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 Abstract 

A numerical algorithm for solving linear and non-linear fractional differential 

equations is proposed based on the Bees algorithm and Chebyshev polynomials. The 

proposed algorithm was applied to a set of numerical examples. Faster results are 

obtained compared to the wavelet methods. 
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 حل المعادلات التفاضلية الكسرية الخطية وغير الخطية باستخدام خوارزمية النحل
 

 عبد الرزاق طلال الحسيني*, عزام صلاح الدين العدول

 عراق, الالموصل, جامعة الموصل ,كلية التربية للعلوم الصرفة, قسم الرياضيات
 

 
  الخلاصة 

تم اقتراح خوارزمية عددية لحل معادلات تفاضلية كسرية خطية وغير خطية بالاعتماد على خوارزمية      
تم  تم تطبيق الخوارزمية المقترحة على مجموعة من الأمثلة العددية،ل ومتعددات حدود جيبيشيف، النح

 .الحصول على نتائج سريعة مقارنة بطرق المويجات

 

1. Introduction 

      Fractional Ordinary Differential Equations (FODEs) are one of the interesting branches of 

Mathematics  due to the presence of several physical and chemical applications [1]. The 

interest of mathematicians at the present time is focused on how to develop and increase the 

efficiency of solutions to FODEs. Since FODEs have different degrees of complexity, an 

exact solution may be difficult to find. Numerical methods are a vital tool for finding the 

approximated solutions to FODEs [2]. 

 

      Recently, the wavelet methods have been relied on to solve FODEs, by finding an 

operational matrix based on the Caputo derivative of the fractional differentiation and one of 
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the mother wavelets,  for example,  Haar wavelet, Legendre wavelet, Chebyshev wavelet, 

Jacobi wavelet and Bernoulli wavelet [3-7]. 

       Although these methods have succeeded in solving FODEs, they may require expensive 

computational efforts; because the accuracy of the solutions depends on the amplitude of the 

operational matrix. These methods are used to find the coefficients of polynomials. 

 

      In this paper, an algorithm is proposed to solve linear and nonlinear FODEs. The 

coefficients of the polynomials are calculated without the need for an operational matrix. The 

Bees algorithm is implemented with the use of Chebyshev polynomials to solve linear and 

nonlinear FODEs. This gives a general approach to finding the solution to FODEs. 

 

      The solutions of the FODEs are firstly obtained by transforming the FODEs into a 

constrained optimization problem. Then, it is transformed into an unconstrained optimization 

problem by using the penalty function and then solving it using the Bees algorithm. 

 

       Caputo's derivative of a polynomial is subject to a non-iterative rule, which reduces the 

computational effort. The use of any polynomial may give closed results to the Chebyshev 

polynomial because the efficiency of the solution depends on the Bees algorithm. 

 

       In the next section, a set of basic concepts of the paper is presented that includes 

important definitions in addition to the Bees algorithm, it followed by the proposed algorithm. 

Then the application of the proposed algorithm to a set of numerical examples is provided. 

Finally, the conclusions are drawn. 

 

2. Preliminary 

       In this section, a set of fundamental concepts are presented. For example, fractional 

derivative, linear and nonlinear FODEs, Chebyshev polynomials and the Bees algorithm. 

 

2.1. Fractional Derivative 

      The fractional derivative of order (α)  is expressed by the Caputo concept as follows [8]: 

(1) 

𝐷𝛼𝑓(𝓉) =

{

 1

𝛤(𝑛−𝛼)
 ∫

𝑓(𝛼)(𝑡)

(𝓉−𝑡)𝛼+1−𝑛
 𝑑𝑡,   𝛼 ∈ (𝑛 − 1, 𝑛),      𝑛 ∈ 𝑁

𝓉

0

𝑑𝛼

𝑑𝓉𝛼  𝑓(𝓉),                                𝛼 = 𝑛 ∈ 𝑁                                     
                                       

where 𝑛 is a smallest integer such that  𝑛 > α. 

