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Abstract  

     In this work, the mathematical modelling of peristaltic transport for 

incompressible Sutterby fluid through the cavity between coaxial tubes where the 

inner tube is fixed and the outer tube has sinusoidal rhythmic fluctuations along the 

channel’s walls is presented. Under the assumption of long wavelength and the low 

Reynolds number, the governing equations (motion, temperature, and concentration) 

are illustrated in cylindrical coordinates. The analytical solution for the temperature 

and concentration of the fluid flow is obtained using Mathematica 11.3, whereas the 

perturbation technique is employed to find the closed form of the velocity profile. 

The variation of the axial velocity, stream function, temperature, concentration, and 

heat transfer are graphically discussed under the impact of interesting involved 

parameters.  
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نبوب تحت تأثير المنظار الداخليأتيربي عبر و س مائعالنمذجة الرياضية للتدفق التمعجي ل  
 

  *حياة عادل علي ،نيران عمار

العلوم التطبيقية, الجامعة التكنولوجية, بغداد, العراققسم   
 

 الخلاصة
ط خلال اضغنقابل للاالغير تيربي و النمذجة الرياضية للنقل التمعجي لسائل س قديمت، تم في هذا العمل        

حيث يتم تثبيت الأنبوب الداخلي ويكون للأنبوب الخارجي تقلبات إيقاعية جيبية بالفجوة بين الأنابيب المحورية 
ضيح ، تم تو وجي الطويل وعدد رينولدز المنخفضعلى طول جدران القناة. في ظل افتراض الطول الم

 ةحلول التحليليثيات أسطوانية. تم الحصول على الالمعادلات الحاكمة )الحركة ودرجة الحرارة والتركيز( في إحدا
بينما تم استخدام تقنية الاضطراب للعثور  ،Mathematica 11.3باستخدام مائعتدفق الالحرارة وتركيز اللدرجة 

السرعة المحورية ووظيفة التدفق ودرجة الحرارة على الشكل المغلق لملف السرعة. تمت مناقشة اختلاف 
    .معلمات المعنية المثيرة للاهتماموالتركيز ونقل الحرارة بيانياً تحت تأثير ال

                                                                                                                                                                      

1. Introduction 

     The mechanism of peristalsis has gathered essential attention in our life due to its rapid 

increase, mostly encountered in engineering, scientific and medical aspects. Peristalsis assists 

in flowing through the channel because of the successive contraction and relaxation emerging 
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along the walls of the channel [1].This phenomenon facilitates the transport of many fluids in 

touch with the physiological organs, like the kidney, bladder, lymphatic vessels; the 

oesophagus tube; the gastrointestinal tract, etc.  The first theoretical study of peristalsis was 

given by Latham [2].While Shapiro et al. [3] and Jaffrin et al. [4] developed this study to 

include some practical applications. Recently, many investigations analyzed peristaltic 

transport, some listed in [5] [6] [7] [8]. 

 

     Functional relations or nonlinearity shear stress. Also, the variant in fluid viscosity 

recognized or identified the non-Newtonian fluid. Many industrial processes for non-

Newtonian fluids appear in formulations of pharmaceuticals, foodstuffs, cosmetics and 

toiletries, paints, etc. Considerable studies depend on non-Newtonian fluids. The peristaltic 

transport of Newtonian and non-Newtonian fluids concern of great interest to many 

researchers  [9] [10] [11] [12] [13] [14].An extensive exploration discussed the peristalsis 

mechanism for numerous non- Newtonian fluids [15].The first progress in the aforementioned 

consideration is illustrated by Raju and Devanathan [16]. An interesting non- Newtonian fluid 

modelled high polymer aqueous solutions called Sutterby fluid [17]. Khan et al. [18]. 

investigated the effect of homogeneous-heterogeneous reactions on the Sutterby fluid flow 

through a rotating disk. Hayat et al. [19]. investigated the Sutterby fluid radiative flow caused 

by a revolving disk with a chemical reaction and a changing thickness. While, Rao et al. [20] 

studied the flow, heat, and mass transfer of a Sutterby fluid bio fluid towards a stretching 

sheet saturated with a porous medium while taking viscous dissipation into account. Whereas, 

Mabood et al. [21] used the Stefan blowing and non-Fourier/Fick models to study the Sutterby 

material flow caused by a rotating stretchable disk. In 2017 Hayat et al. [22] examined the 

peristaltic flow of Sutterby fluid in a planar symmetric channel by employing the modified 

Darcy’s law for the porous medium effect. 

 

     The endoscope is an optical illumination system used to get an intense look into the body. 

An endoscope is a surgical device comprised of a thin, long, and flexible (or rigid) tube that 

involves a light and video camera at one end to show organs such as the throat or oesophagus, 

or any part of the human body needed to be looked for example the cystoscope (bladder), 

gastrointestinal endoscopes, arthroscope (joint), and bronchoscope (bronchi). For a medical 

diagnosis, an endoscope's impact on peristaltic motion is very significant as well as it has 

many clinical applications. It is a sensitive method for recognizing the causes of any 

complications in the peristaltic pumping of the fluid in human organs [1]. Ramesh and 

Devakar  [23] studied the biomedicine application impacts of an endoscope and heat transfer 

on the peristaltic transport of a couple of stress fluids. Whereas Hayat et al. [24] numerically 

solved the peristaltic activity of MHD flow of Williamson nanofluid saturating porous space 

taking into account that the inner tube is an endoscope. 

