

ISSN: 0067-2904

Generalized Permuting 3-Derivations of Prime Rings

Anwar K. Faraj*, Sabreen J.Shareef

Branch of Mathematics and Computer Applications, Applied Sciences Department, University of Technology, Baghdad, Iraq

Abstract

This work generalizes Park and Jung's results by introducing the concept of generalized permuting 3-derivation on Lie ideal.

Keywords: Permuting 3-derivation, Lie ideal, prime ring, commuting, centralizing.

تعميم المشتقات الثلاثية التبادليه للحلقات الاولية على مثالي لي

انوار خلیل فرج*، صابرین جاسب شریف

فرع الرياضيات وتطبيقات الحاسوب، قسم العلوم التطبيقية، الجامعة التكنووجية، بغداد، العراق

الخلاصة

هذا البحث يعمم نتائج park و Jung وذللك بتقديم مفهوم تعميم المشتقات الثلاثيه التبادليه على مثالي لى.

Introduction

Throughout this paper, R will represent an associative ring, and Z(R) will be its center. Let $x, y \in R$, the commutator xy - yx will be denoted by [x, y] [1]. A ring R is said to be prime ring if aRb = (0) implies that a = 0 or b = 0 such that $a, b \in R$ [2]. An additive mapping d from a ring R into R is called a derivation of R if d(xy) = d(x)y + x d(y) for all $x, y \in R[1]$. In 1987 the concept of a symmetric bi-derivation has been introduced by Maksa in [3], by a bi-derivation we mean a bi-additive map $d : R \times R \to R$ is such that if (xy, z) = d(x, z)y + xd(y, z), d(x, yz) = d(x, y)z + yd(x, z). In 1989 J. Vukman [4,5] investigated symmetric bi-derivations on prime and semiprime rings.

A ring R is said to be n-torsion-free where $n \neq 0$ is an integer if whenever na = 0 with $a \in R$, then a = 0 [2].

Let S be a nonempty subset of R. Then a map $f : R \to R$ is said to be commuting (resp. centralizing) on S if [f(x), x] = 0 (resp. $[f(x), x] \in Z(R)$) for all $x \in S[1]$. An additive subgroup $U \subseteq R$ is called a Lie ideal of R if whenever $u \in U, r \in R$ and $[U, r] \in U[2]$. A Lie ideal U of R is called a squar closed lie ideal of R if $u^2 \in U$, for all $u \in U$ [6]. A squar closed Lie ideal of R such that $U \notin Z(R)$ is called an admissible Lie ideal of R [7]. In 2007, Park and Jung's introduced the concept of permuting 3-derivation and they are studied this concept as centerilizing and commuting [1]. The history of commuting and centralizing mapping goes back to 1955, Divinsky [8]. Posner initiated several aspects of a study of commuting and centralizing derivations on prime ring [9]. In this paper we introduce the concept and commutativity of Lie ideal under certain conditions.

Preliminaries

The following lemmas are basic to get the main results

^{*}Email: anwar_ 78_2004@yahoo.com

Lemma(2.1) [10]

Let U be a Lie ideal of a prime ring R and $[t, U] \subseteq Z(R)$, then either $t \in Z(R)$ or $U \subseteq Z(R)$. Lemma(2.2) [10]

Let U be a Lie ideal of a prime ring R such that $u^2 = 0$, for all $u \in U$ then U = 0.

Lemma(2.3) [11]

Let R be is 2-torsion free semiprime and U is commutative Lie ideal, then U contiand in Z(R).

Lemma (2.4) [12]

Let *R* be prime ring of $char. \neq 2$ and *U* be a nonzero an admissible Lie ideal *I* of *R*, then *U* contains a nonzero ideal of *R*.

Lemma(2.5) [13]

Let R be a prime ring of *char*. $\neq 2$ and U be a Lie ideal of R with $U \not\subset Z(R)$, if $a, b \in \mathbb{R}$ and aUb = 0, then either a = 0 or b = 0.

