

ISSN: 0067-2904

A New Method for Solving Fully Fuzzy Multi-Objective Linear Programming Problems

Rasha Jalal Mitlif*
Branch of Mathematics and Computer Applied, Applied Science Department, University of Technology, Baghdad, Iraq

Abstract

In this paper we present a new method for solving fully fuzzy multi-objective linear programming problems and find the fuzzy optimal solution of it. Numerical examples are provided to illustrate the method.

Keywords: fully fuzzy multi-objective programming, fully fuzzy linear programming number, triangular fuzzy number .

طريقة جديدة لحل مسائل البرمجة (المتعدة الأهداف الخطية الضبابية بصورة كاملة

$$
\begin{aligned}
& \text { *شا جلال متلف } \\
& \text { فرع الرياضيات وتطبيقات الحاسوب، قسم العلوم التطبيقية، الجامعة التكنولوجية، بغداد، العراق } \\
& \text { الخلاصة : } \\
& \text { في هذا البحث سنققم طريقة جديدة لحل مسائل البرمجة المتعددة الأهداف الخطية الضبابية بصورة كاملة } \\
& \text { وإيجاد الحل الأمتل الضبابي. والأمثلة العددية جهزت لنوضيح الطريقة . }
\end{aligned}
$$

1-Introduction

Fuzzy set theory has been applied to many disciplines such as management sciences, mathematical modeling , control theory and industrial applications. Zadeh [1] introduced the fuzzy set theory to deal with uncertainty due to imprecision and vagueness. S.Mohammed [2] proposed a novel project scheduling method based on fully fuzzy linear programming. A.O.Hamadameen and Z.M.Zainuddin [3] used the fuzzy stochastic linear programming problems with uncertainty probability distribution. M.M.Shamooshaki, A.Hosseinzadeh and S.A.Edalatpanah [4] presented a new method for solving fully fuzzy linear programming with LR-type fuzzy numbers . M.Mehdi, A.Hosseinzadeh and S.Ahmed [5] proposed a new method for solving fully fuzzy linear programming problems by using the lexicography method. So P.Pandit [6] introduce multi-objective linear programming problems involving fuzzy parameters. Also A.Chaudhuri and K.De [7] used fuzzy multi-objective linear programming for traveling salesman problem .

In this paper we proposed a new method for solving fully fuzzy multi-objective linear programming problems and find the fuzzy optimal solution. A new method is illustrated with the help of numerical examples .

2- Preliminaries

2.1- Basic Definitions

We first review some known definitions which relevant to this work .
Definition 2.1 [8] : if X is a collection of objects denoted generically by x, then a fuzzy set A in X is defined to be a set of ordered pairs $\mathrm{A}=\left\{\left(x, \mu_{A}(x)\right): \mathrm{x} \in X\right\}$, where $\mu_{A}(x)$ is called the membership

[^0]function for the fuzzy set. The membership function maps each element of X to a membership value between 0 and 1 . We assume that X is the real line R .
Definition 2.2 [9]: A fuzzy number \tilde{a} is a triangular fuzzy number denoted by $\left(a_{1}, a_{2}, a_{3}\right)$ where $\mathrm{a}_{1}, \mathrm{a}_{2}$ and a_{3} are real numbers and its membership function $\mu_{a^{\wedge}}(x)$ is given below :

$\mu_{a^{\imath}}(x)=\left\{\begin{array}{lll}\frac{x-a_{1}}{a_{2}-a_{1}} & \text { for } & a_{1} \leq x \leq a_{2} \\ \frac{a_{3}-x}{a_{3}-a_{2}} & \text { for } & a_{2} \leq x \leq a_{3} \\ 0 & & \text { other wise }\end{array}\right.$
Definition 2.3 [10] : Let $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ be two triangular fuzzy numbers .Then
(i) $\left(a_{1}, a_{2}, a_{3}\right)(+)\left(b_{1}, b_{2}, b_{3}=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)\right.$.
(ii) $\left(a_{1}, a_{2}, a_{3}\right)(-)\left(b_{1}, b_{2}, b_{3}\right)=\left(a_{1}-b_{3}, a_{2}-b_{2}, a_{3}-b_{1}\right)$.
(iii) $k(a 1, a 2, a 3)=(k a 1, k a 2, k a 3)$, for $k \geq 0$.
(iv) $k(a 1, a 2, a 3)=(k a 3, k a 2, k a 1)$, for $k<0$