  

     There is no search available for the link between the endoscope and Sutterby fluid. In the 

current paper, we have focused on the influence of the endoscope on the Peristaltic Flow of 

Sutterby fluid. The flow equations of Sutterby fluid are modelled depending on the 

conservation of mass, movement, temperature, and concentration equations in the cylindrical 

coordinate system. A long wave number and low Reynolds number are taken into 

consideration to simplify the problem. The perturbation technique is used to solve the motion 

equations and find the last shape of the stream function. Finally, the effects of various 

parameters on velocity profile, temperature profile, Concentration profile, and heat transfer 

coefficients are graphically discussed. 
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2. Mathematical Formulation 

     The peristaltic transport of a non-Newtonian Sutterby model through a uniform channel is 

considered. The inner and outer concentric tubes formed the endoscope and peristaltic tubes, 

respectively. The cylindrical coordinate system is chosen and mannered in which 𝑍̃ coordinate 

is considered across the centerline of the tube and 𝑅̃ is across the radial tendency. The 

temperatures and the fluid concentration of the inner and outer tubes are 𝑇0, 𝐶0,  𝑇1, and 𝐶1 

respectively see Figure 1. 

  

     The mathematical model of the tube wall is defined as: 

𝑅̃1 =  𝑎1                                                                                                           (1)  

                                               

𝑅̃2 = 𝑎2 + 𝑏 𝐶𝑜𝑠 (
2𝜋

𝜆
(𝑍̃ − 𝑐𝑡̃))                                                                             (2)   

  

 
Figure 1: Geometry of channel 

 

      where  𝑎1 is the inner tube radius, 𝑎2 is the average radius of the outer tube at the inlet, 𝑏 

is the amplitude of the wave, λ is the wavelength, 𝑐 represents the velocity of the peristaltic 

wave and  t̃ is the time. Taking the above flow properties into account, the following 

equations govern the fluid flow in the laboratory frame of reference. 

The continuity equation has the form: 

 
𝜕𝑈̃

𝜕𝑅̃
+

𝑈̃

𝑅̃
+

𝜕𝑊̃

𝜕𝑍̃
= 0 ,                                                                                                        (3) 

 

and the momentum equations are  

𝜌 (
𝜕𝑈̃

𝜕𝑡̃
+ 𝑈̃

𝜕𝑈̃

𝜕𝑅̃
+ 𝑊̃

𝜕𝑈̃

𝜕𝑍̃
) = −

𝜕𝑃̃

𝜕𝑅̃
+

1

𝑅̃

𝜕

𝜕𝑅̃
(𝑅̃𝑆̃𝑅̃𝑅̃) +

𝜕

𝜕𝑍̃
(𝑆̃𝑅̃𝑍̃)  −

𝑆̃𝜃̃𝜃̃

𝑅̃
,                            (4) 

 

𝜌 (
𝜕𝑊̃

𝜕𝑡̃
+ 𝑈̃

𝜕𝑊̃

𝜕𝑅̃
+ 𝑊̃

𝜕𝑊̃

𝜕𝑍̃
) = −

𝜕𝑃̃

𝜕𝑍̃
+

1

𝑅̃

𝜕

𝜕𝑅̃
(𝑅̃𝑆̃𝑅̃𝑍̃) +

𝜕

𝜕𝑍̃
 (𝑆̃𝑍̃𝑍̃).                                   (5) 

 

Also, the energy equation has the form                                                                  

𝜌𝐶𝑝 (
𝜕𝑇̃

𝜕𝑡̃
+ 𝑈̃

𝜕𝑇̃

𝜕𝑅̃
+ 𝑊̃

𝜕𝑇̃

𝜕𝑍̃
) = 𝐾 (

𝜕2𝑇̃

𝜕𝑅̃2 +
𝜕2𝑇̃

𝜕𝑍̃2 +
1

𝑅̃
 
𝜕𝑇̃

𝜕𝑅̃
) +

𝐷𝑚 𝐾𝑇 

𝐶𝑠
(

𝜕2𝐶̃

𝜕𝑅̃2 +
𝜕2𝐶̃

𝜕𝑍̃2 +
1

𝑅̃
 
𝜕𝐶̃

𝜕𝑅̃
) −

1

𝑅̃

𝜕

𝜕𝑅̃
(𝑅̃ 𝑞𝑅̃ ) + 𝑄                                                                                                                       (6) 

where the Roseland approximation for radiation  𝑞𝑅̃  is given by [25] 

   𝑞𝑅̃ =
−4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑅̃
,                                                                                                           (7) 
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 𝜎∗ and 𝑘∗ are the Stefan-Boltzmann constant and Rosseland absorption coefficient 

approximation, respectively. Expanded 𝑇4 by using the Taylor series. Thus, by neglecting the 

higher-order terms as 

 

𝑇4 = 4𝑇0
3𝑇 − 3𝑇0

4.                                                                                        (8) 

 

Hence, Eq. (6) replaced into 

 

