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Abstract 

This work generalizes Park and Jung's results by introducing the concept of 

generalized permuting 3-derivation on Lie ideal. 
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 تعميم المشتقات الثلاثية التبادليه للحلقات الاولية على مثالي لي
 

 صابرين جاسب شريف*, انوار خليل فرج

 العراق, بغداد, الجامعة التكنووجية, قسم العلوم التطبيقية, الحاسوب فرع الرياضيات وتطبيقات
 

 الخلاصة
ذللك بتقديم مفهوم تعميم المشتقات الثلاثيه التبادليه على مثالي و   Jung و park م نتائجعمي البحثذا ه

 لي.
 

 

Introduction 

Throughout this paper,   will represent an associative ring, and      will be its center. Let 

      , the commutator        will be denoted by       [1]. A ring   is said to be prime ring if 

         implies that     or     such that        [2]. An additive mapping   from a ring   

into   is called a derivation of   if                         for all         [1] . In 1987 the 
concept of a symmetric bi-derivation has been introduced by Maksa in [3], by a bi-derivation we mean 

a bi-additive map              is such that if                            ,         
                  . In 1989 J. Vukman [4,5] investigated symmetric bi-derivations on prime and 

semiprime rings. 

A ring   is said to be n-torsion-free where     is an integer if whenever      with      , 

then     [2]. 

Let   be a nonempty subset of   . Then a map          is said to be commuting (resp. 

centralizing) on   if             (resp.                 ) for all       [1].  An additive subgroup 

      is called a Lie ideal of   if whenever               and           [2]. A Lie ideal   of   

is called a squar closed lie ideal of   if         , for all       [6]. A squar closed Lie ideal of   

such that U  Z(R) is called an admissible Lie ideal of   [7]. In 2007, Park and Jung's introduced the 

concept of permuting 3-derivation and they are studied this concept as centerilizing and commuting 
[1].  The history of commuting and centralizing mapping goes back  to 1955, Divinsky [8]. Posner 

initiated several aspects of a study of commuting and centralizing derivations on prime ring [9]. In this 

paper we introduce the concept of generalized permuting 3-derivation and study the commuting and 
centeralizing of this concept and commutativity of Lie ideal under certain conditions. 

Preliminaries 

The following lemmas are basic to get the main results 
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Lemma(2.1) [10 ] 

Let   be a Lie ideal of a prime ring   and                then either          or          
Lemma(2.2) [ 10] 

Let   be a Lie ideal of a prime ring   such that      , for all       then    . 

Lemma(2.3) [11 ] 

Let   be is 2-torsion free semiprime and   is commutative Lie ideal, then   contiand in     . 

Lemma (2.4) [12] 

Let   be prime ring of         and   be a nonzero an admissible  Lie ideal   of  , then   

contains a nonzero ideal of     
Lemma(2.5) [13] 

Let R be a prime ring of         and   be a Lie ideal of   with          if a,b   R and 

      , then either     or     . 

Definition (2.6) [1] 

A map                is said to be permuting if the equation 

                                     holds for all            R and for every permution {     , 

    ,     } . 

Definition (2.7)[1] 
A 3-derivation map             is said to be permuting 3-derivation if  the following equations 

are identical :     

                                                  
                                                and 

                                            . 

Definition (2.8) [1] 

A map           which is defined by                  for all      , where   is permuting 

map is called the trace of  . 

Theorem (2.9) [14] 

Let   be a 6-torsion free prime ring and   be an admissible  Lie ideal of  . Suppose that there 

exists a permuting 3-derivation                such that the trace     of   is commuting on  . 

Then       on R         .  

Theorem (2.10) [14] 

Let   be a 6-torsion free prime ring and   be an admissible  Lie ideal of  . Suppose that there 

exists a permuting 3-derivation                such that the trace     of    is centralizing on 

 . Then   is commuting on R         . 

Now, we introduce the concept of generalized permuting 3-derivation to get our main results. 

