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Abstract

A numerical algorithm for solving linear and non-linear fractional differential
equations is proposed based on the Bees algorithm and Chebyshev polynomials. The
proposed algorithm was applied to a set of numerical examples. Faster results are
obtained compared to the wavelet methods.
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1. Introduction

Fractional Ordinary Differential Equations (FODES) are one of the interesting branches of
Mathematics due to the presence of several physical and chemical applications [1]. The
interest of mathematicians at the present time is focused on how to develop and increase the
efficiency of solutions to FODEs. Since FODEs have different degrees of complexity, an
exact solution may be difficult to find. Numerical methods are a vital tool for finding the
approximated solutions to FODEs [2].

Recently, the wavelet methods have been relied on to solve FODEs, by finding an
operational matrix based on the Caputo derivative of the fractional differentiation and one of
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the mother wavelets, for example, Haar wavelet, Legendre wavelet, Chebyshev wavelet,
Jacobi wavelet and Bernoulli wavelet [3-7].

Although these methods have succeeded in solving FODEs, they may require expensive
computational efforts; because the accuracy of the solutions depends on the amplitude of the
operational matrix. These methods are used to find the coefficients of polynomials.

In this paper, an algorithm is proposed to solve linear and nonlinear FODEs. The
coefficients of the polynomials are calculated without the need for an operational matrix. The
Bees algorithm is implemented with the use of Chebyshev polynomials to solve linear and
nonlinear FODEs. This gives a general approach to finding the solution to FODEs.

The solutions of the FODEs are firstly obtained by transforming the FODEs into a
constrained optimization problem. Then, it is transformed into an unconstrained optimization
problem by using the penalty function and then solving it using the Bees algorithm.

Caputo's derivative of a polynomial is subject to a non-iterative rule, which reduces the
computational effort. The use of any polynomial may give closed results to the Chebyshev
polynomial because the efficiency of the solution depends on the Bees algorithm.

In the next section, a set of basic concepts of the paper is presented that includes
important definitions in addition to the Bees algorithm, it followed by the proposed algorithm,
Then the application of the proposed algorithm to a set of numerical examples is provided.
Finally, the conclusions are drawn.

2. Preliminary
In this section, a set of fundamental concepts are presented. For example, fractional
derivative, linear and nonlinear FODESs, Chebyshev polynomials and the Bees algorithm.

2.1. Fractional Derivative
The fractional derivative of order (a) is expressed by the Caputo concept as follows [8]:

Df(t) =
1 ft F@)
r(n—-a) “0 (t-t)at+ti-n

(), a=neN

dt, «a€(n—1,n), neN 1)

dll
at®

where n is a smallest integer such that n > a.
The Caputo derivative satisfies the following properties:

DeC =0, 2
0, jJEN U {0}and j < |[a]

P S s x jeN U ) andj 2Tl or jeNand)>lal O

D(Bf() + ug(£)) = BDf(£) + uD%g(2), @)

where B ,u and C are constants, [ |, | ] represents the smallest, largest integer function,
respectively.
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2.2. Linear and nonlinear FODEs
A linear FODE of order « is provided as follows [4]:
s—1
DUY(#) = ) ()Y () +a()y(@®) + g(#), € [a,b] ©
i=0
subject to the initial conditions

y(l)(to) = di' i=01,...,n (6)
or boundary conditions

y(r)(a) =p;, =01 ..<n

,
yO)=¢q, 1=01,..<n ()

where n is the number of initial and boundary conditions, a;(¢) forj = 0,1,...,s are
real function coefficients, n < @« < n+1, 0 < Ky < ky << Ks < a,r+l=n,
and D%*denotes the fractional derivative of order a.

A non-linear FODE of order a is expressed by [4],[9]:

D%y(t) = F(t,y(t),y®), .. ....,y(s-1)  (8)
subject to initial or boundary conditions in Eq.(6) and Eq.(7).

2.3. Chebyshev Polynomial and Approximation
The Chebyshev polynomials are one of the functions that are defined on the interval
[-1,1] and fulfil the orthogonality property. Furthermore, it is a good approximation of the
functions defined on the real interval [a, b], and it has the following recursive form [10], [11]:
Co(t) =1
() =1 ©)
C,(t) = 24C,_1(£) — C,,_, (%), for all n>1.
A given function y(¢) defined on [a, b] can be approximated by Chebyshev polynomials

as follows:
[o) N

y(£) = ) @8 = Y(£) = ) i C(t) (10
i=0 i=0
where «a;, i =0,1,... are the unknown coefficient of approximation, N is the degree of
approximation.

