _{Sh3}	$R_{Emm}^{}$
25	0.91772068	0.96083582	0.96082535	0.96083586	0.96064672	0.96083676	0.96083383	0.96076235
,25	4078	531	939	907	457	083	455	89
25	0.91954470	0.96083613	0.96081854	0.96083632	0.96083497	0.96083388	0.96083383	0.96045326
,50	3319	999	002	328	118	904	455	747
25	0.91800949	0.96083603	0.96079746	0.96083634	0.96082517	0.96083439	0.96083383	0.96033296
,75	5434	705	721	074	036	743	455	804
25,10	0.91814947	0.96083426	0.96079285	0.96083476	0.96083588	0.96083392	0.96083383	0.96042327
0	7144	323	586	891	143	642	455	858
50,25	0.91604667 4749	0.96082591 014	0.96080337 469	0.96082488 437	0.95871044 682	0.96083601 428	0.96083383 455	0.96073807 078
50,50	0.94538788	0.96083232	0.96083405	0.96083163	0.96081733	0.96083441	0.96083383	0.96079696
	8656	629	904	747	383	764	455	410
50,75	0.92880408	0.96083614	0.96083692	0.96083575	0.96083139	0.96083286	0.96083383	0.96074764
	3745	017	064	987	780	723	455	039
50,10	0.92133892	0.96083702	0.96083588	0.96083680	0.95849497	0.96083251	0.96083383	0.96075433
0	4766	771	669	101	342	338	455	585
75,25	0.94110663	0.96082624	0.96080252	0.96082524	0.96082930	0.96083313	0.96083383	0.96078266
	4068	259	042	385	016	388	455	202
75,50	0.93017324	0.96083313	0.96083035	0.96083249	0.96079925	0.96083401	0.96083383	0.96082090
	4438	388	317	501	872	715	455	541
75,75	0.93/92411	0.96083230	0.96083311	0.96083163	0.96083523	0.96083384	0.96083383	0.96081448
75 10	1656	005	512	423	230	311	455	423
/5,10	0.91894991	0.96083642	0.96083703	0.96083609	0.92960657	0.95685903	0.96083383	0.96081224
0	3392	/13	403	235	310	202	455	392
100,2	0.91121743	0.90081881	0.900/888/	0.90081700	0.90083047	0.90083309	0.90085585	0.90005390
100 5	0.03082760	203	040	400	437	402	455	0.050
0	5862	586	0.90081448	0.90082009 872	295	600	455	452
100.7	0.92550034	0.96083298	0.96083385	0.96083235	0.96083575	0.96083428	0.96083383	0.96083416
5	9613	500	103	239	714	650	455	872
10.10	0.93087029	0.96083642	0.96083714	0.96083608	0.96083435	0.96083391	0.96083383	0.96083484
0	0645	775	781	271	916	704	455	499

Table 2: The Bias, MSE and MAPE of The Simulated Estimates When $R=(0.647505398880016) = 4 k_1=2, k_2=3$