       The Caputo derivative satisfies the following properties: 

(2) 𝐷𝛼𝐶 = 0, 

(3) 𝐷𝛼𝑋𝑗 = {

0,  𝑗 ∈ 𝑁 ∪ {0} 𝑎𝑛𝑑   𝑗 < ⌈𝛼⌉

𝛤(𝑗 + 1)

𝛤(𝑗 + 1 − 𝛼)
𝑋𝑗−𝛼, 𝑗 ∈ 𝑁 ∪ {0} 𝑎𝑛𝑑 𝑗 ≥ ⌈𝛼⌉   𝑜𝑟   𝑗 ∉ 𝑁 𝑎𝑛𝑑 𝑗 > ⌊𝛼⌋

 

(4) 
𝐷𝛼(𝛽𝑓(𝓉) +  𝜇𝑔(𝓉)) =  𝛽𝐷𝛼𝑓(𝓉) +  𝜇𝐷𝛼𝑔(𝓉), 
 

       where 𝛽 ,μ and C are constants, ⌈ ⌉ , ⌊ ⌋ represents the smallest, largest integer function, 

respectively.  
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2.2. Linear and nonlinear FODEs 

       A linear FODE of order 𝛼 is provided as follows [4]: 

     (5) 𝐷𝛼𝑦(𝓉) = ∑ 𝑎𝑖(𝓉)𝑦(𝜅i)(𝓉)

𝑠−1

𝑖=0  

+ 𝑎𝑠(𝓉)𝑦(𝓉) + 𝑔(𝓉), 𝓉 ∈ [𝑎, 𝑏] 

subject to the initial conditions 

            (6) 𝑦(𝑖)(𝓉0) = 𝑑𝑖,    𝑖 = 0,1, … . , 𝑛 

or boundary conditions 

(7) 

𝑦(𝑟)(𝑎) = 𝑝𝑖,    𝑟 = 0,1, … < 𝑛  

𝑦(𝑙)(𝑏) = 𝑞𝑖,    𝑙 = 0,1, … < 𝑛 

       where 𝑛 is the number of initial and boundary conditions, 𝑎𝑗(𝓉) for j =  0, 1, … , s are 

real function coefficients, 𝑛 <  𝛼 ≤  𝑛 + 1,  0 <  𝜅1  <  𝜅2  < ⋯ <  𝜅𝑠  <  𝛼 , 𝑟 + 𝑙 = 𝑛, 

and 𝐷𝛼denotes the fractional derivative of order 𝛼. 

 

      A non-linear FODE of order α is expressed by [4],[9]: 

    (8) 𝐷𝛼𝑦(𝓉) = 𝐹(𝓉, 𝑦(𝓉), 𝑦(𝜅0), … … . , 𝑦(𝜅𝑠−1)). 

subject to initial or boundary conditions in Eq.(6) and Eq.(7). 

 

2.3. Chebyshev Polynomial and Approximation 

      The Chebyshev polynomials are one of the functions that are defined on the interval 

[−1,1] and  fulfil the orthogonality property. Furthermore, it is a good approximation of the 

functions defined on the real interval [𝑎, 𝑏], and it has the following recursive form [10], [11]: 

(9) 
𝐶0(𝓉) = 1 

𝐶1(𝓉) = 𝓉    

𝐶𝑛(𝓉) = 2𝓉𝐶𝑛−1(𝓉) − 𝐶𝑛−2(𝓉), for all n>1. 

      A given function 𝑦(𝓉) defined on [𝑎, 𝑏] can be approximated by Chebyshev polynomials 

as follows: 

(10) 𝑦(𝓉) = ∑ 𝛼𝑖

∞

𝑖=0

𝐶𝑖(𝓉) ≈ 𝑌(𝓉) = ∑ 𝛼𝑖

𝑁

𝑖=0

𝐶𝑖(𝓉) 

where 𝛼𝑖, 𝑖 = 0,1, … are the unknown coefficient of approximation, 𝑁 is the degree of 

approximation. 

 

2.4. The Bees algorithm 
      The Bees algorithm is one of the metaheuristic algorithms that was first introduced in 

2005 by Pham et al., through their study of the social behavior of a group of honey Bees. The 

metaheuristic algorithms guarantee to reach the optimal solution in the complex 

unconstrained optimization problem, as it consists of two important elements that enhance the 

optimal solution, namely exploration (local search) and exploitation (global search). The 

pseudo-code of the Bees algorithm is described as follows [12], [13], [14]:  

1- Creation of scout Bees (𝑠) is randomly within the search space [𝑉𝑚𝑛, 𝑉𝑚𝑥]. 
2- Calculate the fitness function  for each scout bee. 

3- Determine the sites of the smallest value of the fitness function called elite sites of scout 

Bees (𝑒𝑙). 
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4- Enroll Bees around chosen sites (𝑠1) and evaluate the fitness function. 

5- Determine the best bee in each site (𝑏) and harness the rest of the Bees (𝑠2) to search 

randomly in the search space. 

6- If all stopping criteria are satisfied, give the best site. Otherwise, go to step (3).  

