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Abstract 

     The cozy partitions achieved more creativity by emerging with many topics in 

representation theory and mathematical relations. We find the precise number of 

cozy tableaux in the case (𝜔1, 𝜔2) with any number of 𝜔1 and 𝜔2. Specifically, we 

use the MATLAB programme that coincided with the mathematical solution in 

giving precision to these numbers in this case. 
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ة بعض حالات التجزئات اللطيف  

 
 علي عبدالقادر العبدلي*, عمار صديق محمود

 قسم الرياضيات, كلية التربية للعلوم الصرفة, جامعة الموصل, الموصل, العراق 
 

  الخلاصة 
يل  الموضوعات في نظرية التمثة مزيدًا من الإبداع من خلال الظهور مع العديد من اللطيف حققت التجزئات      

,𝜔1)ة في الحالة  اللطيف  . نجد العدد الدقيق للالواحوالعلاقات الرياضية 𝜔2)    لأي عدد من𝜔1    و𝜔2  على .
في هذه    ياضي في إعطاء الدقة لهذه الأعداد وجه التحديد ، نستخدم برنامج ماتلاب الذي تزامن مع الحل الر 

 الحالة.
 

1. Introduction and statement of results 

     The notion of Young tableaux was introduced by Alfred Young [1]. This was one of the 

most important subjects that plays the main role in the representation theory of symmetric 

groups and combinatorics. Kang et al. in [2] show a clear relation between cozy and standard 

tableaux of shape 𝜔. That cozy tableaux of shape 𝜔 have a one to one correspondence with 

standard tableaux of shape 𝜔. Also, Kang et al. established an explicit isomorphic between 

cozy and standard tableaux of shape 𝜔. These relations are commonly used for connecting to 

Hecke algebras and Specht modules; (see [2], [3], [4], [5], [6], and [7]). To the best of our 

knowledge, there is no rule for counting the number of cozy 𝜔-tableaux. In this paper, we 

determine the number of cozy tableaux of shape 𝜔. We give a general rule by dealing with the 

case when 𝜔 = (𝜔1, 𝜔2) to enumerate cozy tableaux and leave the other cases for future 

work. We can now state our main result. 

Theorem 1 
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   If the 𝑡 tableau of shape 𝜔 is of the form (𝜔1, 𝜔2), then the following procedures can be 

used to enumerate the exact number of cozy tableaux: 

i.cozy(ω1, ω2) = ∑ cozy(t1, ω2−1)
ω1
t1=ω2

. 

ii.If  {
𝜔2 − 1 > 0,           continue,
𝜔2 − 1 ≤ 0,                   stop.

 

iii.When 𝜔2 − 1 > 0, then ∑ 𝑐𝑜𝑧𝑦(𝑡1, 𝜔2−1)
𝜔1
𝑡1=𝜔2

= 𝑙𝑠( 𝑐𝑜𝑧𝑦(𝑠, 𝜔2−2 )  ) where  

𝑙𝑠 = {
𝜔1 − 𝜔2 + 1,              𝑖𝑓  𝑠 = 𝜔2 − 1   or 𝜔2,
𝜔1 − 𝑠 + 1,    𝑖𝑓 𝑠 = 𝜔2 + 1,𝜔2 + 2,⋯ ,𝜔1.

 

iv.If  {
𝜔2 − 2 > 0,            continue,
𝜔2 − 2 ≤ 0,                    stop.

 

v.When 𝜔2 − 2 > 0, then 𝑙𝑠 (
 

cozy(𝑠, 𝜔2−2 )) = 

{
∑ 𝑙𝑠(cozy(𝜔2−2, 𝜔2−3 ) + cozy(𝜔2−1, 𝜔2−3)),                                                          
𝜔1
𝑠=𝜔2

( ∑ 𝑙𝑠 − ∑ 𝑙𝑔
𝑑
𝑔=𝜔2−1

𝜔1
𝑠=𝜔2−1

  )(cozy(𝑑+1, 𝜔2−3)),   𝑖𝑓 𝑑 = 𝜔2 − 1,𝜔2, ⋯ , 𝜔1 − 1.
 

vi.If  {
𝜔2 − 3 > 0,            continue,
𝜔2 − 3 ≤ 0,                    stop.