Let $F(R)$ be the set of all real triangular fuzzy numbers.
Definition 2.4 [10] : Let $\tilde{A}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)$ be in $F(R)$. Then
(i) $\tilde{A}=\tilde{B} \Leftrightarrow a \mathrm{i}=b \mathrm{i}$, for all for $i=1$ to 3 and
(ii) $\tilde{A} \leq \tilde{B} \Leftrightarrow a \mathrm{i} \leq b \mathrm{i}$, for all for $i=1$ to 3 .
2.2- Fully fuzzy linear programming problem [11, 12]

Fully fuzzy linear programming problem can be written :
(Q) $\max ($ or $\min) ~ \tilde{Z}=\left(\tilde{C}^{t} \otimes \tilde{X}\right)$

Subject to

$$
\tilde{A} \otimes \tilde{X}=\tilde{b}
$$

\tilde{X} : is non- negative fuzzy number,
where $\tilde{C}^{t}=\left[\tilde{C}_{j}\right]_{1 \times \mathrm{n}}, \tilde{X}=\left[\tilde{X}_{j}\right]_{\mathrm{n} \times 1}, \tilde{A}=\left[\tilde{a}_{i j}\right]_{\mathrm{m} \times \mathrm{n}}, \tilde{b}=\left[\tilde{b}_{i}\right]_{\mathrm{m} \times 1}$ and $\tilde{a}_{i j}, \tilde{C}_{j}, \tilde{X}_{j}, \tilde{b}_{i} \in F(R)$.

2.3- Fully fuzzy multi-objective linear programming problems [13,14]

Let the parameters $\tilde{Z}, \tilde{a}_{i j}, \tilde{C}_{j}, \tilde{X}_{j}$ and \tilde{b}_{i} be the triangular fuzzy numbers $\left(Z_{1}, Z_{2}, Z_{3}\right)$, $\left(p_{j}, q_{j}, r_{j}\right),\left(x_{j}, y_{j}, t_{j}\right),\left(a_{i j}, b_{i j}, c_{i j}\right)$ and $\left(b_{j}, g_{j}, h_{j}\right)$ respectively - then , the problem (Q) can be written as follows :
(Q) Maximize $\left(Z_{1}, Z_{2}, Z_{3}\right) \approx \sum_{j=1}^{n}\left(p_{j}, q_{j}, r_{j}\right) \otimes\left(x_{j}, y_{j}, t_{j}\right)$

Subject to
$\sum_{j=1}^{n}\left(a_{i j}, b_{i j}, c_{i j}\right) \otimes\left(x_{j}, y_{j}, t_{j}\right)\{\leq, \approx, \geq\}\left(b_{j}, g_{j}, h_{j}\right)$ for all $\mathrm{i}=1,2, \ldots, \mathrm{~m}$
$\left(x_{j}, y_{j}, t_{j}\right) \geq \widetilde{0}, \mathrm{j}=1,2, \ldots, \mathrm{~m}$.
Now, using the arithmetic operations and partial ordering relations, we write the given FLPP as a MOLP problem which is given below:
(M) Maximize $z_{1}=\sum_{j=1}^{n}$ lower value of $\left(\left(p_{j}, q_{j}, r_{j}\right) \otimes\left(x_{j}, y_{j}, t_{j}\right)\right)$