n,m	-	R [^] _{Mle}	R_{Pe}^{\wedge}	R_{Ls}^{\wedge}	R^{\wedge}_{wLse}	$R_{Sh1}^{^{\prime}}$	$R_{Sh2}^{^{\prime}}$	R [^] _{Sh3}	$R_{Emm}^{^{\wedge}}$	Best
25 50	Bias Mse Mape	0.27203 930443 0.07404 382938 0.42013 441881	$\begin{array}{c} 0.31333\\ 074111\\ 0.098\\ 1761535\\ 4\\ 0.48390\\ 444566\end{array}$	0.31331 314114 0.09816 512480 0.48387 726448	0.31333 092440 0.09817 626840 0.48390 472874	0.31332 957230 0.09817 542088 0.48390 264057	0.31332 849016 0.09817 474274 0.48390 096932	0.31332 843567 0.09817 470860 0.48390 088517	0.31294 786859 0.09793 641135 0.48331 314168	MLE
25 100	BiasMse Mape	0.27064 407826 0.07325 154214 0.41797 964732	0.31332 886435 0.09817 497724 0.48390 154722	0.31328 745698 0.09814 903082 0.48383 759816	0.31332 937003 0.09817 529413 0.48390 232818	0.31333 048255 0.09817 599129 0.48390 404634	0.31332 852754 0.09817 476617 0.48390 102705	0.31332 843567 0.09817 470860 0.48390 088517	0.31291 787970 0.09791 764210 0.48326 682719	MLE
50 25	Bias Mse Mape	0.26854 127586 0.07221 379874 0.41473 210313	0.31332 051126 0.09816 974279 0.48388 864680	0.31329 797581 0.09815 562178 0.48385 384331	0.31331 948549 0.09816 910001 0.48388 706262	0.31120 504794 0.09685 075956 0.48062 154923	0.31333 061540 0.09817 607455 0.48390 425153	0.31332 843567 0.09817 470860 0.48390 088517	0.31323 267190 0.09811 827777 0.48375 298869	MLE
50 100	Bias Mse Mape	0.27383 352588 0.07506 142048 0.42290 539408	0.31333 162883 0.09817 670966 0.48390 581665	0.31333 048781 0.09817 599473 0.48390 405447	0.31333 140213 0.09817 656760 0.48390 546655	0.31098 957454 0.09671 854516 0.48028 877455	0.31332 711450 0.09817 388073 0.48389 884477	0.31332 843567 0.09817 470860 0.48390 088517	0.31324 893697 0.09812 489774 0.48377 810827	MLE

		0.29041	0.31332	0.31332	0.31332	0.31332	0.31332	0.31332	0.31330	
	Bioc	871277	690117	771624	623535	983342	844423	843567	908535	
75	Mao	0.08436	0.09817	0.09817	0.09817	0.09817	0.09817	0.09817	0.09816	MIE
75	Mana	677322	374709	425780	332986	558451	471396	470860	259478	MLL
	wrape	0.44851	0.48389	0.48389	0.48389	0.48390	0.48390	0.48390	0.48387	
		936876	851531	977410	748703	304383	089840	088517	100076	
		0.27144	0.31333	0.31333	0.31333	0.28210	0.30935	0.31332	0.31330	
	Diag	451451	102825	163515	069347	117422	363314	843567	684504	
75	Dias	0.07375	0.09817	0.09817	0.09817	0.07967	0.09571	0.09817	0.09816	MIE
100	Mana	931859	633327	671361	612347	099742	542797	470860	117976	MLE
	маре	0.41921	0.48390	0.48390	0.48390	0.43567	0.47776	0.48390	0.48386	
		583199	488912	582642	437209	385648	224520	088517	754084	
		0.26371	0.31331	0.31328	0.31331	0.31332	0.31332	0.31332	0.31314	
	Diag	203767	341395	347958	220598	507569	829594	843567	850745	
100	Dias	0.07105	0.09816	0.09814	0.09816	0.09817	0.09817	0.09817	0.09806	
25	Mana	030972	529887	654549	454200	260320	462104	470860	202803	MLE
	маре	0.40774	0.48387	0.48383	0.48387	0.48389	0.48390	0.48390	0.48362	
		032020	768579	145549	582022	569605	066938	088517	300607	
		0.28336	0.31333	0.31333	0.31333	0.31332	0.31332	0.31332	0.31332	
	Dias	489176	102887	174893	068383	896028	851816	843567	944611	
100	Blas	0.08034	0.09817	0.09817	0.09817	0.09817	0.09817	0.09817	0.09817	MIE
100	Mana	074442	633366	678490	611744	503735	476029	470860	534208	MLE
	маре	0.43762	0.48390	0.48390	0.48390	0.48390	0.48390	0.48390	0.48390	
		552753	489009	600213	435721	169537	101257	088517	244569	