 

vii.When 𝜔2 − 3 > 0, then we have three answers 

{
 

 
(𝜔1 − (𝜔2 − 3) + 1)∑ 𝑙𝑠(cozy(𝑡2, 𝜔2−3 )),                                       𝑖𝑓 𝑡2

𝜔1
𝑠=𝜔2−1

= 𝜔2 − 3  or 𝜔2 − 2,

(𝜔1 − (𝜔2 − 3))∑ 𝑙𝑠(cozy(𝜔2−1, 𝜔2−3 )),
𝜔1
𝑠=𝜔2−1

                                                                                           

((𝜔1 − (𝜔2 − 3) + 𝑡3) ∑ 𝑙𝑠 − (𝜔1 − (𝜔2 − 3) + (2 − 𝑡3)∑ 𝑙𝑔
𝑑
𝑔=𝜔2−1

𝜔1
𝑠=𝜔2−1

  ) (cozy(𝑑+1, 𝜔2−4)),

 

where 𝑡3 = −1,−2, −3,… 

viii.If  {
𝜔2 − 4 > 0,            continue,
𝜔2 − 4 ≤ 0,                    stop.

 

So on. 

 
2. Preliminaries 

   Let 𝑟 be a positive integer. A sequence 𝜔 = (𝜔1, 𝜔2, ⋯ , 𝜔𝑛) of non-negative integers is 

said to be a composition of 𝑟 such that ∑ 𝜔𝑖𝑖 = 𝑟, where 𝑖 = 1, 2,⋯ , 𝑛. A partition is a 

composition 𝜔 if 𝜔𝑖 ≥ 𝜔𝑖+1 for all 𝑖 = 1, 2,⋯ , 𝑛. Young's diagram of a composition 𝜔 is the 

subset of 𝑁 × 𝑁 as follows: 
[𝜔] = {(𝛿, 𝜃): 1 ≤ 𝜃 ≤ 𝜔𝛿  and 𝛿 ≥ 1}. 

We denote by 𝑌𝐷  Young's diagram. For example, if 𝜔 = (4, 6) then 𝑌𝐷 is 

 

     

                             

 

       A bijection 𝑡: [𝜔] ⟶ {1, 2,⋯ , 𝑟} is said to be 𝜔-tableau if 𝜔 is a composition of 𝑟. If the 

entries in 𝜔-tableau 𝑡 increase from left to right in each row (i.e. 𝑡(𝛿, 𝜃) < 𝑡(𝛿, 𝜃 + 1)), then 

𝑡 is called row standard. whilst 𝜔-tableau 𝑡 is called standard if 𝜔 is a partition, 𝑡 is a row 

standard and the entries in 𝑡 increase from top to bottom in each column (i.e. 𝑡(𝛿, 𝜃) <
𝑡(𝛿 + 1, 𝜃)). We denote by 𝑅𝑆 (respectively 𝑆) row standard (respectively standard) 𝜔-

tableau. For example, if 𝜔 = (3, 1) then the following are 𝑅𝑆 

 

1 2 3  1 3 4  2 3 4 

4  2  1  
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   It is clear that the only first two tableaux are 𝑆. The standard 𝜔-tableau 𝑡𝜔 is called unique 

if 𝑡𝜔(𝛿, 𝜃 + 1) = 𝑡𝜔(𝛿, 𝜃) + 1, ∀(𝛿, 𝜃) ∈ [𝜔]. For example, if 𝜋 = (3, 2) and 𝜑 = (4, 1), 
then 

           

𝑡𝜋 = 

 

𝑡𝜑 = 

 

   According to Kang et al. in [2], a semi cozy is an 𝜔-tablaeu 𝑡: [𝜔] ⟶ {1, 2,⋯ , 𝑟} if 1 ≤
𝑡(𝛿, 𝜃) ≤ 𝑡𝜔(𝛿, 𝜃), ∀(𝛿, 𝜃) ∈ [𝜔]. Also, the cozy is defined in [2] as a semi cozy 𝜔-tableau if 

it satisfies: 

1. 𝑡 is a row standard. 

2. 𝑡(𝛿, 𝜃) + 𝜃 ≤ 𝑡(𝛿 + 1, 𝜃), ∀(𝛿, 𝜃) ∈ [𝜔]. 
    