Maximize $z_{2}=\sum_{j=1}^{n}$ middle value of $\left(\left(p_{j}, q_{j}, r_{j}\right) \otimes\left(x_{j}, y_{j}, t_{j}\right)\right)$
Maximize $z_{3}=\sum_{j=1}^{n}$ upper value of $\left(\left(p_{j}, q_{j}, r_{j}\right) \otimes\left(x_{j}, y_{j}, t_{j}\right)\right)$
Subject to
$\sum_{j=1}^{n}$ lower value of $\left(\left(a_{i j}, b_{i j}, c_{i j}\right) \otimes\left(x_{j}, y_{j}, t_{j}\right)\right)\{\leq,=, \geq\} b_{i}$,
for all $\mathrm{i}=1,2, \ldots ., \mathrm{m}$;
$\sum_{j=1}^{n}$ middle value of $\left(\left(a_{i j}, b_{i j}, c_{i j}\right) \otimes\left(x_{j}, y_{j}, t_{j}\right)\right)\{\leq,=, \geq\} \mathrm{g}_{\mathrm{i}}$,
for all $\mathrm{i}=1,2, \ldots ., \mathrm{m}$;
$\sum_{j=1}^{n}$ upper value of $\left(\left(a_{i j}, b_{i j}, c_{i j}\right) \otimes\left(x_{j}, y_{j}, t_{j}\right)\right)\{\leq,=, \geq\} \mathrm{h}_{\mathrm{i}}$, for all $\mathrm{i}=1,2, \ldots ., \mathrm{m}$;
And $\quad x_{j} \leq y_{j} \leq t_{j}, \mathrm{j}=1,2, \ldots, \mathrm{~m}$. and all decision variables are non-negative .

3-The proposed method for solving fully fuzzy multi-objective linear programming problems

In this study, we proposed a new method to convert fully fuzzy multi-objective linear programming to fully fuzzy linear programming problem and we get the optimal fuzzy solution .
Step 1 : by the weighting problem of fully fuzzy multi-objective linear programming is converted to the fully fuzzy objective linear problem.
The weighting problem of fully fuzzy multi-objective linear programming:
Maximize (Minimize)
$\left(\sum_{r=1}^{k} w^{r}\left(\left(\tilde{c}^{r}\right)^{t} \otimes \tilde{X}\right)=w^{1}\left(\left(\tilde{c}^{1}\right)^{t} \otimes \tilde{X}\right) \oplus w^{2}\left(\left(\tilde{c}^{2}\right)^{t} \otimes \tilde{X}\right) \oplus \ldots \oplus w^{k}\left(\left(\tilde{c}^{k}\right)^{t} \otimes \tilde{X}\right)\right)$,
Subject to
$\tilde{A} \otimes \tilde{X}=\tilde{b}$
$\tilde{X} \geq 0, \quad \sum_{r=1}^{k} \quad w^{r}=1, \quad w^{r} \geq 0$.
fully fuzzy multi-objective linear programming is converted to the fully fuzzy objective linear problem:
Maximize (Minimize) $(\tilde{c})^{t} \otimes \tilde{X}$,
Subject to
$\tilde{A} \otimes \tilde{X}=\tilde{b}, \tilde{X} \geq 0$.
Step 2 : construct (MLP),(ULP) and (LLP) problem for the given (FLP) problem .
Step 3 : solve the (MLP) problem and then the (LLP) problem by using simplex method and find the optimal solution and obtain the values of all variables x_{j}, y_{j} and t_{j} and values of all objectives Z_{1}, Z_{2} and Z_{3}.

4- Numerical Examples

The proposed method is illustrated by the following examples.
Example 4.1
Maximize $\left((3,5,7) \otimes \tilde{X}_{1} \oplus(2,4,8) \otimes \tilde{X}_{2}\right),\left((3,5,10) \otimes \tilde{X}_{1} \oplus(1,7,8) \otimes \tilde{X}_{2}\right)$
Subject to $(4,5,9) \otimes \tilde{X}_{1} \oplus(2,7,8) \otimes \tilde{X}_{2}=(4,10,20)$

$$
\begin{aligned}
& (0,3,7) \otimes \tilde{X}_{1} \oplus(1,2,10) \otimes \tilde{X}_{2}=(2,5,18) \\
& \tilde{X}_{1}, \tilde{X}_{2} \geq 0
\end{aligned}
$$