Definition (2.6) [1]

A map $d: R \times R \times R \to R$ is said to be permuting if the equation $d(x_1, x_2, x_3) = d(x_{\Pi(1)}, x_{\Pi(2)}, x_{\Pi(3)})$ holds for all $x_1, x_2, x_3 \in \mathbb{R}$ and for every permution { $\Pi(1)$, $\Pi(2), \Pi(3)$ }.

Definition (2.7)[1]

A 3-derivation map $d: R \times R \times R \to R$ is said to be permuting 3-derivation if the following equations are identical :

d(xw,y,z) = d(x,y,z)w + x d(w,y,z),d(x,yw,z) = d(x,y,z)w + y d(x,w,z) andd(x,y,zw) = d(x,y,z)w + z d(x,y,w).

Definition (2.8) [1]

A map $\delta_d : R \to R$ which is defined by $\delta_d(x) = d(x, x, x)$ for all $\in R$, where *d* is permuting map is called the trace of *d*.

Theorem (2.9) [14]

Let *R* be a 6-torsion free prime ring and *U* be an admissible Lie ideal of *R*. Suppose that there exists a permuting 3-derivation $d: U \times U \times U \to R$ such that the trace δ_d of *d* is commuting on *U*. Then d = 0 on $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$.

Theorem (2.10) [14]

Let *R* be a 6-torsion free prime ring and *U* be an admissible Lie ideal of *R*. Suppose that there exists a permuting 3-derivation $d: U \times U \times U \to R$ such that the trace δ_d of *d* is centralizing on *U*. Then δ_d is commuting on $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$.

Now, we introduce the concept of generalized permuting 3-derivation to get our main results.

Definition (2.11)

Let U be a Lie ideal of R. A 3-additive map $F: U \times U \times U \to R$ is said to be a generalized 3derivation if there exists a 3 – derivation $d: U \times U \times U \to R$ such that :

F(x w, y, z) = F(x, y, z) w + x d(w, y, z)

F(x, yw, z) = F(x, y, z)w + yd(x, w, z)

 $F(x, y, zw) = F(x, y, z)w + z d(x, y, w), \text{ for all } y, z, w \in U.$

Definition (2.12)

Let *U* be a Lie ideal of *R*. A generalized 3-derivation map $F: U \times U \times U \to R$ is said to be a generalized permuting 3-derivation if there exist a permuting 3-derivation $d: U \times U \times U \to R$ such that the equations in definition (2.11)).(2.10) are equal to each other. Example (2.13)

Let *S* be a commutative ring and $R = \{\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in S\}$ with usual addition and multiplication is a ring. Now $U = \{\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} : a, b \in S\}$ is a Lie ideal of *R*. Define $F : U \times U \times U \times U \to R$ such that

 $F\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & h \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}\right) = \begin{pmatrix} 0 & 0 \\ 0 & bdh \end{pmatrix}, \text{ for all } \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & h \end{pmatrix} \in U.$

Then by definition (2.11) *F* is generalized permuting 3-derivation since there exists a permuting 3-derivation $d: U \times U \times U \rightarrow R$ defined by

$$d\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & h \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}\right) = \begin{pmatrix} 0 & ace \\ 0 & 0 \end{pmatrix}, \text{ for all } \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & h \end{pmatrix} \in U.$$

Main Results

We begin with following lemmas which are basic to get the main result.