𝜌𝐶𝑝 (
𝜕𝑇̃

𝜕𝑡̃
+ 𝑈̃

𝜕𝑇̃

𝜕𝑅̃
+ 𝑊̃

𝜕𝑇̃

𝜕𝑍̃
) = 𝐾 (

𝜕2𝑇̃

𝜕𝑅̃2 +
𝜕2𝑇̃

𝜕𝑍̃2 +
1

𝑅̃
 
𝜕𝑇̃

𝜕𝑅̃
) +

𝐷𝑚 𝐾𝑇 

𝐶𝑠
(

𝜕2𝐶̃

𝜕𝑅̃2 +
𝜕2𝐶̃

𝜕𝑍̃2 +
1

𝑅̃
 
𝜕𝐶̃

𝜕𝑅̃
) −

                                                   
1

𝑅̃

𝜕

𝜕𝑅̃
(𝑅̃

−16𝑇0
3𝜎∗

3𝑘∗

𝜕𝑇

𝜕𝑅̃
) + 𝑄                                                               (9) 

The concentration equation is                                                                  

 

(
𝜕𝐶̃

𝜕𝑡̃
+ 𝑈̃

𝜕𝐶̃

𝜕𝑅̃
+ 𝑊̃

𝜕𝐶̃

𝜕𝑍̃
) = 𝐷𝑚 (

𝜕2

𝜕𝑅̃2 +
1

𝑅̃
 

𝜕

𝜕𝑅̃
+

𝜕2

𝜕𝑍̃2) 𝐶̃ +
𝐷𝑚 𝐾𝑇 

𝑇𝑚
(

𝜕2

𝜕𝑅̃2 +
1

𝑅̃
 

𝜕

𝜕𝑅̃
+

𝜕2

𝜕𝑍̃2) 𝑇̃                          (10

  

                                       

       Where 𝑈̃, 𝑊̃, 𝜌, 𝑇̃, 𝑃̃, 𝐶𝑝, 𝐾, 𝐶̃, 𝐷𝑚 , 𝐾𝑇,𝐶𝑠, 𝑄and  𝑇𝑚 are the fixed frame components of 

velocity, the fluid density, the temperature field, the pressure, the constant pressure specific 

heat, the electrical conductivity, the concentration field, Brownian diffusion coefficient, ratio 

of thermal diffusion, concentration susceptibility, generation/absorption parameter and  mean 

temperature, respectively.  The  S̃R̃R̃, S̃R̃Z̃ and S̃θ̃θ̃  are the extra stress tensor components. 

where the expression of extra stress tensor for a non-Newtonian Sutterby fluid is given by the 

relation [18]. 

 

𝑆̃𝑖𝑗 =
𝜇

2
 (

𝑠𝑖𝑛ℎ−1𝛽∗ 𝛾̇

𝛽∗𝛾̇
)

𝑚

𝐴 ̃                                                                            (11) 

𝐴 ̃ = 𝑔𝑟𝑎𝑑(𝑉) + (𝑔𝑟𝑎𝑑(𝑉))
𝑇
                                                                        (12) 

𝛾̇ = √
𝛱

2
 , 𝑤ℎ𝑒𝑟𝑒 𝛱 = 𝑡𝑟 [𝑔𝑟𝑎𝑑(𝑉) + (𝑔𝑟𝑎𝑑(𝑉))

𝑇
]

2

                                        (13) 

 

𝑆̃𝑖𝑗  is the extra stress tensor, 𝛽∗ and 𝑚 are the Sutterby fluid constants, 𝜇 is  the dynamic 

viscosity coefficient, A ̃ is the first Rivilin Ericksen tensor,  𝛾̇ is the shear rate and dots over 

the quantities indicate differentiation concerning time, and Π is the second invariant strain 

tensor. 

The dimensional mathematical form for the problem boundary conditions are  

 

   𝑊̃ = 0, 𝑈̃ = 0,   𝑎𝑡   𝑅̃1 , 𝑅̃2,                                                                         (14) 

[
𝑇̃ =  𝑇̃1 , 𝐶̃ =  𝐶̃1  𝑎𝑡  𝑅̃1   
𝑇̃ =  𝑇̃0 , 𝐶̃ =  𝐶̃0  𝑎𝑡  𝑅̃2 

]                                                                         (15) 

 

      Utilizing the following mathematical equations that relate to the fixed (𝑅̃, Z̃)and moving 

frames, the unsteady flow between the two tubes becomes steady in a wave frame (𝑟̃, z̃) 

moving with the same speed as a wave in the 𝑍̃ direction.  

 

𝑟̃ = 𝑅̃  , 𝑧̃ =  𝑍̃ − 𝑐𝑡̃ , 𝑢̃ = 𝑈̃   , 𝑤̃ = 𝑊̃ − 𝑐, 𝑝 = 𝑃̃     ,                                     (16)  
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        Introducing the following dimensionless transformations for facilitating the governing 

equations of the motion as follows [24] [25]: 

  

