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Abstract
This work generalizes Park and Jung's results by introducing the concept of
generalized permuting 3-derivation on Lie ideal.
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Introduction

Throughout this paper, R will represent an associative ring, and Z(R) will be its center. Let
X,y € R, the commutator xy — yx will be denoted by [x,y] [1]. A ring R is said to be prime ring if
aRb = (0) implies that a = 0 or b = O such that a, b € R [2]. An additive mapping d from a ring R
into R is called a derivation of R if d(xy) = d(x)y + xd(y) for all x,y € R[1] . In 1987 the
concept of a symmetric bi-derivation has been introduced by Maksa in [3], by a bi-derivation we mean
a bi-additive map d: R X R — R is such that if (xy,z) = d(x,2)y + xd(y,z) d(x,yz) =
d(x,y)z + yd(x,z). In 1989 J. Vukman [4,5] investigated symmetric bi-derivations on prime and
semiprime rings.

A ring R is said to be n-torsion-free where n # 0 is an integer if whenever na = 0 with a € R,
thena = 0[2].

Let S be a nonempty subset of R. Then a map f: R — R is said to be commuting (resp.
centralizing) on S if [f (x),x] = 0 (resp. [f (x),x] € Z(R)) forall x € S [1]. An additive subgroup
U < Riis called a Lie ideal of R if wheneveru € U,r € Rand [U,r] € U [2]. A Lieideal U of R
is called a squar closed lie ideal of R if u? € U , forall u € U [6]. A squar closed Lie ideal of R
such that U €Z(R) is called an admissible Lie ideal of R [7]. In 2007, Park and Jung's introduced the
concept of permuting 3-derivation and they are studied this concept as centerilizing and commuting
[1]. The history of commuting and centralizing mapping goes back to 1955, Divinsky [8]. Posner
initiated several aspects of a study of commuting and centralizing derivations on prime ring [9]. In this
paper we introduce the concept of generalized permuting 3-derivation and study the commuting and
centeralizing of this concept and commutativity of Lie ideal under certain conditions.

Preliminaries
The following lemmas are basic to get the main results
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Lemma(2.1) [10]

Let U be a Lie ideal of a primering R and [t,U] < Z(R), theneither t € Z(R) or U < Z(R).
Lemma(2.2) [ 10]

Let U be a Lie ideal of a prime ring R such that u? = 0, forallu € U then U = 0.

Lemma(2.3) [11 ]

Let R be is 2-torsion free semiprime and U is commutative Lie ideal, then U contiand in Z(R).
Lemma (2.4) [12]

Let R be prime ring of char.# 2 and U be a nonzero an admissible Lie ideal I of R, then U
contains a nonzero ideal of R.

Lemma(2.5) [13]

Let R be a prime ring of char.# 2 and U be a Lie ideal of R with U ¢ Z(R), if a,b € R and

aUb =0, theneithera=00rb=0.

Definition (2.6) [1]

A map d:RXRXR-R is said to be permuting if the equation
d(x1,x2,x3) = d(Xp1), Xn(2), Xn(3)) holds for all x;,x,,x; € R and for every permution { I1(1),
1(2), N(3)} .

Definition (2.7)[1]

A 3-derivation map d: R X R X R — R is said to be permuting 3-derivation if the following equations
are identical :

d(xw,y,z) =dkx,y,2)w + xd(w,y,z),

d(x,yw,z) = d(x,y,2)w + yd(x,w,z) and

d(x,y,zw) = d(x,y,2)w + zd (x,y,w).

Definition (2.8) [1]

A map &; : R — R which is defined by §4 (x) = d(x,x,x) for all € R, where d is permuting
map is called the trace of d.

Theorem (2.9) [14]

Let R be a 6-torsion free prime ring and U be an admissible Lie ideal of R. Suppose that there
exists a permuting 3-derivation d : U x U X U — R such that the trace §; of d is commuting on U.
Thend = 0onRX R X R.

Theorem (2.10) [14]

Let R be a 6-torsion free prime ring and U be an admissible Lie ideal of R. Suppose that there
exists a permuting 3-derivation d : U x U x U — R such that the trace §; of d is centralizing on
U. Then 64is commutingonR X R X R.