Table 3:	The	Reliability	Estimates R=	(0.6250000)	_d =0.5	k1=1,k2=1	1
----------	-----	-------------	--------------	-------------	-------------------	-----------	---

n,m	$R^{}_{Mle}$	R_{Pe}^{\wedge}	R_{Ls}^{\wedge}	R^{\wedge}_{wLse}	R_{Sh1}	$R_{Sh2}^{'}$	R_{Sh3}	$R_{Emm}^{^{\wedge}}$
25,25	0.9632751	0.9605164	0.9615425	0.96044776	0.95832886	0.95833245	0.95833333	0.96402148
	894580	535011	244952	42596	50746	65609	33333	59800
25,50	0.9646982	0.9613107	0.9615969	0.96124452	0.95834023	0.95833457	0.95833333	0.96488372
	110320	743832	315392	80815	22564	06952	33333	86890
25,75	0.9666492	0.9619744	0.9626144	0.96191019	0.95835265	0.95833690	0.95833333	0.96803704
	799387	023797	842401	93239	03535	71819	33333	99740
25,100	0.9671321	0.9611393	0.9633961	0.96107257	0.95835002	0.95833636	0.95833333	0.96683358
	977184	751909	899733	13544	24911	25229	33333	23662
50,25	0.9574365	0.9584189	0.9570702	0.95834359	0.95831423	0.95832973	0.95833333	0.95767928
	304512	508555	630065	68856	83575	00119	33333	17742
50,50	0.9614959	0.9594511	0.9588112	0.95937920	0.95833540	0.95833371	0.95833333	0.96244723
	801882	895441	259377	56409	21257	37725	33333	91021
50,75	0.9612704	0.9602700	0.9597546	0.96020062	0.95833536	0.95833368	0.95833333	0.96117002
	892412	496275	171747	01297	25892	68983	33333	20272
50,100	0.9633530	0.9608041	0.9600595	0.96073637	0.95834974	0.95833639	0.95833333	0.96398706
	287616	459570	590516	58166	29544	86787	33333	99068
75,25	0.9557160	0.9595962	0.9547813	0.95952475	0.95830896	0.95832876	0.95833333	0.95545383
	869807	902239	981797	71426	10309	56505	33333	25627
75,50	0.9582302	0.9584149	0.9592008	0.95833957	0.95832355	0.95833148	0.95833333	0.95879816
	685781	134096	464563	04954	82060	04438	33333	46990
75,75	0.9604317	0.9593418	0.9585569	0.95926948	0.95833580	0.95833380	0.95833333	0.96077597
	041351	280276	969980	34859	81079	43226	33333	59284
75,100	0.9611982	0.9601936	0.9588827	0.96012394	0.95833804	0.95833419	0.95833333	0.96117087
	760728	713512	982951	30632	15409	51027	33333	32532
100,25	0.9533823	0.9578104	0.9561222	0.95773329	0.95830045	0.95832721	0.95833333	0.95362266
	522239	955934	720878	95649	61246	29750	33333	60497
100,50	0.9569480	0.9584764	0.9577448	0.95840129	0.95831848	0.95833055	0.95833333	0.95725218
	158910	243041	768214	83144	47121	49217	33333	83736
100,75	0.9586508	0.9585155	0.9585730	0.95844059	0.95832860	0.95833243	0.95833333	0.95866411
	041842	231017	266676	70599	43162	01113	33333	13119
100,100	0.9600726	0.9597260	0.9581070	0.95965497	0.95833643	0.95833393	0.95833333	0.96000728
	673937	967698	291697	94831	11377	99040	33333	36912

Table 4: The Bias, MSE and MAPE of The Simulated Estimates when R=(0.6250000) $_{\overline{0}}=0.5$ k1=1 ,k2=1