𝑟 =
𝑟̃

𝑎2
, 𝑧 =

𝑧̃

𝜆
 , 𝑢 =

𝑢̃

𝑐𝛿
 , 𝑤 =

𝑤̃

𝑐
 , 𝜃 =

𝑇̃ − 𝑇0

𝑇1 − 𝑇0
 , 𝑆̃𝑖𝑗  =

𝑎2

𝜇𝑐
𝑆̃𝑖𝑗  , 𝑃𝑟 =

𝜇𝑐𝜌

𝐾
, 𝑅𝑒 =

𝜌𝑐𝑎2

𝜇
,  

𝐵 =
𝑎2

2𝑄

𝑘(𝑇1−𝑇0)
, 𝐺𝑟 =

𝜌𝑔𝛼(𝑇1−𝑇0)𝑎2
2

𝜇𝑐
, 𝑟1 =

 𝑟̃1 

𝑎2
 , 𝑅𝑛 =

16 𝑇∞
3𝜎∗

3 𝑘∗𝐾
 , 𝑆𝑐 =  

𝜐 

𝐷𝑚 
 , 𝑆𝑟 =  

𝐷𝑚 𝐾𝑇 𝑇0

𝜐𝑇𝑚𝐶0
 , 𝐷𝑢 =

 
𝐷𝑚 𝐾𝑇 𝐶0

𝜇𝐶𝑃 𝐶𝑆𝑇0
 , 𝑃𝑟 =

𝜇𝐶𝑃 

𝐾
, 𝜂 =

𝐶̃−𝐶0

𝐶1−𝐶0
  ,𝜖 =

𝑏

𝑎2
 , 𝛼 =

𝑚𝑐2𝛽∗2

𝑎2
2                                                             (17) 

 

      Compensate Eq. (17) into equations (1)-(15), this leads to simplifying the equations into 

the following form 
𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕 𝑧
= 0                                                                      (18) 

 

       Adopting the assumptions of long-wavelength approximation and small Reynold’s 

number  that means  dropping terms of order δ and the higher Eqs. (15) -(18)  are simplified to 

 

𝑅𝑒 𝛿3 (𝑢
𝜕𝑢

𝜕𝑟
+ (𝑤 + 1)

𝜕𝑢

𝜕𝑧
 ) = −

𝜕𝑃

𝜕𝑟
+ 𝛿

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆𝑟𝑟) + 𝛿2 𝜕

𝜕𝑧
(𝑆𝑟𝑧) - 𝛿

𝑆𝜃𝜃

𝑟
,                              (19) 

𝑅𝑒 𝛿 (𝑢
𝜕𝑤

𝜕𝑟
+ (𝑤 + 1)

𝜕𝑤

𝜕𝑧
 ) = −

𝜕𝑃

𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆𝑟𝑧) + 𝛿

𝜕

𝜕𝑧
(𝑆𝑧𝑧),                                   (20) 

𝑅𝑒 𝑃𝑟𝛿 (𝑢
𝜕𝜃

𝜕𝑟
+ (𝑤 + 1)

𝜕𝜃

𝜕𝑧
 ) = (

𝜕2𝜃

𝜕𝑟2 + 𝛿2 𝜕2𝜃

𝜕𝑧2 +
1

𝑟
 
𝜕𝜃

𝜕𝑟
) + 𝐷𝑢𝑃𝑟 (

𝜕2𝜂

𝜕𝑟2 + 𝛿2 𝜕2𝜂

𝜕𝑧2 +
1

𝑟
 
𝜕𝜂

𝜕𝑟
) +

𝑅𝑛(
1

𝑟
 
𝜕𝜃

𝜕𝑟
+

𝜕2𝜃

𝜕𝑟2
) + 𝐵,                                                                                                               (21) 

𝑅𝑒𝛿 (𝑢
𝜕𝜂

𝜕𝑟
+ (𝑤 + 1)

𝜕𝜂

𝜕𝑧
 ) = (

𝜕2𝜂

𝜕𝑟2 +
1

𝑟
 
𝜕𝜂

𝜕𝑟
+ 𝛿2 𝜕2𝜂

𝜕𝑧2) + 𝑆𝑐𝑆𝑟 (
𝜕2𝜃

𝜕𝑟2 +
1

𝑟
 
𝜕𝜃

𝜕𝑟
+ 𝛿2 𝜕2𝜃

𝜕𝑧2),           (22) 

 

        where 𝑅𝑒 is the Reynolds number, 𝑢 and 𝑤 are the radials and axial velocity, 

respectively . While 𝛿 is the wave number, 𝜃 is temperature, 𝜂 is concentration,𝑃𝑟 is the 

Prandtl number, 𝐷𝑢 is the  Dufour number,  𝑅𝑛 is the radiation parameter, 𝑆𝑐 is the Schmidt 

number and 𝑆𝑟 is the Soret number. Adopting the assumption of long-wavelength 𝛿 ≪1 and 

low Reynolds number Eqs. (19)-(22) reduced to the forms 

 
𝜕𝑃

𝜕𝑟
= 0 ,                                                                                              (23) 

𝜕𝑃

𝜕𝑧
=

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆𝑟𝑧),                                                                            (24) 

(1 + 𝑅𝑛) (
𝜕2𝜃

𝜕𝑟2
+

1

𝑟
 
𝜕𝜃

𝜕𝑟
) + 𝐷𝑢𝑃𝑟 (

𝜕2𝜂

𝜕𝑟2
+

1

𝑟
 
𝜕𝜂

𝜕𝑟
) + 𝐵 = 0,                        (25) 

 
𝜕2𝜂

𝜕𝑟2 +
1

𝑟
 
𝜕𝜂

𝜕𝑟
+ 𝑆𝑟𝑆𝑐 (

𝜕2𝜃

𝜕𝑟2 +
1

𝑟
 
𝜕𝜃

𝜕𝑟
) = 0,                                                                      (26) 

The previous equations are combined with the dimensionless boundary conditions: 

 

𝑤 = −1 , 𝑢 = 0 ,   𝑎𝑡   𝑟1 = 𝛽,  𝑎𝑛𝑑   𝑟2 = 1 + 𝜖 𝑐𝑜𝑠(2𝜋𝑧)                              (27) 