Note that any 𝑡(1, 𝜃) = 𝜃. For example, the following tableau is cozy: 

 

1 2 3 4 

2 4  

 

while this one is not cozy: 

 

1 2 3 4 

2 3  

 
3. Cases of 𝝎-tableau (𝝎𝟏, 𝝎𝟐) and Proof of Theorem 1 

3.1. Case (𝜔1, 0) 
   We have used Matlab programming to study all the cases (𝜔1, 𝜔2) incrementally to seek 

what behaviour they exhibit in order to determine the exact number of cozy 𝜔-tableaux. In 

this case, we note that each of the examples in Table 1 has given only one result, as follows: 

 

Table 1: Number of cozy tableaux of shape (𝜔1, 0). 

(1, 0) (2, 0) (3, 0) (4, 0) ⋯ 

1 
 

1 2 
 

1 2 3 
 

1 2 3 4 
 

⋯ 

 

      It is clear from Table 1 that the number of cozy tableaux in every case of 𝜔-tableau of 

shape (𝜔1, 0) is equal to one, that means 𝑐𝑜𝑧𝑦(𝜔1,0) = 1. 

 

3.2. Case (𝜔1, 1) 
   This case as shown in Table 2 is essential for interpreting the cozy tableaux description, 

particularly the outcomes that will emerge later, and it runs like the below: 

 

 

 

 

 

 

 

1 2 3 

4 5  

1 2 3 4 

5  
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Table 2: Number of cozy tableaux of shape (𝜔1, 1). 
(1, 1) (2, 1) (3, 1) (4, 1) ⋯ 

1 

2 
 

1 2  1 2 

2  3  
 

1 2 3  1 2 3  

 2   3  

 

1 2 3 

4  
 

1 2 3 4  1 2 3 4 

2     3    

         

1 2 3 4  1 2 3 4 

4     5    
 

 

 

⋯ 

     The number of cozy tableaux in every case of 𝜔-tableau of shape (𝜔1, 1) is 𝑐𝑜𝑧𝑦(𝜔1,1) =

𝜔1, as shown in Table 2. Table 3 shows the number of cozy tableaux in each shape of 𝜔-

tableau based on the cases of (𝜔1, 0) as given in Table 1, and we proceed similarly in the next 

cases of 𝜔-tableaux. 

 

Table 3: Number of cozy tableaux for each shape of (𝜔1, 1). 
(𝝎𝟏, 𝟏) (1, 0) (2, 0) (3, 0) (4, 0) ⋯ 

(1, 1) 1     

(2, 1) 1 1    

(3, 1) 1 1 1   

(4, 1) 1 1 1 1  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

3.3. Case (𝜔1, 2) 
     In Table 4, the number of cozy tableaux of shape (𝜔1, 2) based on Table 1 is expressed as 

the Pascal triangle and the numbers are repetition of two cases of (𝜔1, 0), as shown below: 

 

Table 4: Number of cozy tableaux for each shape of (𝜔1, 2). 

(𝝎𝟏, 𝟐) (1, 0) (2, 0) (3, 0) (4, 0) ⋯ ⋯ ⋯ 

(2, 2) 1 1      

(3, 2) 2 2 1     

(4, 2) 3 3 2 1    

(5,2) 4 4 3 2 1   

(6, 2) 5 5 4 3 2 1  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Total 2(𝑐𝑜𝑧𝑦(𝜔1−1,   1)) (
𝜔1 − 1

𝜔1 − 3
) 

3.4. Case (𝜔1, 3) 
   We now continue with the cases in Table 5, where there are several surprises in obtaining 

the general rule for each case separately, as given below: 

 

Table 5: Number of cozy tableaux for each shape of (𝜔1, 3). 

  A    B   

(𝝎𝟏, 𝟑) (1, 0) (2, 0) (3, 0) (4, 0) ⋯ ⋯ ⋯ ⋯ 

(3, 3) 2 2 1      

(4, 3) 5 5 3 1     

(5, 3) 9 9 6 3 1    

(6, 3) 14 14 10 6 3 1   

(7, 3) 20 20 15 10 6 3 1  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Total 2(𝑐𝑜𝑧𝑦(𝜔1−1,   2)) (
𝜔1

𝜔1 − 3
)  
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3.5. Case (𝜔1, 4) 
    In Table 6, the column (3, 0) is completely different from the other cases in the latter 

tables, as we notice below: 

 