n,m		R [^] _{Mle}	$R_{Pe}^{^{\wedge}}$	R_{Ls}^{\wedge}	R^{\wedge}_{wLse}	$R_{Sh1}^{^{\wedge}}$	R_{Sh2}^{\wedge}	$R_{Sh3}^{}$	R_{Emm}^{\wedge}	Best
25 50	Bias Mse Map e	0.33969 821103 0.11539 951950 0.54351 713765	0.33631 077438 0.11310 748071 0.53809 723901	0.3365969 3153 0.1132995 8668 0.5385550 9046	0.3362445 2808 0.1130629 4236 0.5379912 4493	0.3333402 3225 0.1111157 1060 0.5333443 7161	0.333334570 69 0.111111936 02 0.5333355313 11	0.33333333 333 0.11111111 111 0.53333333 333	0.33988 372868 0.11552 366240 0.54381 396590	Sh3
25 100	Bias Mse Map e	0.34213 219771 0.11705 980650 0.54741 151634	0.33613 937519 0.11299 462457 0.53782 300030	0.3383961 8997 0.1145128 6543 0.5414339 0395	0.3360725 7135 0.1129497 5195 0.5377161 1416	0.3333500 2249 0.1111222 3755 0.5333600 3598	0.333336362 52 0.111113130 58 0.533338180 03	0.33333333 333 0.11111111 111 0.53333333 333	0.34183 358236 0.11685 142058 0.54693 373178	Sh3
50 25	Bias Mse Map e	0.33649 598018 0.11323 081718 0.53839 356830	0.33445 118954 0.11185 831665 0.53512 190327	0.3338112 2593 0.1114301 8760 0.5340979 6150	0.3343792 0564 0.1118101 7638 0.5350067 2902	0.3333354 0212 0.1111124 9035 0.5333366 4340	0.333333713 77 0.111111364 73 0.533333942 03	0.33333333 333 0.11111111 111 0.53333333 333	0.33744 723910 0.11387 289796 0.53991 558256	Sh3
50 100	Bias Mse Map e	0.33835 302876 0.11448 355553 0.54136 484601	0.33580 414595 0.11276 481921 0.53728 663353	0.3350595 5905 0.1122656 4632 0.5360952 9448	0.3357363 7581 0.1127193 1116 0.5371782 0130	0.3333497 4295 0.1111220 5119 0.5333595 8872	0.333336398 67 0.111113154 68 0.533338237 88	0.33333333 333 0.11111111 111 0.53333333 333	0.33898 706990 0.11491 324494 0.54237 931185	Sh3
75 75	Bias Mse Map e	0.33543 170413 0.11251 535484 0.53669 072661	0.33434 182802 0.11178 635054 0.53494 692484	0.3335569 9699 0.1112605 4313 0.5336911 9519	0.3342694 8348 0.1117379 9283 0.5348311 7357	0.3333358 0810 0.1111127 6098 0.5333372 9297	0.333333804 32 0.111111425 10 0.533334086 91	0.33333333 333 0.11111111 111 0.53333333 333	0.33577 597592 0.11274 590750 0.53724 156148	Sh3
75 100	Bias Mse Map e	0.33619 827607 0.11303 283377 0.53791 724171	0.33519 367135 0.11236 031747 0.53630 987416	0.3338827 9829 0.1114785 0878 0.5342124 7727	0.3351239 4306 0.1123136 1763 0.5361983 0890	0.3333380 4154 0.1111142 4997 0.5333408 6646	0.333334195 10 0.111111685 62 0.533334712 16	0.33333333 333 0.11111111 111 0.53333333 333	0.33617 087325 0.11301 409913 0.53787 339720	Sh3
100 25	Bias Mse Map e	0.32838 235222 0.10784 110344 0.52541 176355	0.33281 049559 0.11076 484333 0.53249 679294	0.3311222 7208 0.1096440 4045 0.5297956 3534	0.3327332 9956 0.1107134 7823 0.5323732 7930	0.3333004 5612 0.1110891 9424 0.5332807 2979	0.333327212 97 0.111107030 91 0.533323540 76	0.33333333 333 0.11111111 111 0.53333333 333	0.32862 266604 0.10799 730755 0.52579 626567	MLE
100 100	Bias Mse Map e	0.33365 080418 0.11132 463748 0.53384 128669	0.33351 552310 0.11123 295884 0.53362 483696	0.3335730 2666 0.1112711 1399 0.5337168 4266	0.3334405 9705 0.1111829 8876 0.5335049 5529	0.3333286 0431 0.1111079 5848 0.5333257 6690	0.333332430 11 0.111110508 96 0.533331888 17	0.33333333 333 0.11111111 111 0.53333333 333	0.33366 411131 0.11133 449545 0.53386 257809	Sh3