Lemma (3.1)

Let U be a Lie ideal of R and δ_F be the trace of permuting 3-additive map $F: U \times U \times U \rightarrow R$. Then

 $[\delta_F(x), x] = 2[\delta_F(x + y), x + y] + 6[F(x, x, y), y] + 18[F(x, y, y), y]$ $[\delta_{F}(x + 2v), x + 2v] +$ $+12[\delta_F(y), y] + 6[F(x, y, y), x] + 6[\delta_F(y), x] + 2[\delta_F(y), y], \text{ for all } x, y \in U.$ proof: [F(x + y, x + y, x + y), x + y]= [F(x, x + y, x + y) + F(y, x + y, x + y), x + y]= [F(x, x, x + y) + F(x, y, x + y) + F(y, x, x + y) + F(y, y, x + y), x + y]= [F(x, x, x) + F(x, x, y) + F(x, y, x) + F(x, y, y) + F(y, x, x) + F(y, x, y)]+F(y, y, x) + F(y, y, y), x + y][F(x,x,x),x] + [F(x,x,x),y] + [F(x,x,y),x] + [F(x,x,y),y] =[F(x, y, x), x] + [F(x, y, x), y] + [F(x, y, y), x] + [F(x, y, y), y] +[F(y,x,x),x] + [F(y,x,x),y] + [F(y,x,y),x] + [F(y,x,y),y]+ [F(y, y, x), x] + [F(y, y, x), y] + [F(y, y, y), x] + [F(y, y, y), y] $[\delta_F(x), x] + [\delta_F(x), y] + [\delta_F(y), x] + 3[F(x, x, y), x] + 3[F(x, y, y), y] =$ $+3[F(x, x, y), y] + 3[F(x, y, y), x] + [\delta_F(y), y], \text{ for all } x, y \in U. ...(1)$ Replace x by (-x) in equation (1) and comparing the results, we get $[\delta_F(x+y), x+y] + [\delta_F(-x+y), -x+y] = 2[\delta_F(x), x] + 6[F(x, x, y), y]$ $+6 [F(x, y, y), x] + 2[\delta_F(y), y]$ for all x, $y \in U$(2) Replace x by x + y in equation (2) and use equation (1) and (2) to get $[\delta_F (x+2y), x+2y]$ $+[\delta_F(x), x] = 2$ $[\delta_F(x+y), x+y] + 6[F(x+y, x+y, y), y]$ $+6[F(x+y,y,y),x+y] + 2[\delta_F(y),y]$ $= 2 \left[\delta_F(x+y), x+y \right] + 6 \left[F(x,x,y), y \right] + 18 \left[F(x,y,y), y \right] + 12 \left[\delta_F(y), y \right] + 6 \left[F(x,y,y), x \right] + 6 \left[F(x,y), x \right] + 6 \left[F$ $6[\delta_F(y), x] + 2[\delta_F(y), y].$

Proposition (3.2)

Let U be a Lie ideal of a 6-torsion free ring R and δ_F be the trace of permuting 3-derivation map $F: U \times U \times U \to R$. Then

(1) If δ_F is commuting on U, $3[F(x, y, y), y] + [\delta_F(y), x] = 0$, for all $x, y \in U$. (2) If δ_F is centralizing on U, $3[F(x, y, y), y) + [\delta_F(y), x] \in Z(R)$, for all $x, y \in U$.

Lemma (3.3)

Let U be a square closed Lie ideal of a 2-torsion free prime ring R such that $[x^2, y] = 0$, for all $x, y \in U$, then either $U \subseteq Z(R)$ or U = 0.

Proof:

Since $[x^2, y] = 0$, for all $x, y \in U$, Then this means $[x^2, U] = 0$, for all $x \in U$. By Lemma (2.1), we get $x^2 \in Z(R)$, for all $x \in U$ or $U \subseteq Z(R)$. If $x^2 \in Z(R)$, for all $x \in U$, then $[x^2, r] = 0$, for all $x \in U$. (1) Replace x by x + y in equation (1) and use it to get 0 = [xy + yx, r], for all $x, y \in U, r \in R$. Replace y by $2y^2$ in equation(2) and use equation (1), we get $0 = 2[xy^2 + y^2x, r] = 2[x, r]y^2 + 2x[y^2, r] + 2[y^2, r]x + 2y^2[x, r]$ $= 4[x, r]y^2$ Since R is 2-torsion free, then $0 = [x, r]y^2$ Since R is prime, we get either $U \subseteq Z(R)$ or $y^2=0$, for all $y \in U$.