[
𝜃 =  1, 𝜂 =  1                     𝑎𝑡   𝑟1 = 𝛽 

 
𝜃 =  0, 𝜂 =  0     𝑎𝑡      𝑟2 = 1 + 𝜖 𝑐𝑜𝑠(2𝜋𝑧)

]                                                (28) 

where 

𝑠𝑧𝑟 = 𝑠𝑟𝑧 =
1

𝑟
𝑤𝑟 −

𝛼

12
𝑤𝑟

3,and 𝑠𝑟𝑟 = 𝑠𝑧𝑧 = 0                                             (29)                       

Equation (23) reveals that the pressure field independent from 𝑟, i.e. 𝑝  is a function of 𝑧 only. 
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3. Solution of the problem 

3.1. Solution of Temperature and Concentration Equations 

     The system of equations (25), and (26) with the associated boundary conditions listed in 

equation (28) are solved with the help of MATHEMATIC program. The explicit expressions 

for the solutions of 𝜃 and 𝜂 ,respectively,  are given as follows:  

𝜃(𝑟) = (4𝐿𝑜𝑔(𝑟) + 𝐵𝑟1
2𝐿𝑜𝑔(𝑟) − 𝐵 𝑟2

2𝐿𝑜𝑔(𝑟) + 4𝑅𝑛𝐿𝑜𝑔(𝑟) − 4𝐷𝑢𝑃𝑟𝑆𝑐𝑆𝑟𝐿𝑜𝑔(𝑟) −
𝐵𝑟2𝐿𝑜𝑔(𝑟1) + 𝐵𝑟2

2𝐿𝑜𝑔(𝑟1) − 4𝐿𝑜𝑔(𝑟2) + 𝐵𝑟2𝐿𝑜𝑔(𝑟2) − 𝐵𝑟1
2𝐿𝑜𝑔(𝑟2) − 4𝑅𝑛𝐿𝑜𝑔(𝑟2) +

4𝐷𝑢𝑃𝑟𝑆𝑐𝑆𝑟𝐿𝑜𝑔(𝑟2))/(4(1 + 𝑅𝑛 − 𝐷𝑢𝑃𝑟𝑆𝑐𝑆𝑟)(𝐿𝑜𝑔(𝑟1) − 𝐿𝑜𝑔(𝑟2)))                              (30) 

𝜂(𝑟) = −((−4𝐿𝑜𝑔(𝑟) − 4𝑅𝑛𝐿𝑜𝑔(𝑟) + 4𝐷𝑢𝑃𝑟𝑆𝑐𝑆𝑟𝐿𝑜𝑔(𝑟) + 𝐵𝑟1
2𝑆𝑐𝑆𝑟𝐿𝑜𝑔(𝑟) −

𝐵𝑟2
2𝑆𝑐𝑆𝑟𝐿𝑜𝑔(𝑟) − 𝐵𝑟2𝑆𝑐𝑆𝑟𝐿𝑜𝑔(𝑟1) + 𝐵𝑟2

2𝑆𝑐𝑆𝑟𝐿𝑜𝑔(𝑟1) + 4𝐿𝑜𝑔(𝑟2) + 4𝑅𝑛𝐿𝑜𝑔(𝑟2) −
4𝐷𝑢𝑃𝑟𝑆𝑐𝑆𝑟𝐿𝑜𝑔(𝑟2) + 𝐵𝑟2𝑆𝑐𝑆𝑟𝐿𝑜𝑔(𝑟2) − 𝐵𝑟1

2𝑆𝑐𝑆𝑟𝐿𝑜𝑔(𝑟2))/(4(1 + 𝑅𝑛 −
𝐷𝑢𝑃𝑟𝑆𝑐𝑆𝑟)(𝐿𝑜𝑔(𝑟1) − 𝐿𝑜𝑔(𝑟2))))                                                                                      (31) 

 

3.2. Solution of motion Equation 

     It is difficult to obtain the exact solution of the nonlinear motion equation (24), we 

implement the perturbation method for small values of the  Sutterby parameter 𝛼 in the 

following form: 

𝑤 = 𝑤0 + 𝛼𝑤1 + 𝑂(𝛼2)                                                                                   (32) 

Substitute Eq. (32) into Eq. (24), and arranging in terms of the similar powers of 𝛼, we have 

the following systems: 

zeroth-order system of   𝛼0 as 
𝑑𝑝

𝑑𝑧
=

𝜕2𝑤0

𝜕𝑟2 + 0.5
𝜕𝑤0

𝜕𝑟
                                                                                               (33) 

associated with the boundary conditions 

𝑤0 = −1    𝑎𝑡   𝑟1 = 𝛽,  𝑎𝑛𝑑   𝑟2 = 1 + 𝜖 𝑐𝑜𝑠(2𝜋𝑧)                                         (34) 

and first-order system of   𝛼1 as 
𝜕2𝑤1

𝜕𝑟2 + 0.5
𝜕𝑤1

𝜕𝑟
−

1

12 𝑟
(

𝜕𝑤0

𝜕𝑟
)

3

−
1

4
(

𝜕𝑤0

𝜕𝑟
)

2 𝜕2𝑤0

𝜕𝑟2 = 0                                             (35) 

with the boundary conditions 

𝑤1 = 0    𝑎𝑡   𝑟1 = 𝛽,  𝑎𝑛𝑑   𝑟2 = 1 + 𝜖 𝑐𝑜𝑠(2𝜋𝑧).                (36)                                    

 