n,m	$R_{Mle}^{}$	R_{Pe}^{\wedge}	R_{Ls}^{\wedge}	R_{wLse}^{\wedge}	R_{Sh1}	$R_{Sh2}^{^{\prime}}$	R [^] _{Sh3}	R_{Emm}
25.25	0.9955527	0.98830771	0.98891538	0.98829400	0.98886221	0.98837376	0.988329764	0.98958864
25,25	95838	45136	57995	50072	01518	84996	4256	74004
25.50	0.9951611	0.98831314	0.98892668	0.98829944	0.98832873	0.98832722	0.988329764	0.98966092
23,30	07102	49841	64959	80485	30780	25134	4253	87063
25 75	0.9952068	0.98833325	0.98911847	0.98831960	0.98834764	0.98833249	0.988329764	0.99026856
23,13	66100	30672	18485	38887	38438	88370	4253	21166
25,10	0.9954245	0.98825894	0.98926746	0.98824511	0.98881339	0.98836434	0.988329764	0.99002497
0	34526	10227	24585	52399	85055	99761	4255	57944
50.25	0.9956278	0.98836101	0.98809617	0.98834742	0.99160338	0.99124789	0.988329764	0.98816849
50,25	08493	26927	98202	88662	50203	21415	4190	19299
50.50	0.9927887	0.98834419	0.98840998	0.98833057	0.98834267	0.98833217	0.988329764	0.98914964
50,50	09889	34368	52333	07320	87081	07703	4252	97521
50.75	0.9936218	0.98835498	0.98858295	0.98834139	0.98834373	0.98833232	0.988329764	0.98894182
50,75	86346	92837	47934	21102	19029	36577	4253	77385
50,10	0.9948308	0.98839582	0.98863930	0.98838232	0.98834976	0.98833307	0.988329764	0.98946200
0	27558	62920	03267	58159	92491	85770	4253	48330
75.25	0.9897517	0.98845386	0.98788148	0.98844050	0.98832521	0.98832892	0.988329764	0.98811417
15,25	69039	67678	62312	33004	12238	36429	4252	10484
75 50	0.9892397	0.98838141	0.98824611	0.98836788	0.98832229	0.98832834	0.988329764	0.98866451
15,50	22553	83605	21098	36658	15791	38730	4252	80631
75 75	0.9914644	0.98835693	0.98839788	0.98834334	0.98869869	0.98834103	0.988329764	0.98873167
10,10	07062	55648	08086	29741	80440	90771	4251	09344
75,10	0.9905294	0.98839018	0.98843367	0.98837667	0.98833209	0.98833018	0.988329764	0.98893162
0	73903	49304	15450	12179	42235	47721	4252	00804
100,2	0.9983056	0.98846063	0.98775068	0.98844728	0.98883564	0.98842864	0.988329764	0.98784484
5	37639	59864	45374	84759	98616	12439	4252	03923
100,5	0.9876318	0.98836009	0.98827595	0.98834651	0.98831935	0.98832780	0.988329764	0.98855823
0	15012	67839	02156	18032	16564	20013	4252	70178
100,7	0.9896175	0.98834803	0.98835455	0.98833442	0.98832846	0.98832952	0.988329764	0.98854834
5	61255	54993	92219	18842	59870	81064	4252	82704
100,1	0.9897361	0.98835507	0.98832127	0.98834148	0.98833014	0.98832983	0.988329764	0.98860062
00	56632	84098	03091	15463	39429	16777	4252	99337