Now, we introduce the concept of generalized permuting 3-derivation to get our main results.
Definition (2.11)

Let U be a Lie ideal of R. A 3-additive map F: U x U x U — R is said to be a generalized 3-
derivation if there exists a 3 — derivationd: U x U X U — R such that :
F(xw,y,z) = F(x,y,z2)w + xd(w,y,z)

F(x,yw,z) = F(x,y,z2)w + yd (x,w,z)
F(x,y,zw) = F(x,y,z2)w + zd (x,y,w), forall ,y,z,w € U.
Definition (2.12)

Let U be a Lie ideal of R. A generalized 3-derivation map F: U X U X U — R is said to be a
generalized permuting 3-derivation if there exist a permuting 3-derivation d: U X U X U—> R
such that the equations in definition (2.11)).(2.10) are equal to each other.

Example (2.13)

Let S be a commutative ringand R = {(

0 a
0 b

8 lc’) :a,b,c € S} with usual addition and

multiplication is a ring. Now U = {( ):a,b € S}is alLieideal of R. Define F: U x U X

U - R such that

(G D606 9)= 6 o) el D0 DG Dev

Then by definition (2.11) F is generalized permuting 3-derivation since there exists a permuting 3-
derivationd: U x U X U — R defined by
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Main Results
We begin with following lemmas which are basic to get the main result.

Lemma (3.1)

Let U be a Lie ideal of R and & be the trace of permuting 3-additive map F: UX U X U - R.
Then

[6r (x +2y),x+2y]+  [6p (x),x] =2[6r (x+y),x+y] +6[F(x,x,¥),y] + 18[F(x,y ¥),¥]
+12[f6F ), y] +6[F(x,y,y),x]+6[6r (¥),x] +2[6r(y),y], forallx,y €U.

proof:

[Fx+y,x+y,x+y),x+y]

[F(x,x+y,x+y)+ F,x+y,x+y),x + y]

[F(,x,x +y) + F(x,y,x+y) + F(y,x,x+y) + Fy,y,x+y),x+y]

[F(x,x,x) + F(x,x,y) + F(x,y,x) + F(x,y,y) + F(y,x,x) + F (y,x,y)
+FOyx)+ FW.,y,y),x+y]

[FCox,x),x] + [FQOox,x),y] + [Foxy),x] + [F(xxy),y] =

[F oy x),x] + [FOoy,x),y] + [FCoy,y),x] + [F(xy,y),y] +

[F 0 xx),x] + [F,x,x),y] + [FO,x,y),x] + [F(y,x,¥),]

+[Fyx)x] + [F,y,x),y] +[Fyy),x] + [F©y¥).y]

[6r (), x] + [6F (x),y] + [6p(¥),x] + 3[F (x,x,¥),x] + 3[F (x,y,¥),¥] =

+3[F (x,xy),y] + 3[F (,y,y),x] + [6r(¥),y], forallx,y € U. ...(1)

Replace x by (—x) in equation (1) and comparing the results, we get

[6r x+y),x +y] + [6r(—x +¥),—x+y] =2[6r (x),x] + 6 [F (x,x,¥),¥]

+6[F (x,y,¥),x] +2[6r (y),y] forallx,y € U. ...(2)
Replace x by x + y in equation (2) and use equation (1) and (2) to get
[6F (x + 2y),x + 2y] +[6F (x),x] = 2 [6r (x+y)x+y]+ 6[F(x+y,x +y,5),y]

+6[F(x+y,y,y),x +y] +2[6r (¥),y]
=2[6r(x+y)x+y] + 6[F(x,x,y),y] +18[F(x,y,¥),y] + 12[6r (¥),y ] + 6[F(x,y,¥),x] +
6[6r (), x] + 2[6r (¥),¥]-
Proposition (3.2)
Let U be a Lie ideal of a 6-torsion free ring R and 85 be the trace of permuting 3-derivation map
F:UXx U X U—R.Then
(1) If 8z is commuting on U, 3[F(x,y,y),¥] + [0 (¥),x] =0, forall x,y € U.
(2) If 8z is centralizing on U, 3[F(x,y,y),y) + [6r (¥),x] € Z(R), for all x,y € U.
Lemma (3.3)
Let U be a square closed Lie ideal of a 2-torsion free prime ring R such that [ x2,y] = 0, for all
x,y € U.theneither U € Z(R)orU =0.
Proof:
Since [ x2,y] = 0, forall x,y € U, Then this means [ x2,U] = 0, forallx € U.
By Lemma ( 2.1) we getx? € Z(R),forallx € UorU € Z(R).