       By solving the above two systems using the Mathematica program, the analytic solution 

of 𝑤0 and 𝑤1will be found as follows: 

 

𝑤0(𝑟) = −
1

−ⅇ𝑟1 2⁄ +ⅇ  𝑟2 2⁄ 𝑒−𝑟 2⁄ (−𝑒
𝑟

2
+

𝑟1
2 + 𝑒

𝑟

2
+

 𝑟2
2 + 2 (

𝑑𝑝

𝑑𝑧
) 𝑒

𝑟

2
+

𝑟1
2 𝑟 − 2 (

𝑑𝑝

𝑑𝑧
) 𝑒

𝑟

2
+

 𝑟2
2 𝑟 −

2 (
𝑑𝑝

𝑑𝑧
) 𝑒

𝑟

2
+

𝑟1
2 𝑟1 + 2 (

𝑑𝑝

𝑑𝑧
) 𝑒

𝑟1
2

+
 𝑟2
2 𝑟1 + 2 (

𝑑𝑝

𝑑𝑧
) 𝑒

𝑟

2
+

 𝑟2
2  𝑟2 − 2 (

𝑑𝑝

𝑑𝑧
) 𝑒

𝑟1
2

+
 𝑟2
2  𝑟2)  

 𝑤1(𝑟) =
1

12(ⅇ𝑟1 2⁄ −ⅇ  𝑟2 2⁄ )
4 𝑒−3𝑟 2⁄ (−12 (

𝑑𝑝

𝑑𝑧
)

3

𝑒𝑟+2𝑟1+
 𝑟2
2 𝑟𝑟1 + 36 (

𝑑𝑝

𝑑𝑧
)

3

𝑒𝑟+
3𝑟1

2
+ 𝑟2𝑟𝑟1 −

36 (
𝑑𝑝

𝑑𝑧
)

3

𝑒𝑟+𝑟1+
3 𝑟2

2 𝑟𝑟1 + 12 (
𝑑𝑝

𝑑𝑧
)

3

𝑒𝑟+
𝑟1
2

+2 𝑟2𝑟𝑟1 + 12 (
𝑑𝑝

𝑑𝑧
)

3

𝑒𝑟+2𝑟1+
 𝑟2
2 𝑟1

2 −

24 (
𝑑𝑝

𝑑𝑧
)

3

𝑒𝑟+
3𝑟1

2
+ 𝑟2𝑟1

2 − 12 (
𝑑𝑝

𝑑𝑧
)

3

𝑒
𝑟

2
+2𝑟1+ 𝑟2𝑟1

2 + 12 (
𝑑𝑝

𝑑𝑧
)

3

𝑒𝑟+𝑟1+
3 𝑟2

2 𝑟1
2 + ⋯ +

24
𝑑𝑝

𝑑𝑧

3
𝑒𝑟+2𝑟1+

 𝑟2
2  𝑟2𝐿𝑜𝑔( 𝑟2) + 48 (

𝑑𝑝

𝑑𝑧
)

3

𝑒
3𝑟

2
+𝑟1+ 𝑟2  𝑟2𝐿𝑜𝑔( 𝑟2) −

48 (
𝑑𝑝

𝑑𝑧
)

3

𝑒𝑟+
3𝑟1

2
+ 𝑟2  𝑟2𝐿𝑜𝑔( 𝑟2) − 24 (

𝑑𝑝

𝑑𝑧
)

3

𝑒
3𝑟

2
+

𝑟1
2

+
3 𝑟2

2  𝑟2𝐿𝑜𝑔( 𝑟2) +

24 (
𝑑𝑝

𝑑𝑧
)

3

𝑒𝑟+𝑟1+
3 𝑟2

2  𝑟2𝐿𝑜𝑔( 𝑟2))  
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4. Graphical Discussion 

     In this section, we will examine the physical impact of various flow interesting parameters 

on velocity profile, temperature distribution, concentration field, heat transfer coefficient, and 

stream function. 

 

4.1. Velocity Profile 

     Figures 2-3   represent the velocity profile at different values of the physical parameters 

and variables. The plots elucidate that the behavior of the velocity profile is parabolic. 

Figures 2(a) and 2(b)  are plotted to describe the effect of variation of pressure gradient 
𝑑𝑝

𝑑𝑧
 and 

the Sutterby fluid parameter 𝛼  on the velocity profile. The figures revealed that the fluid 

velocity reduces for enhanced values of 
𝑑𝑝

𝑑𝑧
 and the parameter  . The influence of the radius 

ratio 𝛽 and amplitude ratio 𝜖 on velocity profile are plotted in Figures 3(a) and 3(b). It can be 

noticed that a rise in 𝛽  and 𝜖 lead to an increment in velocity profile.  

 (a)                                                                   (b) 

 

Figure2: Velocity curve for rising values of (a) gradient of pressure 
𝑑𝑝

𝑑𝑧
 (b) Sutterby fluid 

parameter 𝛼 and for fixed {𝜖 = 0.02, 𝑧 = 0.1, 𝛽 = 0.03}. 

(a)                                                                      (b) 

 
Figure 3: Velocity profile for different values of (a) endoscope radius ratio  𝛽  (b) Amplitude 

ratio  𝜖 and fixed values of parameters{𝑧 = 0.1, 𝛼 = 0.03}.   