Table 6: The Bias, MSE and MAPE of The Simulated Estimates When $R=(0.894906414692539)_{\overline{0}}=0.2$ k1=2,k2=1

n, m		R [^] _{Mle}	R_{Pe}^{\wedge}	R_{Ls}^{\wedge}	R^{\wedge}_{wLse}	$R_{Sh1}^{^{\prime}}$	$R_{Sh2}^{^{\prime}}$	R [^] _{Sh3}	R_{Emm}^{\wedge}	Best
2	Bia	0.1002546	0.0934067	0.0940202	0.0933930	0.0934223	0.0934208	0.0934233	0.0947545	WLS
5	S	9240	3029	7180	3335	1838	0782	4973	1401	
	Ms	0.0100523	0.0087248	0.0088398	0.0087222	0.0087277	0.0087274	0.0087279	0.0089785	
5	e	3603	3097	7318	7245	3119	4737	2227	6745	
0	Ma	0.1120281	0.1043759	0.1050615	0.1043606	0.1043933	0.1043917	0.1043945	0.1058820	
	ре	3027	7580	6874	7037	9449	0653	4695	3689	
2	Bia	0.1005181	0.0933525	0.0943610	0.0933387	0.0939069	0.0934579	0.0934233	0.0951185	WLS
5	s	1983	2633	4776	0054	8381	3528	4973	6110	
1	Ms	0.0101065	0.0087147	0.0089040	0.0087121	0.0088186	0.0087343	0.0087279	0.0090475	
0	e	3239	0849	4183	2740	6359	8631	2227	9468	
0	Ma	0.1123224	0.1043154	0.1054423	0.1042999	0.1049349	0.1044331	0.1043945	0.1062888	
	ре	9337	0639	6382	5697	7674	9407	4695	3595	
5	Bia	0.0978822	0.0934377	0.0935035	0.0934241	0.0934362	0.0934257	0.0934233	0.0942432	Sh3
0	s	9519	7874	7054	5603	6401	5607	4973	3505	
2	Ms	0.0095832	0.0087306	0.0087429	0.0087280	0.0087303	0.0087283	0.0087279	0.0088818	
5	e	9516	2155	2612	7600	3599	7191	2227	6756	
	Ma	0.1093771	0.1044106	0.1044841	0.1043954	0.1044089	0.1043972	0.1043945	0.1053107	
	ре	2993	7044	8852	4795	7783	3589	4695	1574	
5	Bia	0.0999244	0.0934894	0.0937328	0.0934759	0.0934433	0.0934266	0.0934233	0.0945555	Sh3
0	s	1286	1159	8563	1112	5455	6388	4973	9014	
1	Ms	0.0099858	0.0087402	0.0087858	0.0087377	0.0087316	0.0087285	0.0087279	0.0089408	
0	е	4502	7351	7748	4940	6058	4152	2227	0047	
0	Ma	0.1116590	0.1044683	0.1047404	0.1044532	0.1044169	0.1043982	0.1043945	0.1056597	
	pe	6426	6681	3329	8091	0105	5030	4695	5233	

7	Bia	0.0965579	0.0934505	0.0934914	0.0934369	0.0937922	0.0934346	0.0934233	0.0938252	Sh3
5	s	9237	2087	6611	2828	8335	2438	4973	5624	
7	Ms	0.0093290	0.0087330	0.0087406	0.0087304	0.0087975	0.0087300	0.0087279	0.0088031	
5	е	5372	0445	7128	6419	1862	2952	2227	9259	
	Ma	0.1078973	0.1044249	0.1044706	0.1044097	0.1048068	0.1044071	0.1043945	0.1048436	
	ре	0723	0894	6260	2010	0640	4565	4695	5147	
7	Bia	0.0956230	0.0934837	0.0935272	0.0934702	0.0934256	0.0934237	0.0934233	0.0940252	Sh3
5	S	5921	7023	5685	5652	7953	7007	4973	0538	
1	Ms	0.0091441	0.0087392	0.0087473	0.0087366	0.0087283	0.0087280	0.0087279	0.0088407	
0	е	9091	1684	5130	9040	5759	0081	2227	9503	
0	Ma	0.1068525	0.1044620	0.1045106	0.1044469	0.1043971	0.1043950	0.1043945	0.1050670	
	ре	7993	6296	5644	6226	5035	1666	4695	8170	
1	Bia	0.0927254	0.0934536	0.0933695	0.0934400	0.0934129	0.0934213	0.0934233	0.0936518	MLE
0	S	0032	8209	3552	9711	3696	8730	4973	2232	
0	Ms	0.0085983	0.0087335	0.0087178	0.0087310	0.0087259	0.0087275	0.0087279	0.0087707	
2	e	4678	9302	8047	5408	7680	5560	2227	4403	
5	Ma	0.1036146	0.1044284	0.1043344	0.1044132	0.1043829	0.1043923	0.1043945	0.1046498	
	ре	3366	4140	1306	6107	1136	5407	4695	5029	
1	Bia	0.0948297	0.0934486	0.0934148	0.0934350	0.0934237	0.0934234	0.0934233	0.0936942	LS
0	S	4194	6371	5561	6685	2925	1698	4973	1524	
0	Ms	0.0089928	0.0087326	0.0087263	0.0087301	0.0087279	0.0087279	0.0087279	0.0087786	
1	e	8582	5500	3987	1397	9319	3484	2227	1748	
0	Ma	0.1059660	0.1044228	0.1043850	0.1044076	0.1043949	0.1043946	0.1043945	0.1046972	
0	ре	9922	3369	5533	4008	7104	2210	4695	2163	