If x2 € Z(R), forall x € U, then[x2,r] =0, forall x € U. (1)
Replace x by x + y in equation (1) and use it to get
0= [xy + yx,r],forallx,y € Ur € R. 2

Replace y by 2y? in equation(2) and use equation (1) , we get
0= 2[xy?+y2x,r] = 2[x, 7] y* + 2x [y?r] + 2[y%4 r]x + 2y?[x,7]
= 4[x,7] y?
Since R is 2-torsion free, then 0 = [x,7r]y?
Since R is prime, we get either U € Z(R) or y?=0, forall y € U.
By Lemma ( 2.2) , we get U = 0 this is contraducition.
Theorem (3.4)
Let R be a 6- torsion free prime ring and U be an admissible Lie ideal of R. Suppose that there
exists a generalized permuting 3- derivation F: U x U x U — R associated with permuting 3-
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derivation d such that the traces 6 of F and §; of d are commutingon U,then F=00n R X R X
R.

proof :

Since &y is commuting on , then [6r(x),x] = 0,forallx € U. (1)
By using proposision (3.1), we get
0 =[6r(¥),x] +3[F(xyy),y] forallx,y € U. 2

Putting 2yx instead of x in equation (2)
0 = [6r(¥).2yx] + 3[F (2yx,y,¥),y]

= 2[6r)y]x + 2y[6r (), x] + 6[F (n,y,y)x + yd(x,y,y),]
Since F is commuting on U, then the last equation reduced to

2y [6r(¥),x] + 68r(¥) [x,y] + 6y [d (x,y,¥),¥] = 0

Since R is 6- torsion free , the last equation becomes

y[6r(¥),x]+36r(y) [x,y] + 3y [d (x,y,¥),y] = 0. 3)
Multiply equation (2) by y from left and compare the result with equation (3) and by applying
Theorem (2.9) , we get

36r() [x,v] =3y [F(x,y,y),y] = 0,forall,y € U. 4)
Replace x by 2xz,z € U in equation (4) and by using equation (4) and theorem (2.9) we get

6(6r(y) x-yF (x,y,¥))[2y] = 0.
Since R is 6-torsion free, the last equation reduced to

Gr() x-yF (x,y,¥) [zy] = 0,forallx,y,z € U. (5)
Putting 2tz instead of z,t € U in equation (5) , then
0 =206r(y) x-yF Oy, t[zy] +2(5:») x-yF (xy,y)[ty]z . (6)

Use equation (5) in equation (6) and since R is 6-torsion free, then

0 = (8r(y) x-yF (x,y,y)) t][z,y], forallx,y,z,t € U.
Apply Lemma (2.5) on the last equation to get
either (8z(y) x-yF (x,y,¥)) = 0 or [z,y] = 0.
If [z,y] =0 ,forall z,y € U, then U is commutative and by Lemma ( 2.3 ) and this contradication
with the hypothesis .
Thatis, (6(y) x- yF (x,y,¥)) = 0,forallx,y € U. @)
Putting ¥ = 2 y? in equation (7) and since R is 6- torsion free and by Theorem (2.9), we get
Sr()y3x — y8r(y)xy?=0,forallx,y € U.
Since 8 is commuting on , then the last equation reduced to
0 =8:y*x —8r(Myxy*
= 6r(y) ¥ [y*,x] (8)
Putting 2zt instead of x in equation( 8) and use equation (8) we get
0 =60 yz[y?,t],forally,z,t € U.
By Lemma (2.5) and since R is 6-torsion free , we get either §x(y) y = 0or [y?,t] = 0.
By Lemma (2. 5)and since 0 # U £ Z (R) , then by Lemma (2.5) we have
r() )y =0, forall € U. 9)
Since 8 is commuting on U, and by using equation (9) we get
yor(y) =0, forally € U.
Multiply equation (7) by y from left and use the last equation to get
y2F (x,y,y) = 0, forallx,y € U. (10)
Substitute equation (9) in equation (5) and by Theorem (2.9) to get
0 = 36r(y) xy- yx 6p(y)
Substitute equation (7) in the last equation, we get
0=3yFxyy)y-yx dr(y)
Multiply the last equation by y from left and by using equation (10) , we get
0 = 3y% x 6g(y), forallx,y € U.
Since R is 6-torsion free prime and by Lemma (2.3), either y2 =0or §z(y) = 0.
By Lemma ( 2.1) and since U is nonzero , then 6z(y) = 0,forally € U. (1)
Linearize equation (11) on y we get
0 = 6r(x) + 6r(y) +3F (x,x,¥) + 3F (x,y,Y).
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By equation (11) and Since R is 6-torsion free, the last equation can be reduced to

F (x,x,y) + F (x,y,y) = 0,forallx,y € U. (12)
Again linearize equation (12) on y and since R is 6-torsion free , then 0 = F (x,y,z), for all
x,y € U.