 

3. The Proposed Algorithm 

      The proposed method is based on transforming the FODE into an unconstrained 

optimization problem by a fitness function.  The fitness function represents the error arising 

from the Chebyshev polynomials approximation. After substituting the truncated series in 

both the FODE and the initial or boundary conditions, a certain error is obtained.  

Consequently, the error is reduced to the lowest value. Therefore, the optimal coefficient 

values for Chebyshev polynomials are extracted, which are represented by Eq. (10). 

      The proposed algorithm is described in the following steps:  

1- Selection of parameters value: scout Bee (𝑠), elite sites (𝑒𝑙), selected site (𝑏), number of 

coefficients (𝑛𝑉𝑟), search space ([𝑉𝑚𝑛, 𝑉𝑚𝑥]), maximum number of iteration (𝑀𝐼), tolerance 

(𝑇𝑜𝑙).  
2- Create an approximate function 𝑌(𝓉) as follows: 

(11) 𝑌(𝓉) = ∑ 𝛼𝑖

𝑛𝑉𝑟

𝑖=0

𝐶𝑖(𝓉), 𝓉 ∈ [𝑎, 𝑏] 

3- Evaluate the error function (𝐸𝑟𝑟𝑜𝑟(𝓉)) by adding the substitution of the function 𝑌(𝓉) 

in the FODE (Eq. 5 or 8) and the substitution of the initial or boundary conditions in the 

function 𝑌(𝓉). 

4- Calculate the fitness function as follows: 

(12) 𝐹𝐹 = ∑
√(𝐸𝑟𝑟𝑜𝑟(𝓉𝑖))2

𝑛

𝑛

𝑖=0

+ ∑ |𝑦(𝑖)(𝑎) − 𝑑𝑖|

𝑛𝐼𝑉𝑃

𝑖=1

 

or  

(13) 𝐹𝐹 = ∑
√(𝐸𝑟𝑟𝑜𝑟(𝓉𝑖))2

𝑛

𝑛

𝑖=0

+ ∑ (|𝑦(𝑖)(𝑎) − 𝑝𝑖| + |𝑦(𝑖)(𝑏) − 𝑞𝑖|

𝑛𝐵𝑉𝑃

𝑖=1

) 

where 𝓉0 = 𝑎, 𝓉1 = 𝑎 + ℎ, … , 𝓉𝑛 = 𝑎 + 𝑛ℎ = 𝑏, ℎ > 0, 𝑛𝐼𝑉𝑃, 𝑛𝐵𝑉𝑃 are the number of 

initial, boundary conditions respectively. 

5- Apply Bees algorithm (sec. 2.4) to minimize the fitness function . 

6- If 𝐹𝐹 < 𝑇𝑜𝑙, 𝑅𝑀𝑆𝐸 < 𝑇𝑜𝑙 or the maximum number of iterations holds stop and give 

the coefficients, otherwise go to  step (5).  

 

4. Numerical Examples 
      The proposed algorithm is implemented by using MATLAB 2020a, HP laptop, Intel(R) 

Core (TM) i7-4500U CPU @ 1.80GHz   2.40 GHz, RAM 16 GB. The algorithm was run 10 

times to verify the reliability of the results. Parameter values are set in all examples as 

follows: [𝑉𝑚𝑛, 𝑉𝑚𝑥] = [−1,1], [𝑎, 𝑏] = [0,1], 𝑇𝑜𝑙 = 10−3, 𝑀𝐼 = 100, 𝑠 = 20, 𝑒𝑙 = 4, 

𝑏 = 10. The value of the fitness function, the number of iterations, the consumed time and the 

value are shown in Table (1). Figure (1) illustrates the approximate solutions corresponding to 

the exact solution and the absolute error. One can see in Figure (1), that satisfactory accuracy 

is obtained in most of the tests, and the error rate is between 10−3 and 10−5. Exact solutions 

are also obtained in Example 4. The convergence of the proposed algorithm for all examples 

is shown in Figure (2). 
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Example 1. Consider the following linear FODE [15]: 

(𝐷2 − 2𝐷 + 𝐷0.5 + 1)𝑦(𝓉) = 𝑓(𝓉), 

where 𝑓(𝓉) = 𝓉3 + 6𝓉 − 6𝓉2 +
16

5√𝜋
𝓉2.5, 

with initial conditions (I.Cs) 𝑦(0) = 𝑦′(0) = 0 and the exact solution  𝑦 = 𝓉3. 