 

4.2. Temperature Profile 

     Figures 4-6 display the behavior of the temperature profile for different magnitudes of the 

parameters (Rn, 𝛽, 𝜖, Du, Pr and Sc). It is clear from the plots that the temperature profile’s 

attitude is a concave down as well as the maximum values can be seen in the middle region of 

the channel.  Figures 4(a) and 4(b) recorded the graphical manner of temperature  (𝑟)  

against 𝑟, in these graphs the temperature  (𝑟) enhanced as radiation parameter 𝑅𝑛 rises, 

whereas two opposite influences are seen via ascending value of tube radius ratio parameter 

𝛽. The behaviors of the ratio amplitude parameter  𝜖, and the Dufour parameter 𝐷𝑢, on  (𝑟) 

https://www.hindawi.com/journals/jam/2014/367526/fig2/#a
https://www.hindawi.com/journals/jam/2014/367526/fig2/#b
https://www.hindawi.com/journals/jam/2014/367526/fig2/#a
https://www.hindawi.com/journals/jam/2014/367526/fig2/#b
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are recorded in Figures 5(a), and 5(b). It is noticed that an increment value of ratio amplitude 

parameter 𝜖 tends  (𝑟) profile to increase on the left side of the figure for (0 ≤ 𝑟 ≤ 1.2) 

whereas the profile’s behavior is reflected  into diminishing on the right side for (1.3 ≤ 𝑟 ≤
2.5), however, a reduction effect of 𝐷𝑢 on temperature profile along the channel length while 

a little increment in the central part of the channel is seen.  Similar influence for Prandtl 

number 𝑃𝑟 and the Schmidt number 𝑆𝑐 on temperature profile is indicated in Figures 6(a), 

and 6(b). 

 (a)                                                                  (b) 

 
Figure 4: Temperature distribution for ascending in  (a) Radiation parameter Rn, (b) radius 

ratio parameter𝛽, with the for fixed values of parameters{𝐵 = 2.85, 𝜖 = 0.1, 𝑧 = 0.6, 𝛽 =
1.2, 𝐷𝑢 = 0.8, 𝑃𝑟 = 1.2, 𝑆𝑐 = 1.1, 𝑆𝑟 = 1.5}. 

                 (a)                                                                          (b) 

 
Figure 5: Temperature distribution for ascending  of (a ) Amplitude ratio  𝜖 (b) Dufour 

number 𝐷𝑢  , and fixed {𝐵 = 2.85, 𝑅𝑛 = 1, 𝑧 = 0.6, 𝛽 = 1.2, 𝑃𝑟 = 1.2, 𝑆𝑐 = 1.1, 𝑆𝑟 = 1.5}. 

 

(a)                                                                          (b) 

 
Figure 6: Temperature distribution for ascending  of (a ) Prandtl number 𝑃𝑟  (b) Schmidt 

number 𝑆𝑐, and fixed {𝐵 = 2.85, Rn = 1, 𝑧 = 0.6, 𝛽 = 1.2, Du = 0.8, Pr = 1.2,1.1, Sr = 1.5}. 
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4.3. Concentration profile 
     The variation in concentration profile with the ascending values of the interesting physical 

parameters within its function is discussed in this subsection through Figures 7- 9. It is 

apparent from these plots that the maximum values for fluid concentration appear in the 

central part arising in a parabolic trajectory. Figures 7(a), 7(b), and 8(a) are plotted to report 

the impact of the parameters (Du, Pr, 𝑎𝑛𝑑 𝑆𝑐) on concentration profile 𝜂(𝑟).  An increase in 

Du, Pr, and 𝑆𝑐 cause concentration to increase as we move further toward the boundaries 

whereas a decrease in 𝜂(𝑟) profile is noticed further from the walls i.e. near the central. The 

concentration profile exhibit two opposite behavior via growing  𝛽 magnitude see Figure 8(b). 

It is identified in Figure 9(a) that on increasing the value of 𝑅𝑛, the concentration profile 

declines near the boundaries while little arises is seen near the central part of the channel. 

Figure 9(b) demonstrates an increase in 𝜂(𝑟) profile with a higher magnitude of non-

dimensional heat source parameter 𝐵. 

 

 (a)                                                                           (b) 

 
Figure 7: Concentration distribution with rise values of (a ) Dufour number 𝐷𝑢  (b) Prandtle 

number 𝑃𝑟, for fixed values of parameters {𝐵 = 2.85, Rn = 1, 𝑧 = 0.6, 𝛽 = 1.2, Du =
0.8, Sc = 1.2,1.1, Sr = 1.5}. 

 

 (a)                                                                         (b) 

 
Figure 8: 𝜂(𝑟) for ascending (a) Schmidt number Sc  (b) radius ratio parameter𝛽 and for fixed 

values of parameters {𝐵 = 2.85, Rn = 1, 𝑧 = 0.6, 𝜖 = 0.2, Du = 0.8, Sc = 1.2,1.1, Sr = 1.5}. 
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(a)                                                                      (b) 

 
Figure 9: concentration profile 𝜂(𝑟) for different values of (a) thermal radiative number 

Rn  (b) heat source parameter𝐵 and for fixed values of parameters {𝑝𝑟 = 1, β = 1, 𝑧 =
0.6, 𝜖 = 0.2, Du = 0.8, Sc = 1.2,1.1, Sr = 1.5}. 