Definition (2.11)  

Let   be a Lie ideal of  . A 3-additive map                 is said to be a generalized 3-

derivation if there exists a 3 – derivation                 such that : 

                                                 

                                               

                                              , for all            .  

Definition (2.12)  

Let   be a Lie ideal of  . A generalized 3-derivation map                  is said to be a 

generalized permuting 3-derivation if there exist a permuting 3-derivation                  

such that the equations in definition (2.11)).)2.10) are equal to each other. 

Example (2.13) 

Let   be a commutative  ring and       (
  
  

)              with usual addition and 

multiplication is a ring. Now     (
  
  

)            is  a Lie ideal of  . Define           

       such that 

 ((
  
  

)  (
  
  

)  (
  
  

))    (
  
    

) , for all (
  
  

)  (
  
  

)  (
  
  

)     . 

Then by definition (2.11)   is generalized permuting 3-derivation since there exists a permuting 3- 

derivation                defined by 
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  ((
  
  

)  (
  
  

)  (
  
  

))  (
    
  

), for all (
  
  

), (
  
  

) , (
  
  

)   . 

Main Results  

We begin with following lemmas which are basic to get the main result.  

Lemma (3.1) 

Let U be a Lie ideal of    and    be the trace of  permuting 3-additive map               . 

Then  

                                                                               
                                                          , for all       . 

proof: 

                            
                                                  
                                                                      
                                                                           

                                        
                                                                         

                                                                     

                                                                           
                                                                    
                                                                                 
                                                   ,  for all           .   …(1)  

Replace  x by      in equation (1) and comparing the results, we get  

      +                                                              
                                  for all            .                              …(2)                                     

Replace   by x + y in equation (2) and use equation (1) and (2) to get  

                                                                       
                                          
                                                                               
                             .                                      
Proposition (3.2) 

Let   be a Lie ideal of a 6-torsion free ring   and    be the trace of permuting 3-derivation map 

              . Then   

(1) If     is commuting on  ,                               , for all       . 

(2) If    is centralizing on  ,                            ]      , for all      . 

Lemma (3.3) 

Let   be a square closed Lie ideal of a 2-torsion free prime ring   such that            , for all 

       . then either        or      . 

Proof: 

Since            , for all        , Then this means            , for all     . 

By Lemma ( 2.1)  we get           , for all       or        . 

If          , for all     , then [        , for all     .                                                             (1) 

Replace   by      in equation (1) and use it to get  

               , for all                .                                                                                     (2) 

Replace   by     in equation(2) and use equation (1) , we get  

                                                               
                 

Since   is 2-torsion free, then              

Since   is prime, we get either       ) or   =0 , for all     . 

By Lemma ( 2.2) , we get     this is contraducition.  

Theorem (3.4) 

Let   be a 6- torsion free prime ring and   be an admissible Lie ideal of  . Suppose that there 

exists  a generalized permuting 3- derivation                 associated with permuting 3-
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derivation    such that the traces    of   and    of    are  commuting on   , then     on      
   . 

proof : 

Since    is commuting on  , then                  , for all        .                                             (1) 
By using proposision (3.1), we get  

                                     , for all        .                                                                   (2) 

Putting     instead of   in equation (2)                          

                                            
                                                                         
Since   is commuting on  , then the last equation reduced to  

                                                        
Since   is 6- torsion free , the last equation becomes   

             + 3                                      .                                                                 (3) 

Multiply equation (2) by y from left and compare the result with equation (3) and by applying 

Theorem (2.9) , we get  

                                   , for all        .                                                                  (4)  

Replace   by            in equation (4) and by using equation (4) and theorem (2.9) we get  

            –                         . 
Since R is 6-torsion free, the last equation reduced to 

           –                        , for all          .                                                                  (5) 

Putting     instead of         in equation (5) , then  

               –                                      –                       .                             (6)  

Use equation (5) in equation (6) and since   is 6-torsion free, then 

               –                      , for all             . 
Apply Lemma (2.5) on the last equation to get  

either            –                    or            . 
If          , for all         , then   is commutative and by Lemma ( 2.3 ) and this contradication 
with the hypothesis .      