Table 6: Number of cozy tableaux for each shape of (𝜔1, 4). 
  A C   B    

(𝝎𝟏, 𝟒) (1, 0) (2, 0) (3, 0) (4, 0) ⋯ ⋯ ⋯ ⋯ ⋯ 

(4, 4) 5 5 3 1      

(5, 4) 14 14 9 4 1     

(6, 4) 28 28 19 10 4 1    

(7, 4) 48 48 34 20 10 4 1   

(8, 4) 75 75 55 35 20 10 4 1  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Total 2(𝑐𝑜𝑧𝑦(𝜔1−1,   3)) (
𝜔1

𝜔1 − 3
) − 1 (

𝜔1
𝜔1 − 4

) 
  

 

3.6. Case (𝜔1, 5) 
     In Table 7, one can easily see that the last values completely changed our method of 

research due to the presence of several variables that forced us to find a more smooth and 

acceptable method. Because if we continue with the last cases upwards, we will inevitably 

face unexpected values and therefore probably could not control them, which led us to the 

proof of Theorem 1. Therefore, through the previous results, we put the appropriate method to 

find the exact number of cozy tableaux by the steps in Theorem 1. 

 

Table 7: Number of cozy tableaux for each shape of (𝜔1, 5). 

  A D C   B    

(𝝎𝟏, 𝟓) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) ⋯ ⋯ ⋯ ⋯ ⋯ 

(5, 5) 14 14 9 4 1      

(6, 5) 42 42 28 14 5 1     

(7, 5) 90 90 62 34 15 5 1    

(8, 5) 165 165 117 69 35 15 5 1   

(9, 5) 275 275 200 125 70 35 15 5 1  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Total 2(𝑐𝑜𝑧𝑦(𝜔1−1,   4)) 
∑((

𝜔1
𝜔1 − 3

)

𝜔1

𝑡=5

− 1)𝑐𝑜𝑧𝑦(𝑡,   4) 

(
𝜔1

𝜔1 − 4
)

− 1 

(
𝜔1

𝜔1 − 5
)    

 

3.7. Case (𝜔1, 6) 
     Finally, in Table 8, it is easy to see that the last values are completely different from 

previous tables due to the presence of several variables especially the new column that forced 

us to find a more smooth and acceptable method. Because if we continue with the last cases 

upwards, we will inevitably face unexpected values and therefore probably could not control 

them. As in column E the total is  
1

2
 𝐴 + 𝐵 + 𝐶 + 𝐷, where A, B, C and D are the values in 

the last table. So that led us to the proof of Theorem 1 as well. Therefore, through the 

previous results, we put the appropriate method to find the exact number of cozy tableaux by 

the steps in Theorem 1. 
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Table 8: Number of cozy tableaux for each shape of (𝜔1, 6). 
  A E D C   B    

(𝝎𝟏, 𝟔) (1, 

0) 

(2, 

0) 

(3, 0) (4, 0) (5, 0) (6, 

0) 

⋯ ⋯ ⋯ ⋯ ⋯ 

(6, 

6) 

42 42 28 14 5 1      

(7, 

6) 

132 132 90 48 20 6 1     

(8, 

6) 

297 297 207 117 55 21 6 1    

(9, 

6) 

572 572 407 242 125 56 2

1 

6 1   

(10, 

6) 

100

1 

100

1 

726 451 251 126 5

6 

21 6 1  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Tota

l 

2(𝑐𝑜𝑧𝑦(𝜔1−1,   5)) (
1

2
 𝐴 + 𝐵 + 𝐶

+ 𝐷)𝑐𝑜𝑧𝑦(𝜔1,5) 
∑((

𝜔1
𝜔1 − 4

)

𝜔1

𝑡=6

− 1)𝑐𝑜𝑧𝑦(𝑡,   5) 

(
𝜔1

𝜔1 − 5
)

− 1 

(
𝜔1

𝜔1 − 6
) 

   

 

4. Example 

     In this example, the 𝜔-tableau has the shape (7, 4), as illustrated in Table 6. We determine 

the precise number of cozy tableaux. We have the following steps and results based on 

Theorem 1. 