2.4. The Bees algorithm

The Bees algorithm is one of the metaheuristic algorithms that was first introduced in
2005 by Pham et al., through their study of the social behavior of a group of honey Bees. The
metaheuristic algorithms guarantee to reach the optimal solution in the complex
unconstrained optimization problem, as it consists of two important elements that enhance the
optimal solution, namely exploration (local search) and exploitation (global search). The
pseudo-code of the Bees algorithm is described as follows [12], [13], [14]:
1- Creation of scout Bees (s) is randomly within the search space [Vmn, Vimx].
2- Calculate the fitness function for each scout bee.
3- Determine the sites of the smallest value of the fitness function called elite sites of scout
Bees (el).
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4- Enroll Bees around chosen sites (s1) and evaluate the fitness function.

5- Determine the best bee in each site (b) and harness the rest of the Bees (s2) to search
randomly in the search space.

6- If all stopping criteria are satisfied, give the best site. Otherwise, go to step (3).

3. The Proposed Algorithm

The proposed method is based on transforming the FODE into an unconstrained
optimization problem by a fitness function. The fitness function represents the error arising
from the Chebyshev polynomials approximation. After substituting the truncated series in
both the FODE and the initial or boundary conditions, a certain error is obtained.
Consequently, the error is reduced to the lowest value. Therefore, the optimal coefficient
values for Chebyshev polynomials are extracted, which are represented by Eqg. (10).

The proposed algorithm is described in the following steps:
1- Selection of parameters value: scout Bee (s), elite sites (el), selected site (b), number of
coefficients (nVr), search space ([Vmn, Vmx]), maximum number of iteration (M1I), tolerance

(Tol).
2- Create an approximate function Y (#) as follows:
nvr
Y(£) = ) aCi(t),t € [ab] (1)

3- Evaluate the error function (Error(¢)) by adding the substitution of the function Y (¢)
in the FODE (Eq. 5 or 8) and the substitution of the initial or boundary conditions in the
function Y (¢).

4- Calculate the fitness function as follows:

nivpP
FF = ZV(EWW(“ +Z|y(z)(a) d;| (12)

or

nBVP
Z\/W z (ly(l)(a) pll + |y(‘)(b) QLD (13)

where %, = a ti=a+h, .., t, = a+nh b, h >0, nlVP, nBVP are the number of
initial, boundary conditions respectively.

5- Apply Bees algorithm (sec. 2.4) to minimize the fitness function .

6- If FF < Tol, RMSE < Tol or the maximum number of iterations holds stop and give
the coefficients, otherwise go to step (5).

4. Numerical Examples

The proposed algorithm is implemented by using MATLAB 2020a, HP laptop, Intel(R)
Core (TM) i7-4500U CPU @ 1.80GHz 2.40 GHz, RAM 16 GB. The algorithm was run 10
times to verify the reliability of the results. Parameter values are set in all examples as
follows: [Vmn,Vmx] = [-1,1], [a,b] =[0,1], Tol = 1073, MI = 100, s = 20, el = 4,
b = 10. The value of the fitness function, the number of iterations, the consumed time and the
value are shown in Table (1). Figure (1) illustrates the approximate solutions corresponding to
the exact solution and the absolute error. One can see in Figure (1), that satisfactory accuracy
is obtained in most of the tests, and the error rate is between 10~3 and 10~>. Exact solutions
are also obtained in Example 4. The convergence of the proposed algorithm for all examples
is shown in Figure (2).
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Example 1. Consider the following linear FODE [15]:
(D? = 2D + D% + 1)y(¥) = f(¢),

— 43 _ g2 4 16 125
where f(£) = 4° 4+ 64 — 61 tomt

with initial conditions (1.Cs) y(0) = y’(0) = 0 and the exact solution y = 3.

Let nVr =5 and y(¥) = Y(¢) = YT «;C;(t), then the error function is obtained as
follows:
Error(t) = |(D? — 2D + D%> + 1)Y(¢) — f(¢)|, and the fitness function is calculated as

follows:
FF = z V (Error(t ))2

By applying the Bees algorlthm we get the following numerical solution:
Y(#) = 0.753423 C,(¢) + 0.2501649 C5(¢) + 0(¢*)
Example 2. Suppose the linear FODE [16]:

(D'® —t12)y(¢) = g(1),
where g(¢) = 4\/% — £35, with boundary conditions y(0) = 0andy (1) = 1 . The exact

solution is y = #2.
Let nVr = 3 then we have: Error(t) = |(DY° — #1°)Y(¢) — g(¢)|, and the fitness
function is calculated as:

o Z J (Errir(ti))z

i=0
Apply the proposed algorithm, we get:
Y(£) = 0.5068 — 0.01076 C,(£) + 0.5041007 C,(£) + 0(£3)

+1Y(0)] +1Y'(0)]

+1Y(0)| + Y (1) — 1

Example 3. Assume the nonlinear FODE [17]:
(D22 + D125 + DO7S)y () + ly(®)® = g(#),