That is,            –                  , for all        .                                                                  (7)  

Putting          in equation (7) and since   is 6- torsion free and by Theorem (2.9), we get  

                       = 0 , for all        .           

Since    is commuting on  , then the last equation reduced to   

                            

                                                                                                                                                   (8)  

Putting     instead of    in equation( 8) and use equation (8) we get  

                      , for all            .  

By Lemma (2.5) and since   is 6-torsion free , we get either            or             .   

By Lemma ( 2. 5) and since              , then by Lemma (2.5) we have  

                , for all      .                                                                                                           (9)  

Since    is commuting on  , and by using equation (9) we get  

          , for all      .        

Multiply equation (7) by   from left and use the last equation to get   

               ,  for all         .                                                                                                 (10)  
Substitute equation (9) in equation (5) and by Theorem (2.9) to get  

               –             
Substitute equation (7) in the last equation, we  get 

                   –              

Multiply the last equation by y from left and by using equation (10) , we get 

                                      
Since   is 6-torsion free prime and by Lemma (2.3), either        or              .  

By Lemma ( 2.1) and since   is nonzero , then           , for all       .                                    (11) 

Linearize equation (11) on y we get  

                                               . 
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By equation (11) and Since   is 6-torsion free, the last equation can be reduced to  

                         , for all       .                                                                                 (12)  

Again linearize equation (12) on   and since   is 6-torsion free , then              ,  for all 

      .                                                     

Since   is an admissible Lie ideal, by Lemma ( 2.4 )    contains a nonzero ideal   of  . Therefore, 

           , for all          .                                                                                                        (13)  

Replace   by    in equation (13) to get  

                                           
By Theorem (2.9), the last equation reduce to   

                   , for all        , r     since   is ideal and   is prime, then             ,  

for all               .                                                                                                                   (14) 

Replace   by  ,       in equation (14) to get  

                                           

By Theorem (2.9), the last equation reduce to   

               , for all                and this implies that             , for all          . (15) 

Replace   by         in equation (15) to get  

                                           
By Theorem (2.9), the last equation reduce to   

                , for all           and this lead us to             , for all          . 
The following corollary is a special case of last theorem. 

Corollary (3.5)  

Let   be a non commutative 6- torsion free prime ring. Suppose that there exists  a generalized 

permuting 3- derivation                 associated with permuting 3-derivation   such that the 

trace   of   and    of   are  commuting on   , then     . 

The following theorem is a generalization of Theorem(2.9) 

Theorem (3.6) 

Let   be a  5!-torsion free prime ring and   be an admissible Lie ideal of  . Suppose that there 

exists a generalized  permuting 3- derivation              such that the trace    of   and the 

trace    of   are centralizing on   . Then    is commuting on  . 
Proof : 

Since    is centralizing on  , then                 , for all      .                                          (1) 

By using proposition (3.1) , we get 

                                                                                                                                  (2) 

putting        in equation (2) , then  

                                 
                                                             
                                                 
                                        .                                                                                    (3) 
By Theorem (2.9) and Theorem (2.10), equation (5) reduce to 

                    . 

That is ,                                                                          
                                          .                                                                                                     (4) 

Putting        in equation (4) , we get  

                                                      

 By using equation (4) and since   is 5!- torsion free , we get 

                        , for all       .                                                    

 By Lemma (2.5) and since   is not commutative we get     is commuting .  

Corollary (3.7)  

Let   be a  5!-torsion free prime ring. Suppose that there exists a generalized  permuting 3- 

derivation              such that the trace    of   and the trace    of   are centralizing on   . 

Then    is commuting on. 
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Theorem (3.8)  

Let   be a 5!- torsion free prime ring and   be a square closed  Lie ideal of  .  Suppose that there 

exist a nonzero generalized permuting 3-derivation                     such that is the trace    

of   centralizing on  . Then         . 

Proof : 

Suppose that,         , by Theorem (3.6)    is commuting and by Theorem (3.4)      and 

this contradiction with our hypothesis then         . 
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