     Let 𝑛𝑉𝑟 = 5 and 𝑦(𝓉) ≈ 𝑌(𝓉) = ∑ 𝛼𝑖𝐶𝑖(𝓉)𝑛𝑉𝑟
𝑖=1 , then the error function is obtained as 

follows: 

𝐸𝑟𝑟𝑜𝑟(𝓉) = |(𝐷2 − 2𝐷 + 𝐷0.5 + 1)𝑌(𝓉) − 𝑓(𝓉)|, and the fitness function is calculated as 

follows:  

𝐹𝐹 = ∑
√(𝐸𝑟𝑟𝑜𝑟(𝓉𝑖))2

𝑛

𝑛

𝑖=0

+ |𝑌(0)| + |𝑌′(0)| 

      By applying the Bees algorithm, we get the following numerical solution: 

𝑌(𝓉) = 0.753423 𝐶1(𝓉) + 0.2501649 𝐶3(𝓉) + 𝑂(𝓉4) 

Example 2. Suppose the linear FODE [16]: 

(𝐷1.5 − 𝓉1.5)𝑦(𝓉) = 𝑔(𝓉), 

where 𝑔(𝓉) = 4√
𝓉

𝜋
− 𝓉3.5, with boundary conditions  𝑦(0) = 0 and 𝑦  (1) = 1 . The exact 

solution is 𝑦 = 𝓉2. 

        Let 𝑛𝑉𝑟 = 3 then we have: 𝐸𝑟𝑟𝑜𝑟(𝓉) = |(𝐷1.5 − 𝓉1.5)𝑌(𝓉) − 𝑔(𝓉)|, and the fitness 

function is calculated as:  

𝐹𝐹 = ∑
√(𝐸𝑟𝑟𝑜𝑟(𝓉𝑖))2

𝑛

𝑛

𝑖=0

+ |𝑌(0)| + |𝑌(1) − 1| 

      Apply the proposed algorithm, we get: 

𝑌(𝓉) = 0.5068 − 0.01076 𝐶1(𝓉) + 0.5041007 𝐶2(𝓉) + 𝑂(𝓉3) 

 

Example 3. Assume the nonlinear FODE [17]: 

(𝐷2.2 + 𝐷1.25 + 𝐷0.75)𝑦(𝓉) + |𝑦(𝓉)|3 = 𝑔(𝓉), 

where  𝑔(𝓉) =
2𝓉0.8

𝛤(1.8)
+

2𝓉1.75

𝛤(2.25)
+

2𝓉2.25

𝛤(3.25)
+

𝓉9

27
, with I.Cs 𝑦(0) = y′(0) = y′′(0) = 0, and the 

exact solution is  𝑦 =
𝓉3

3
. 

     Suppose 𝑛𝑉𝑟 = 4 ,then we have: 

𝐸𝑟𝑟𝑜𝑟(𝓉) = |(𝐷2.2 + 𝐷1.25 + 𝐷0.75)𝑌(𝓉) + |𝑌(𝓉)|3 − 𝑔(𝓉)|, and the fitness function is 

obtained by:  

𝐹𝐹 = ∑
√(𝐸𝑟𝑟𝑜𝑟(𝓉𝑖))2

𝑛

𝑛

𝑖=0

+ |𝑌(0)| + |𝑌′(0)| + |𝑌′′(0)| 

      Apply the Bees algorithm: 

𝑌(𝓉) = −0.0025 + 0.2539 𝐶1(𝓉) − 0.0018 𝐶2(𝓉) + 0.0821 𝐶3(𝓉) + 𝑂(𝓉4) 

 

Example 4. Let the following nonlinear FODE [18]: 

𝐷𝛼𝑢(𝓉) + (1 + 𝓉  2)(𝑦(𝓉))
2

= 𝑔(𝓉), 0 < 𝛼 ≤ 1 

where  𝑔(𝓉) =
𝓉(1−𝛼)

(1−𝛼)Γ(1−𝛼)
(1 + 𝓉  2)(1 + 𝓉)2, with the initial conditions 𝑦(0) = 1 

and analytical solution  is  𝑦 = 1 + 𝓉. 

      Suppose 𝑛𝑉𝑟 = 2, 𝛼 = 0.2 then we have: 

𝐸𝑟𝑟𝑜𝑟(𝓉) = |𝐷𝛼𝑌(𝓉) + (1 + 𝓉  2)(𝑌(𝓉))
2

− 𝑔(𝓉)|, so that 
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𝐹𝐹 = ∑
√(𝐸𝑟𝑟𝑜𝑟(𝓉𝑖))2

𝑛

𝑛

𝑖=0

+ |𝑌(0) − 1| 

      By using the proposed algorithm, we get the exact solution as follows: 

𝑌(𝓉) = 1 +  𝐶1(𝓉) + 𝑂(𝓉2) = 1 + 𝓉. 
Example 5. Assume the following nonlinear FODE [18]: 

(𝐷4 + 𝐷3.5)𝑦(𝓉) + 𝑦3(𝓉) = 𝓉9 

with the boundary conditions 𝑦(0) = y′′(0) = 0, 𝑦(1) = 1, 𝑦′′′(0) = 6, and 𝑦 = 𝓉3 is the 

analytical solution. 