Since U is an admissible Lie ideal, by Lemma ( 2.4 ) U contains a nonzero ideal I of U. Therefore,
(x,y,z) =0,forallx,y,z € I. (13)

Replace x by rx in equation (13) to get

0 =F(@x,y2z)= F(r,y,z2)x + rd(x,y,2)

By Theorem (2.9), the last equation reduce to

0 =F(r,y,z)x= 0 ,forall,y € I,re R since [ is ideal and R is prime, then F(r,y,z) = 0,
forall r€R, x,y,z € I. (14)
Replace y by , s € R inequation (14) to get

0 =F(r,sy,z)= F(r,s,2)y + sd(r,y,z)

By Theorem (2.9), the last equation reduce to

0 = F(r,s,t)y,forallr,y € I,s € Rand this implies that (r,s,z) = 0, forall x,y,z € I. (15)
Replace z by zt,t € R in equation (15) to get

0 = F(r,s,tz) = F(r,s,t) y + td(r,s,2)

By Theorem (2.9), the last equation reduce to

0 = F(r,s,t)y ,forallr,s,t € Randthisleadusto F(r,s,t) = 0, forallr,s,t € R.

The following corollary is a special case of last theorem.

Corollary (3.5)

Let R be a non commutative 6- torsion free prime ring. Suppose that there exists a generalized
permuting 3- derivation F: R X R X R — R associated with permuting 3-derivation d such that the
trace 6zof F and 6, of d are commutingon U, then F =0 .

The following theorem is a generalization of Theorem(2.9)
Theorem (3.6)

Let R be a 5!-torsion free prime ring and U be an admissible Lie ideal of R. Suppose that there
exists a generalized permuting 3- derivation F: U X U X U — R such that the trace 6 of F and the
trace 8, of d are centralizing on U . Then & is commuting on .

Proof :

Since & is centralizing on U, then [6z(x) ,x ] € Z(R),forallx € U . Q)
By using proposition (3.1) , we get
[6r(¥),x] + 3[F (x,y,y),y] €Z (R) )

putting x = 2y? in equation (2) , then
2[6r(),¥*] + 6 [F (v%,,7),]
=2[6r(y),yly +2y[8r(¥).y] +6[8r(¥),y + y8a(y) ,¥]
=4[6r(¥)y]ly +6y[6r(¥).y] + 6y [6a(¥).y]
= 10[6r(),y]ly + 6y[8a(y).y] € Z(R). ©)
By Theorem (2.9) and Theorem (2.10), equation (5) reduce to
10 [6r(v), ¥ 1y € Z(R).
Thatis, 0 = 10[ [6r(¥),y 1y,x] = 10 [6r(y), ¥ ]1[x,y] + 10[[6r().¥].x ]y
= 10[6r) .y [y.x]. (4)

Putting x = 2xz in equation (4) , we get
0 = 20[6r(), ¥yl x [y 2] + 20 [6r(¥),¥] [y, x] 2
By using equation (4) and since R is 5!- torsion free , we get
0 = [8r(y),y]x [y 2], forall,y €U.
By Lemma (2.5) and since U is not commutative we get &y is commuting .
Corollary (3.7)

Let R be a 5!-torsion free prime ring. Suppose that there exists a generalized permuting 3-
derivation F: R X R X R - R such that the trace § of F and the trace §, of d are centralizing on R .
Then 65 is commuting on.
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Theorem (3.8)

Let R be a 5!- torsion free prime ring and U be a square closed Lie ideal of R. Suppose that there

exist a nonzero generalized permuting 3-derivation F: U x U x U — R such that is the trace &g
of F centralizingon U. Then U < Z(R).
Proof :

Suppose that, U € Z(R), by Theorem (3.6) 65 is commuting and by Theorem (3.4) F = 0 and
this contradiction with our hypothesis then U < Z(R).
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