 

4.4. Heat Transfer 

    Figures 10(a-d) elucidate the impact of the Dufour number Du, Soret number Sr, Prandtl 

number Pr, and radiation parameter Rn on the coefficient of heat transfer at the lower wall 

profile against the transverse axial 𝑧. These figures show an oscillatory behavior of H (z) via 

the flow of peristaltic waves along the channel wall. Figure 10(a) portrays the increasing 

function of the heat transfer coefficient due to arise in Rn value. However, Figures 10(b)-(d) 

show that the heat transfer rate reduced for ascending magnitude of Du, Sr, and Pr. 

(a)                                                                       (b) 

 
(c)                                                                 (d) 

 
Figure 10: Heat transfer coefficient  H (z) for different values of (a) Radiation parameter Rn 

(b) Dufour number Du (c) Soret parameter 𝑆𝑟 (d) Prandtl number 𝑃𝑟 and fixed parameter 

{𝐵 = 3.08, , 𝜖 = 0.1, 𝑟 = 0.4, 𝛽 = 0.3, Sc = 1.91, }. 

 

4.5. Trapping phenomenon 

     An attractive phenomenon in peristaltic motion is trapping, where the streamlines will split 

to trap a bolus of fluid moving along the channel walls. We take the absolute value of the 

stream function to solve the equation of 𝜓. Figures 11-14 highlight the impact of Pressure 
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gradient 
𝑑𝑝

𝑑𝑧
 , Sutterby fluid parameter 𝛼 , ratio amplitude parameter  𝜖, and radius ratio 

parameter 𝛽 on the trapping bolus. Figure 11 depicts the variation of 
𝑑𝑝

𝑑𝑧
 magnitude on the 

trapping bolus. It is evident that with a rise in 
𝑑𝑝

𝑑𝑧
 , the numbers and volume of the bolus are 

enhanced. The action of Sutterby fluid parameter 𝛼 on the trapped bolus is recorded in 

Figure12. The magnitude of the trapping bolus diminished in size and more bolus and 

streamlines were created. The effect of ratio amplitude parameter  𝜖 is increasing effect on the 

trapped bolus see Figure 13. However, Figure14 recorded the decreasing impact of radius 

ratio parameter  𝛽 on the trapping phenomenon.   
(a)                                                                         (b) 

 

Figure 11: Streamlines for variation of the gradient of Pressure 
𝑑𝑝

𝑑𝑧
= {0.1, 0.8}with {𝛼 =

0.01, 𝜖 = 0.2, 𝛽 = 0.02}. 

 (a)                                                                                (b) 

 
Figure 12: Streamlines for variation of Sutterby fluid parameter 𝛼 = {0.2,0.4} with {𝜖 =
0.2, 𝛽 = 0.2}. 

(a)                                                                          (b) 

 
Figure 13: Streamlines for variation of Sutterby fluid parameter 𝜖 = {0.3, 0.6} with {𝛼 =
0.1, = 0.2}. 
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(a)                                                                             (b) 

 
Figure 14: Streamlines for variation of radius ratio parameter 𝛽 = {0.2, 0.6} with {𝛼 =
0.1, 𝜖 = 0.1}. 

 

5. Conclusions 

     In this paper, a new mathematical formulation is presented to analyze the effect of 

endoscope on the peristaltic transport of non-Newtonian Sutterby fluid through a tube.  The 

exact solution for the temperature and concentration field is found, while the perturbation 

scheme is employed for the analytic solution of the velocity field.  The study came out with 

major conclusions that are listed as follows: 

1. The velocity profile is parabolic along with the whole range of the r-axis for various values 

of the  
𝑑𝑝

𝑑𝑧
, the Sutterby fluid parameter 𝛼, the endoscope radius ratio 𝛽, and amplitude ratio 

parameter  𝜖 in the peristaltic flow of Sutterby fluid in tubes. Moreover, the minimum values 

of the velocity were recognized near the endoscope tube. 

2. The magnitude of the velocity profile increases with increasing 𝛽, and  𝜖, whereas it 

decreases with increasing   
𝑑𝑝

𝑑𝑧
, and 𝛼 . 

3. The temperature distribution against 𝑟 − axis shows a concave down behavior along the 

length of tubes, on the contrary, the concentration profile has a concave up nature through the 

region between the tubes.  

4. An improvement in temperature is yielded out with enhancing 𝑅𝑛 parameter in comparison 

with the concentration profile.   

5. An oscillatory behaviour for temperature profile is observed due to 𝛽 and 𝜖 increment 

values.  

6. We noticed retardation in 𝜃(𝑟) toward the boundaries but the reverse effect is noticed near 

the central part of the tube for 𝐷𝑢, 𝑃𝑟, and 𝑆𝑐 , this analysis is reversed for the concentration 

profile. 

7. The heat transfer coefficient at the outer wall has an oscillatory profile because of the 

propagation of the sinusoidal waves travelling along the wall of the tube with the rise of  

𝑅𝑛, 𝐷𝑢, 𝑆𝑟, and 𝑃𝑟. 

8. The number and the size of the trapped bolus are growing with the increase of 
𝑑𝑝

 𝑑𝑧
, and  𝜖, 

respectively, while the trapped bolus is contracting and decreasing with increasing in 𝛼,  and 

𝛽.  

9. The results calculated within the research are commensurate with others calculated in the 

references [1,23]. Furthermore, the Sutterby model fluid is one of the most important non-

Newtonian fluids which represents constitutive equations for high polymer aqueous solutions 

of CMC, HEC, and MC.  Hence, the problem is of practical significance in modern industrial 

and scientific aspects. 
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