By Lemma (2.2), we get U = 0 this is contraducition.

Theorem (3.4)

Let *R* be a 6- torsion free prime ring and *U* be an admissible Lie ideal of *R*. Suppose that there exists a generalized permuting 3- derivation $F: U \times U \times U \rightarrow R$ associated with permuting 3-

derivation d such that the traces δ_F of F and δ_d of d are commuting on U, then F = 0 on $R \times R \times R$.

proof :

Since δ_F is commuting on , then $[\delta_F(x), x] = 0$, for all $x \in U$. (1) By using proposision (3.1), we get $0 = [\delta_F(y), x] + 3 [F(x, y, y), y], \text{ for all } x, y \in U.$ (2) Putting 2yx instead of x in equation (2) $0 = [\delta_F(y), 2yx] + 3 [F(2yx, y, y), y]$ $= 2 \left[\delta_F(y), y \right] x + 2y \left[\delta_F(y), x \right] + 6 \left[F(y, y, y) x + y d(x, y, y), y \right]$ Since F is commuting on U, then the last equation reduced to $2y [\delta_F(y), x] + 6 \delta_F(y) [x, y] + 6y [d(x, y, y), y] = 0$ Since R is 6- torsion free, the last equation becomes $y [\delta_F(y), x] + 3 \delta_F(y) [x, y] + 3y [d(x, y, y), y] = 0.$ (3) Multiply equation (2) by y from left and compare the result with equation (3) and by applying Theorem (2.9), we get $3\delta_F(y) [x, y] - 3y [F(x, y, y), y] = 0$, for all $, y \in U$. (4) Replace x by 2xz, $z \in U$ in equation (4) and by using equation (4) and theorem (2.9) we get $6(\delta_F(y) \ x - y \ F(x, y, y)) \ [z, y] = 0.$ Since R is 6-torsion free, the last equation reduced to $(\delta_F(y) \mid x - y \mid F(x, y, y)) \mid [z, y] = 0$, for all $x, y, z \in U$. (5) Putting 2tz instead of $z, t \in U$ in equation (5), then $0 = 2(\delta_F(y) \ x - y \ F(x, y, y)) \ t \ [z, y] + 2(\delta_F(y) \ x - y \ F(x, y, y)) \ [t, y]z \ .$ (6) Use equation (5) in equation (6) and since R is 6-torsion free, then $0 = (\delta_F(y) x - y F(x, y, y)) t [z, y], \text{ for all } x, y, z, t \in U.$ Apply Lemma (2.5) on the last equation to get either $(\delta_F(y) x - y F(x, y, y)) = 0$ or [z, y] = 0. If [z, y] = 0, for all $z, y \in U$, then U is commutative and by Lemma (2.3) and this contradication with the hypothesis . That is, $(\delta_F(y) x - y F(x, y, y)) = 0$, for all $x, y \in U$. (7) Putting $y = 2y^2$ in equation (7) and since R is 6- torsion free and by Theorem (2.9), we get $\delta_F(y)y^3 x - y \delta_F(y)xy^2 = 0$, for all $x, y \in U$. Since δ_F is commuting on , then the last equation reduced to $0 = \delta_F(y)y^3 x - \delta_F(y)yx y^2$ $= \delta_F(y) y [y^2, x]$ (8) Putting 2zt instead of x in equation (8) and use equation (8) we get $0 = \delta_F(y) y z [y^2, t]$, for all $y, z, t \in U$. By Lemma (2.5) and since R is 6-torsion free, we get either $\delta_F(y) y = 0$ or $[y^2, t] = 0$. By Lemma (2.5) and since $0 \neq U \not\subseteq Z(R)$, then by Lemma (2.5) we have $\delta_F(y)(y) = 0$, for all $\in U$. (9) Since δ_F is commuting on *U*, and by using equation (9) we get $y\delta_F(y) = 0$, for all $y \in U$. Multiply equation (7) by y from left and use the last equation to get $y^2 F(x, y, y) = 0$, for all $x, y \in U$. (10)Substitute equation (9) in equation (5) and by Theorem (2.9) to get $0 = 3 \delta_F(y) xy - yx \delta_F(y)$ Substitute equation (7) in the last equation, we get $0 = 3 y F (x, y, y)y - y x \delta_F(y)$ Multiply the last equation by y from left and by using equation (10), we get $0 = 3 y^2 x \delta_F(y)$, for all $x, y \in U$. Since R is 6-torsion free prime and by Lemma (2.3), either $y^2 = 0$ or $\delta_F(y) = 0$. By Lemma (2.1) and since U is nonzero, then $\delta_F(y) = 0$, for all $y \in U$. (11)Linearize equation (11) on y we get $0 = \delta_F(x) + \delta_F(y) + 3F(x, x, y) + 3F(x, y, y).$