By step 1: Assume $\mathrm{w}=(0.5,0.5)$, then obtain to FFMLP problem can be written as :
Maximize $\left((1.5,2.5,3.5) \otimes \tilde{X}_{1} \oplus(1,2,4) \otimes \tilde{X}_{2}\right),\left((1.5,2.5,5) \otimes \tilde{X}_{1} \oplus(0.5,3.5,4) \otimes \tilde{X}_{2}\right)$
Maximize $\left((3,5,8.5) \otimes \tilde{X}_{1} \oplus(1.5,5.5,8) \otimes \tilde{X}_{2}\right)$
Subject to $(4,5,9) \otimes \tilde{X}_{1} \oplus(2,7,8) \otimes \tilde{X}_{2}=(4,10,20)$

$$
(0,3,7) \otimes \tilde{X}_{1} \oplus(1,2,10) \otimes \tilde{X}_{2}=(2,5,18)
$$

$$
\tilde{X}_{1}, \tilde{X}_{2} \geq 0
$$

Assume $\tilde{X}_{1}=\left(x_{1}, y_{1}, t_{1}\right), \tilde{X}_{2}=\left(x_{2}, y_{2}, t_{2}\right)$ and $\tilde{Z}=\left(Z_{1}, Z_{2}, Z_{3}\right)$
We get to the problem FLPP in the following :
Maximize $Z_{1}=3 t_{1}+1.5 t_{2}$
Maximize $Z_{2}=5 y_{1}+5.5 \quad y_{2}$
Maximize $Z_{3}=8.5 t_{1}+8 t_{2}$
Subject to
$4 x_{1}+2 x_{2}=4 ; 0 x_{1}+1 x_{2}=2$;
$5 y_{1}+7 y_{2}=10 ; 3 y_{1}+2 y_{2}=5$;
$9 t_{1}+8 t_{2}=20 ; 7 t_{1}+10 t_{2}=18 ;$
$x_{1}, x_{2} \geq 0, y_{1}, y_{2} \geq 0, t_{1}, t_{2} \geq 0$.
By step 2 : we get to the middle level problem :
$\left(\mathrm{P}_{2}\right):$ Maximize $Z_{2}=5 y_{1}+5.5 y_{2}$
Subject to
$5 y_{1}+7 y_{2}=10 ; 3 y_{1}+2 y_{2}=5$;
$y_{1}, y_{2} \geq 0$
Using simplex method to solve the problem $\left(\mathrm{P}_{2}\right)$, we get to the optimal solution
$y_{1}=1.3636 ; y_{2}=0.4545$ and $Z_{2}=9.3182$
the upper level problem in the following:
$\left(\mathrm{P}_{3}\right):$ Maximize $Z_{3}=8.5 t_{1}+8 t_{2}$
Subject to
$8.5 t_{1}+8 t_{2} \geq 9.3182 ; 9 t_{1}+8 t_{2}=20 ; 7 t_{1}+10 t_{2}=18 ;$
$t_{1} \geq y_{1}, t_{2} \geq y_{2}, t_{1}, t_{2} \geq 0$.
Using simplex method to solve the problem $\left(\mathrm{P}_{3}\right)$ when $y_{1}=1.3636$; $y_{2}=0.4545$, we get to the optimal solution $t_{1}=1.6471, t_{2}=0.6471$ and $Z_{2}=19.1765$.
the lower level problem in the following :
$\left(\mathrm{P}_{1}\right):$ Maximize $Z_{1}=3 t_{1}+1.5 t_{2}$
Subject to

```
\(3 t_{1}+1.5 t_{2} \leq 9.3182 ; 4 x_{1}+2 x_{2}=4 ; 0 x_{1}+1 x_{2}=2\);
\(x_{1} \leq y_{1}, x_{2} \leq y_{2} ; x_{1}, x_{2} \geq 0\).
```