     Let 𝑛𝑉𝑟 = 4 ,then we have: 𝐸𝑟𝑟𝑜𝑟(𝓉) = |(𝐷4 + 𝐷3.5)𝑌(𝓉) + 𝑌3(𝓉) − 𝓉9|,so that 

𝐹𝐹 = ∑
√(𝐸𝑟𝑟𝑜𝑟(𝓉𝑖))2

𝑛

𝑛

𝑖=0

+ |𝑌(0)| + |𝑌′(0)| + |𝑌(1) − 1| + |𝑌′′′(0) − 6| 

      By utilize the Bees algorithm, we have 

𝑌(𝓉) = −0.002024 + 0.75447 𝐶1(𝓉) − 0.00122  𝐶2(𝓉) + 0.2503  𝐶3(𝓉) + 𝑂(𝓉4) 

 

Example 6. Consider the nonlinear FODE [19]: 

(𝐷3+𝐷2.5)𝑦(𝓉) + 𝑦2(𝓉) = 𝓉4. 
with the boundary conditions 𝑦(0) = 0, y′′(0) = 2, 𝑦(1) = 1 and exact solution 𝑦 = 𝓉2. 

      Let 𝑛𝑉𝑟 = 4 ,then we have: 

𝐸𝑟𝑟𝑜𝑟(𝓉) = |(𝐷3 + 𝐷2.5)𝑌(𝓉) + 𝑌2(𝓉) − 𝓉4|, so that 

𝐹𝐹 = ∑
√(𝐸𝑟𝑟𝑜𝑟(𝓉𝑖))2

𝑛

𝑛

𝑖=0

+ |𝑌(0)| + |𝑌′′(0) − 2| + |𝑌(1) − 1| 

      By utilize the Bees algorithm, we get 

𝑌(𝓉) = 0.499804 − 0.00025 𝐶1(𝓉) + 0.499939  𝐶2(𝓉) − 0.00019  𝐶3(𝓉) + 𝑂(𝓉4) 
 

Table 1: This table shows the results of all examples 

Example Fitness function Number of iterations Consumed time (s) RMSE 

1 8.4193e-04 29 39.12 1.63e-03 

2 5.4421e-03 23 11.46 7.64e-04 

3 2.3190e-03 17 12.88 9.43e-04 

4 6.7704e-17 2 02.76 0.00e-00 

5 1.4787e-03 31 17.74 6.72e-04 

6 2.8814e-03 30 23.91 2.07e-04 

 

5. Conclusions   

       Recently, interest has been paid to numerical methods based on an operational matrix that 

was derived according to the Caputo concept and using one of the mother wavelets. Although 

these methods give good results, solving non-linear FODEs may take considerable 

computational time and effort. Therefore, an algorithm is applied to multiple types of FODEs, 

as it was applied to a set of numerical examples. The algorithm is characterized by the speed 

in reaching the solution, in contrast to the use of operational matrices. 
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(a) Plotting of Ex1. (b) Absolute error of Ex1. 

  
(c) Plotting of Ex2. (d) Absolute error of Ex2. 

  
(e) Plotting of Ex3. (f) Absolute error of Ex3. 

  
(g) Plotting of Ex4. (h) Absolute error of Ex4. 

  
(i) Plotting of Ex5. (j) Absolute error of Ex5. 

  
(k) Plotting of Ex6. (l) Absolute error of Ex6. 

  

Figure 1: This figure shows the comparison between the exact solution and the 

approximated solution. (a),(c),(e),(g),(i),(k) .Plot of example(1) to (6), and 

(b),(d),(f),(h),(j),(l) absolute error of example(1) to (6). 
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(a) Convergence of Ex1. (b) Convergence of Ex2. 

  

(c) Convergence of Ex3. (d) Convergence of Ex4. 

  
(e) Convergence of Ex5. (f) Convergence of Ex6. 

  

Figure 2: This figure shows the convergence of the proposed algorithm. (a),(b),(c),(d),(e),(f) 

convergence of example(1) to (6). 

 

      It can be noted from Figure (2) that for all examples, the convergent of the algorithm is 

reached with less than 35 iterations. This gives a promised results with acceptable errors. 
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