By equation (11) and Since R is 6-torsion free, the last equation can be reduced to F(x, x, y) + F(x, y, y) = 0, for all $x, y \in U$. (12)Again linearize equation (12) on y and since R is 6-torsion free, then 0 = F(x, y, z), for all $x, y \in U$. Since U is an admissible Lie ideal, by Lemma (2.4) U contains a nonzero ideal I of U. Therefore, (x, y, z) = 0, for all $x, y, z \in I$. (13) Replace x by rx in equation (13) to get 0 = F(rx, y, z) = F(r, y, z) x + r d(x, y, z)By Theorem (2.9), the last equation reduce to 0 = F(r, y, z) x = 0, for all $y \in I$, $r \in R$ since I is ideal and R is prime, then F(r, y, z) = 0, for all $r \in R$, $x, y, z \in I$. (14)Replace y by , $s \in R$ in equation (14) to get 0 = F(r, sy, z) = F(r, s, z) y + s d(r, y, z)By Theorem (2.9), the last equation reduce to 0 = F(r, s, t) y, for all $r, y \in I$, $s \in R$ and this implies that (r, s, z) = 0, for all $x, y, z \in I$. (15) Replace z by $zt, t \in R$ in equation (15) to get 0 = F(r, s, tz) = F(r, s, t)y + t d(r, s, z)By Theorem (2.9), the last equation reduce to 0 = F(r, s, t) y, for all $r, s, t \in R$ and this lead us to F(r, s, t) = 0, for all $r, s, t \in R$. The following corollary is a special case of last theorem. Corollary (3.5)

Let *R* be a non commutative 6- torsion free prime ring. Suppose that there exists a generalized permuting 3- derivation $F: R \times R \times R \to R$ associated with permuting 3-derivation *d* such that the trace δ_F of *F* and δ_d of *d* are commuting on *U*, then F = 0.

The following theorem is a generalization of Theorem(2.9)

Theorem (3.6)

Let *R* be a 5!-torsion free prime ring and *U* be an admissible Lie ideal of *R*. Suppose that there exists a generalized permuting 3- derivation $F: U \times U \times U \rightarrow R$ such that the trace δ_F of *F* and the trace δ_d of *d* are centralizing on *U*. Then δ_F is commuting on . **Proof**:

Since δ_F is centralizing on U, then $[\delta_F(x), x] \in Z(R)$, for all $x \in U$. (1) By using proposition (3.1), we get

$$[\delta_F(y), x] + 3 [F(x, y, y), y] \in Z(R)$$
(2)

putting $x = 2y^2$ in equation (2), then $2 [\delta_F(y), y^2] + 6 [F(y^2, y, y), y]$

 $= 2 [\delta_{F}(y), y] y + 2 y [\delta_{F}(y), y] + 6 [\delta_{F}(y), y + y \delta_{d}(y), y]$ = 4 [$\delta_{F}(y), y$] y + 6 y[$\delta_{F}(y), y$] + 6 y [$\delta_{d}(y), y$] = 10 [$\delta_{F}(y), y$] y + 6 y[$\delta_{d}(y), y$] $\in Z(R)$. By Theorem (2.9) and Theorem (2.10), equation (5) reduce to (3)