Using simplex method to solve the problem $\left(\mathrm{P}_{1}\right)$ when $t_{1}=3.1061, t_{2}=0 \quad, y_{1}=1.3636$;
$y_{2}=0.4545$, we get to the optimal solution $x_{1}=0.7728, \quad x_{2}=0.4545$ and $Z_{1}=9.3182$.
Now the optimal fuzzy solution to the given fully fuzzy linear programming problem is : $\tilde{X}_{1}=$ $(0.7728,1.3636,1.6471), \tilde{X}_{2}=(0.4545,0.4545,0.6471)$ and $\tilde{Z}=(9.3182,9.3182,19.1765)$.
Example 4.2
Maximize $\left((1,2,3) \otimes \tilde{X}_{1} \oplus(2,4,5) \otimes \tilde{X}_{2}\right),\left((2,3,4) \otimes \tilde{X}_{1} \oplus(3,4,5) \otimes \tilde{X}_{2}\right)$
Subject to $(0,1,2) \otimes \tilde{X}_{1} \oplus(1,2,3) \otimes \tilde{X}_{2}=(1,10,27)$

$$
\begin{aligned}
& (1,2,3) \otimes \tilde{X}_{1} \oplus(0,1,2) \otimes \tilde{X}_{2}=(2,11,28) \\
& \tilde{X}_{1}, \tilde{X}_{2} \geq 0
\end{aligned}
$$

By step 1: Assume $\mathrm{w}=(0.5,0.5)$, then obtain to FFMLP problem can be written as :
Maximize $\left((0.5,1,1.5) \otimes \tilde{X}_{1} \oplus(1,2,2.5) \otimes \tilde{X}_{2}\right),\left((1,1.5,2) \otimes \tilde{X}_{1} \oplus(1.5,2,2.5) \otimes \tilde{X}_{2}\right)$
Maximize $\left((1.5,2.5,3.5) \otimes \tilde{X}_{1} \oplus(2.5,4,5) \otimes \tilde{X}_{2}\right)$
Subject to $(0,1,2) \otimes \tilde{X}_{1} \oplus(1,2,3) \otimes \tilde{X}_{2}=(1,10,27)$

$$
(1,2,3) \otimes \tilde{X}_{1} \oplus(0,1,2) \otimes \tilde{X}_{2}=(2,11,28)
$$

$$
\tilde{X}_{1}, \tilde{X}_{2} \geq 0
$$

Assume $\tilde{X}_{1}=\left(x_{1}, y_{1}, t_{1}\right), \tilde{X}_{2}=\left(x_{2}, y_{2}, t_{2}\right)$ and $\tilde{Z}=\left(Z_{1}, Z_{2}, Z_{3}\right)$
We get to the problem FLPP in the following :
Maximize $Z_{1}=1.5 t_{1}+2.5 t_{2}$
Maximize $Z_{2}=2.5 y_{1}+4 y_{2}$
Maximize $Z_{3}=3.5 t_{1}+5 t_{2}$
Subject to
$0 x_{1}+1 x_{2}=1 ; 1 x_{1}+0 x_{2}=2$;
$1 y_{1}+2 y_{2}=10 ; 2 y_{1}+1 y_{2}=11$;
$2 t_{1}+3 t_{2}=27 ; 3 t_{1}+2 t_{2}=28$;
$x_{1}, x_{2} \geq 0, y_{1}, y_{2} \geq 0, t_{1}, t_{2} \geq 0$.
By step 2 : we get to the middle level problem :
$\left(\mathrm{P}_{2}\right):$ Maximize $Z_{2}=2.5 y_{1}+4 y_{2}$
Subject to
$1 y_{1}+2 y_{2}=10 ; 2 y_{1}+1 y_{2}=11 ;$
$y_{1}, y_{2} \geq 0$
Using simplex method to solve the problem $\left(\mathrm{P}_{2}\right)$, we get to the optimal solution
$y_{1}=4 ; y_{2}=3$ and $Z_{2}=22$
the upper level problem in the following :
$\left(\mathrm{P}_{3}\right):$ Maximize $Z_{3}=3.5 t_{1}+5 t_{2}$
Subject to
$3.5 t_{1}+5 t_{2} \geq 22 ; 2 t_{1}+3 t_{2}=27 ; 3 t_{1}+2 t_{2}=28 ;$
$t_{1} \geq y_{1}, t_{2} \geq y_{2},, t_{1}, t_{2} \geq 0$.
Using simplex method to solve the problem $\left(\mathrm{P}_{3}\right)$ when $y_{1}=4 ; y_{2}=3$, we get to the optimal solution $t_{1}=6, t_{2}=5$ and $Z_{2}=46$.
the lower level problem in the following :
$\left(\mathrm{P}_{1}\right):$ Maximize $Z_{1}=1.5 t_{1}+2.5 t_{2}$
Subject to
$1.5 t_{1}+2.5 t_{2} \leq 22 ; 0 x_{1}+1 x_{2}=1 ; 1 x_{1}+0 x_{2}=2$;
$x_{1} \leq y_{1}, x_{2} \leq y_{2} ; x_{1}, x_{2} \geq 0$.
Using simplex method to solve the problem $\left(\mathrm{P}_{1}\right)$ when $t_{1}=0, t_{2}=8, y_{1}=4 ; y_{2}=3$, we get to the optimal solution $x_{1}=2, x_{2}=1$ and $Z_{1}=22$.
Now the optimal fuzzy solution to the given fully fuzzy linear programming problem is : $\tilde{X}_{1}=(2,4$, $6), \tilde{X}_{2}=(1,3,5)$ and $\tilde{Z}=(22,22,46)$.