Table 7: The Bias, MSEs And MAPEs For The All Estimation Methods Using Real Data.

R=(0.2950107977) = 1 k1=1, k2=1.5											
n, m_		R^{\wedge}_{Mle}	R_{Pe}^{\wedge}	R_{Ls}^{\wedge}	$R_{wLse}^{^{\wedge}}$	$R_{Sh1}^{}$	$R_{Sh2}^{}$	$R_{Sh3}^{}$	$R_{Emm}^{^{\wedge}}$	Best	
74 63	R [^] Bia s Ms e Ma pe	0.9786532 3321 0.6836424 3545 0.4673669 7955 2.3173471 6370	0.9654478 9001 0.6704370 9225 0.4494858 9467 2.2725849 2688	0.7185398 5278 0.4235290 5502 0.1793768 6045 1.4356391 6386	0.9654195 7459 0.6704087 7683 0.4494479 2805 2.2724889 4590	0.9203317 2446 0.6253209 2670 0.3910262 6137 2.1196543 7011	0.9216479 3315 0.6266371 3539 0.3926740 9946 2.1241159 3120	0.9216130 9999 0.6266023 0223 0.3926304 4516 2.1239978 5701	0.9697383 0153 0.6747275 0377 0.4552572 0434 2.2871281 6241	LS	
	$R=(0.731308969808190)$ $\delta=1$ k1=1.5, k2=1										
74 63	R [^] Bia s Ms e Ma pe	0.9070741 1349 0.1757651 4368 0.0308933 8573 0.2403432 0778	0.9654478 9001 0.2341389 2020 0.0548210 3395 0.3201641 5752	0.9740090 5331 0.2427000 8350 0.0589033 3053 0.3318707 8721	0.9654195 7459 0.2341106 0478 0.0548077 7527 0.3201254 3869	0.9699676 4470 0.2386586 7489 0.0569579 6310 0.3263445 2023	$\begin{array}{c} 0.9701501\\ 4141\\ 0.2388411\\ 7160\\ 0.0570451\\ 0525\\ 0.3265940\\ 6825 \end{array}$	0.9701512 4827 0.2388422 7846 0.0570456 3398 0.3265955 8178	0.9403249 2227 0.2090159 5246 0.0436876 6838 0.2858107 3266	MLE	
				R=(0	.625000) _∂ =1	k1=1 , k2=	1				
74 63	R [^] Bia s Ms e Ma pe	0.9744522 3707 0.3494522 3707 0.1221168 6599 0.5591235 7932	0.9654478 9001 0.3404478 9001 0.1159047 6581 0.5447166 2402	0.9558859 6723 0.3308859 6723 0.1094855 2331 0.5294175 4758	0.9654195 7459 0.3404195 7459 0.1158854 8676 0.5446713 1934	0.9579605 4182 0.3329605 4182 0.1108627 2241 0.5327368 6691	0.9583390 0885 0.3333390 0885 0.1111148 9482 0.5333424 1416	0.9583333 3333 0.3333333 3333 0.1111111 1111	0.9609522 3809 0.3359522 3809 0.1128639 0627 0.5375235 8094	LS	

5.Conclusion

In Tables (1-6) for the random data, we conclude the following:

1- The value of MSE decreases with increasing sample size (n, m) for all the factors under study.