10 $[\delta_F(y), y] y \in Z(R).$

That is,
$$0 = 10[[\delta_F(y), y] y, x] = 10[\delta_F(y), y][x, y] + 10[[\delta_F(y), y], x] y$$

= $10[\delta_F(y), y][y, x].$ (4)

Putting x = 2xz in equation (4), we get

 $0 = 20 [\delta_F(y), y] x [y, z] + 20 [\delta_F(y), y] [y, x] z$

By using equation (4) and since R is 5!- torsion free , we get

 $0 = [\delta_F(y), y] x [y, z]$, for all, $y \in U$.

By Lemma (2.5) and since U is not commutative we get δ_F is commuting. Corollary (3.7)

Let *R* be a 5!-torsion free prime ring. Suppose that there exists a generalized permuting 3derivation $F: R \times R \times R \to R$ such that the trace δ_F of *F* and the trace δ_d of *d* are centralizing on *R*. Then δ_F is commuting on.

Theorem (3.8)

Let *R* be a 5!- torsion free prime ring and *U* be a square closed Lie ideal of *R*. Suppose that there exist a nonzero generalized permuting 3-derivation $F : U \times U \times U \rightarrow R$ such that is the trace δ_F of *F* centralizing on *U*. Then $U \subseteq Z(R)$.

Proof:

Suppose that, $U \not\subseteq Z(R)$, by Theorem (3.6) δ_F is commuting and by Theorem (3.4) F = 0 and this contradiction with our hypothesis then $U \subseteq Z(R)$.

References:

- 1. Park,K and Jung,Y.2007. On prime and semiprime rings with permuting 3-derivations. *Bull. Korean Math. Soc.*, 44(4),pp:789–794.
- 2. Herestein, I. N.1969. Topics in ring theory. University of Chicago Press, Chicago.
- 3. Maksa,G.1987. On the trace of symmetric bi- derivations. C. R.Math. Rep. Sci. Canada, 9, pp:303-307.
- **4.** Vukman, J.**1989**. Symmetric biderivations on prime and semiprime rings. *Aequationes Math*, 38, pp:245-254.
- 5. Vukman, J.1990. Two results concerning symmetric biderivation on prime rings. *Aequationes Math.*, 40, pp:181-189.
- 6. Cortes, W. and Haetinger, C. 2005. On Jordan generalized higher derivations in rings. *Turk J Math*, 29, pp:1-10.
- 7. Haetinger, C. 2002. Higher derivations on Lie ideals. *Tendencias em mathematica Aplicadae Computational*, 3(1), pp:141-145.
- 8. Divinsky, N. 1955. On commuting automorphisms of rings. *Trans. Roy.Soc. Canada, Sect.III*, 49(3), pp:19–22.
- 9. Posner, E.C.1957. Derivations in prime rings, Proc. Amer. Math. Soc., 8, pp:1093-1100.
- **10.** Lanski, C. and Montgomery, S.**1972**. Lie structure of prime rings of characteristic 2. *Pacific Journal of Mathematics*, 42(1), pp:117-136.
- 11. Hamdi, A. 2007. (σ , τ)- Derivation on prime rings. MSc Thesis. Department of Mathematics, Collage of Science, Baghdad University. Baghdad, Iraq.
- 12. Faraj, A. 2006. On higher derivations and higher homomorphisms of prime rings. Ph.D. Thesis.Department of Applied Scineces, University of Technology. Baghdad, Iraq.
- **13.** Bergen, J., Herstein, I.N. and Kerr, J. W.**1981**. Lie ideals and derivations of prime rings. *Journal* of Algebra., 71, pp:259-267.
- 14. Jasab, S. 2016. On prime and semiprime rings with permuting 3-derivations. MSc.Thesis. Department of Applied Scineces, University of Technology. Baghdad, Iraq.