2t0.8 2t1'75 2t2'25 t9 ; , _ " _
ras T rem T rem + with 1.Cs y(0) =y'(0) =y"”(0) =0, and the
3

where g(%) =

. . t
exact solution is y = 5

Suppose nVr = 4 ,then we have:
Error(t) = |(D%? + D125 + DO75)Y(¢) + |[Y(#)|3 — g(#)|, and the fitness function is

obtained by:
< V (Error(%£;))?
FF = Z -

i=0
Apply the Bees algorithm:
Y(#) = —0.0025 + 0.2539 C;(£) — 0.0018 C,(¢) + 0.0821 C5(£) + 0(t%)

+1Y(0)| + [Y'(0)] + [Y"(0)]

Example 4. Let the following nonlinear FODE [18]:

Deu(t) + (1 + tz)(y(t))z =g(®),0<a<1
(1-a

where g(t) = t)m 1+t +1)%, with the initial conditions y(0) =1

and analytical solutlon IS y =1+17.
Suppose nVr = 2, a = 0.2 then we have:

Error(t) = [D?Y () + (1 + £ (Y ()" — g(#)], so that
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+1Y(0) — 1

FF - Z V (Error(t ))?

By using the proposed algorlthm we get the exact solution as follows:
Y#) =1+ (&) +0(**») =1++¢.
Example 5. Assume the following nonlinear FODE [18]:
(D* + D3®)y(2) + y3(¢) = £°
with the boundary conditions y(0) = y”(0) =0, y(1) =1,y""(0) = 6, and y = #3 is the
analytical solution.
Let nVr = 4 then we have: Error(t) = |(D* + D3®)Y(#) + Y3(¢) — £°|,s0 that

= Z (ETTOT'(’t' ))2 + YO+ |Y'(0)] + |Y(1) — 1| + |Y""'(0) — 6

By utilize the Bees algorlthm we have
Y (%) = —0.002024 + 0.75447 C,(¢) — 0.00122 C,(%) + 0.2503 C5(£) + 0(t*)

Example 6. Consider the nonlinear FODE [19]:
(D3+D**)y(t) + y*(¢) = ™.
with the boundary conditions y(0) = 0,y”(0) = 2, y(1) = 1 and exact solution y = #2.
Let nVr = 4 ,then we have:
Error(t) = |(D® + 02 Y (%) + Y2(t) — t*|, so that

i Z (Error(t ))2 Y (O)] + |Y"(0) = 2| + |y (1) — 1]

By utilize the Bees algorlthm we get
Y(£) = 0.499804 — 0.00025 C;(£) + 0.499939 C,(¢) — 0.00019 C5(£) + 0(¢%)

Table 1: This table shows the results of all examples
Example Fitness function Number of iterations Consumed time (s)

RMSE

1.63e-03

8.4193e-04

5.4421e-03 23 11.46 7.64e-04
2.3190e-03 17 12.88 9.43e-04
6.7704e-17 2 02.76 0.00e-00
1.4787e-03 31 17.74 6.72e-04
2.8814e-03 30 23.91 2.07e-04

5. Conclusions

Recently, interest has been paid to numerical methods based on an operational matrix that
was derived according to the Caputo concept and using one of the mother wavelets. Although
these methods give good results, solving non-linear FODEs may take considerable
computational time and effort. Therefore, an algorithm is applied to multiple types of FODEs,
as it was applied to a set of numerical examples. The algorithm is characterized by the speed
in reaching the solution, in contrast to the use of operational matrices.

1327



Aladool and Abed Iragi Journal of Science, 2023, Vol. 64, No. 3, pp: 1322-1330

1]
4
14
X R
' RID-aTECIS
\

e

oo

€)) Plotting of ExL1. (b) Absolute error of Ex1.

)
1
m— At BOtUtOn |
| - approaximato aciutan 2.5
o 5 2
- o
ool B e
O | k '
o2 06
o 0.2 o o.n 0.0 ' o

(© Plotting of Ex2. (d) Absolute error of Ex2.

K0

wxmot melution
*  opproximole solution

Vappo-arach3cs

(e) Plotting of Ex3. ) Absolute error of Ex3.
(h) Absolute error of Ex4

Yarenacians

1.4
2
'
0.
ae
0.4
a3
o

......

Q) Plotting of EX5. () Absolute error of Ex5

. -  ppproximate solution

\/

(K) Plotting of Ex6 U] Absolute error of Ex6.
Figure 1: This figure shows the comparison between the exact solution and the

approximated solution. (a),(c),(e),(9),(i),(k) .Plot of example(l) to (6), and
(b),(d),(f),(h),(),(I) absolute error of example(1) to (6).
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Figure 2: This figure shows the convergence of the proposed algorithm. (a),(b),(c),(d),(e),(f)
convergence of example(1) to (6).

It can be noted from Figure (2) that for all examples, the convergent of the algorithm is
reached with less than 35 iterations. This gives a promised results with acceptable errors.
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