2- When the value of k decreases, the value of the estimated reliability decreases.

3 - When k1 < k2, the MLE method is the best possible.

4 - When k1 = k2, the (Sh3) method is the best possible

5- When k1 > k2, the estimation methods alternate with each other according to the sample size, but the best methods are (Sh3, MLE, LE, WLS, LS), respectively.

In Table (7) the practical example, we conclude the following:

- 1 When k1 > k2, MLE is the best possible method.
- 2 When k1 < k2 the (LS) method is the best possible.
- 3 When k1=k2, the LS method is the best it can be.

In general, the (LS) method is the best possible in the applied example.

In general, the Monte Carlo simulations are used to compare reliability estimates for small samples, with the MLE approach under k1 and k2 estimators providing the best results, and using three criteria (Bias, Mse, Mape).

6.Acknowledgements

We thank all the people and staff of Mathematical Department/ Education collage for pure Science/ Anbar University who helped us most in carrying out our research work.

References

- [1] Bader, M. and Priest, A. "Statistical Aspects of Fibre and Bundle Strength in Hybrid Composites," *Progress in Science and Engineering of Composites, ICCM-IV, Tokyo*, pp. 1129-1136, 1982.
- [2] Bhat, A.A.and Ahmad, S. P., "A New Generalization of Rayleigh Distribution: Properties and Applications," *Pakistan Journal of Statistics*, vol. 36, no. 3, pp. 225-250, 2020.
- [3] Dey, S., Dey, T. and Kundu, D., "Two-parameter Rayleigh distribution: Different methods of estimation," *American Journal of Mathematical and Management Sciences*, vol. 33, pp. 55-74, 2014.
- [4] Haddad, E., and Batah, F., "On Estimating Reliability of a Stress–Strength Model in Case of Rayleigh Pareto Distribution," *Iraqi Journal of Science*, vol. 62, no. 12, pp.4847-4858, 2021.
- [5] Hassan, A. and Basheikh, H., "Estimation of Reliability in Multicomponent Stress-strength Model Following Exponentiated Pareto Distribution," *The Egyptian Statistical Journal, Institute Of Statistical Studies & Research, Cairo University*, vol. 56, no. 2, pp. 82-95, 2012.
- [6] Iriarte, Y. A., Gómez, H. W., Varela, H. and Bolfarine, H., "Slashed Rayleigh distribution," *Revista Colombiana de Estadística*, vol. 38, no. 1, pp. 31-44, 2015.
- [7] Kao, J., "computer methods for estimating Weibull parameters in reliability studies," *transaction of IRE- Reliability and Quality control*, vol. 13, pp. 15-22, 1958.
- [8] Kundu, D. and Gupta, R., "Estimation of P(Y < X) for the generalized exponential distribution," *Metrika*, vol. 61, no. 3, pp 291–308, 2005.
- [9] Salman ,A and Hamad ,A. "estimating the shape parameter for power function distribution through shrinkage technique," *International Journal of science and research* , vol. 78, no. 96, pp.1316-1319, 2015.
- [10] Surles, J., and Padgett, W., " Inference for P(Y < X) in the Burr type X model," *Journal of Applied Statistical Sciences*, vol. 7, pp. 225–238, 1998.
- [11] Abid , salah." The fréchet stress-strength model"International Journal of Applied Mathematical Research," *International Journal of Applied Mathematical Research*, vol. 3, no. 3, pp. 207-213,2014.
- [12] Knndu, D. and Raqab, M. "*Estimation of* R=P(Y < X) *for three-parameter Weibull distribution,*" *Published by Elsevier, Statistics and Probability Letters*, vol. 79, no. 17, pp.1839-1846, 2009.