5- Conclusion

In this paper, a new method was proposed for solving fully fuzzy multi-objective linear programming problems when the variables triangular fuzzy numbers and to find an optimal fuzzy solution to a fuzzy linear programming.

References:

1. Zadeh. 1965. Fuzzy set, Information and Control, 8, pp:338-353 .
2. S.M.T.Mehrizi. 2014. A novel project scheduling method based on fully fuzzy linear programming , Research Journal of Applied Sciences, 9(12), pp:941-946 .
3. A.O.Hamadameen and Z.M.Zainuddin. 2013. Fuzzy stochastic linear programming problems with uncertainty probability distribution, Australian Journal of Basic and Applied Sciences, 7(2), pp:846-852.
4. M.M.Shamooshaki, A.Hosseinzadeh and S.A.Edalatpanah. 2014. A new method for solving fully fuzzy linear programming with LR-type fuzzy numbers, International Journal of Data Envelopment Analysis, 1(3), pp:53-55 .
5. M.M.Shamooshaki, A.Hosseinzadeh and S.A.Edalatpanah. 2015. A new method for solving fully fuzzy linear programming problems by using the lexicography method, Applied and Computational Mathematics, 4, pp:1-3.
6. P.Pandit. 2013.Multi-objective involving fuzzy parameters, International Journal of Soft Computing and Engineering, 3, pp:99-101 .
7. A.Chaudhuri and K.De. 2011. Fuzzy multi-objective linear programming for traveling salesman problem , African Journal of Mathematics and Computer Science Research , 4(2), pp: 64-70 .
8. N.M.Amiri, S.H.Nasseri and A.Yazdani. 2009.Fuzzy primal simplex algorithms for solving fuzzy linear programming problems, Iranian Journal of Operations Research, 1(2), pp:68-84 .
9. M.Jayalakshmi and P.Pandian. 2014. Solving fully fuzzy multi-objective linear programming problems, International Journal of Scientific Research, 3, pp:2277-8179.
10. P.Pandian and M.Jayalakshi. 2010. A new method for solving integer linear programming problems with fuzzy variables, Applied Mathematical Sciences , 4(20), pp:997-1004 .
11. M.Jayalakshmi and P.Pandian.2012. A new method for finding an optimal fuzzy solution for fully fuzzy linear programming problems, International Journal of Engineering Research and Applications, 2, pp:247-254 .
12. S.Aggarwal and U.Sharma. 2013. Fully fuzzy multi-choice multi-objective linear programming solution via deviation degree, International Journal of Pure and Applied Sciences and Technology, 19(1) , pp:49-64 .
13. A. H. Vencheh, Z. Rezaei and S. Razipour.2014.Solving fully fuzzy multi objective linear programming problems: A new perspective, Journal of Soft Computing and Applications, pp:1-4.
14. P.Pandian. 2013. Multi-objective programming approach for fuzzy linear programming problems, Applied Mathematical Sciences, 7(37), pp:1811-1817 .

[^0]: *Email: rasha.jalal83@yahoo.com