𝑐𝑜𝑧𝑦(7,4) = (𝑐𝑜𝑧𝑦(4,3) + 𝑐𝑜𝑧𝑦(5,3) + 𝑐𝑜𝑧𝑦(6,3) + 𝑐𝑜𝑧𝑦(7,3))                                      (1) 

    Now each cozy tableau in Eq. (1) has the following form 

𝑐𝑜𝑧𝑦(4,3) = (𝑐𝑜𝑧𝑦(3,2) + 𝑐𝑜𝑧𝑦(4,2)). 

𝑐𝑜𝑧𝑦(5,3) = (𝑐𝑜𝑧𝑦(3,2) + 𝑐𝑜𝑧𝑦(4,2) + 𝑐𝑜𝑧𝑦(5,2)). 

𝑐𝑜𝑧𝑦(6,3) = (𝑐𝑜𝑧𝑦(3,2) + 𝑐𝑜𝑧𝑦(4,2) + 𝑐𝑜𝑧𝑦(5,2) + 𝑐𝑜𝑧𝑦(6,2)). 

𝑐𝑜𝑧𝑦(7,3) = (𝑐𝑜𝑧𝑦(3,2) + 𝑐𝑜𝑧𝑦(4,2) + 𝑐𝑜𝑧𝑦(5,2) + 𝑐𝑜𝑧𝑦(6,2) + 𝑐𝑜𝑧𝑦(7,2)). 

   Then using the latter forms, the Eq. (1) become as follows 

 𝑐𝑜𝑧𝑦(7,4) = 4𝑐𝑜𝑧𝑦(3,2) + 4𝑐𝑜𝑧𝑦(4,2) + 3𝑐𝑜𝑧𝑦(5,2) + 2𝑐𝑜𝑧𝑦(6,2) + 𝑐𝑜𝑧𝑦(7,2).                     (2) 

   Similarly each cozy tableau in Eq. (2) has the following form 

4(𝑐𝑜𝑧𝑦(3,2)) = 4(𝑐𝑜𝑧𝑦(2,1) + 𝑐𝑜𝑧𝑦(3,1)). 

4(𝑐𝑜𝑧𝑦(4,2)) = 4(𝑐𝑜𝑧𝑦(2,1) + 𝑐𝑜𝑧𝑦(3,1) + 𝑐𝑜𝑧𝑦(4,1)). 

3(𝑐𝑜𝑧𝑦(5,2)) = 3(𝑐𝑜𝑧𝑦(2,1) + 𝑐𝑜𝑧𝑦(3,1) + 𝑐𝑜𝑧𝑦(4,1) + 𝑐𝑜𝑧𝑦(5,1)). 

2(𝑐𝑜𝑧𝑦(6,2)) = 2(𝑐𝑜𝑧𝑦(2,1) + 𝑐𝑜𝑧𝑦(3,1) + 𝑐𝑜𝑧𝑦(4,1) + 𝑐𝑜𝑧𝑦(5,1) + 𝑐𝑜𝑧𝑦(6,1)). 

 𝑐𝑜𝑧𝑦(7,2) = (𝑐𝑜𝑧𝑦(2,1) + 𝑐𝑜𝑧𝑦(3,1) + 𝑐𝑜𝑧𝑦(4,1) + 𝑐𝑜𝑧𝑦(5,1) + 𝑐𝑜𝑧𝑦(6,1) + 𝑐𝑜𝑧𝑦(7,1)). 

   We obtain Eq. (3) by following the previous steps from Eq. (2) as follows 
𝑐𝑜𝑧𝑦(7,4) = 14𝑐𝑜𝑧𝑦(2,1) + 14𝑐𝑜𝑧𝑦(3,1) + 10𝑐𝑜𝑧𝑦(4,1) + 6𝑐𝑜𝑧𝑦(5,1) + 3𝑐𝑜𝑧𝑦(6,1) + 𝑐𝑜𝑧𝑦(7,1).         (3) 

   Finally, we have each cozy tableau in Eq. (3) as the following forms 

14𝑐𝑜𝑧𝑦(2,1) = 14(𝑐𝑜𝑧𝑦(1,0) + 𝑐𝑜𝑧𝑦(2,0) ). 

14𝑐𝑜𝑧𝑦(3,1) = 14(𝑐𝑜𝑧𝑦(1,0) + 𝑐𝑜𝑧𝑦(2,0) + 𝑐𝑜𝑧𝑦(3,0)). 

10𝑐𝑜𝑧𝑦(4,1) = 10(𝑐𝑜𝑧𝑦(1,0) + 𝑐𝑜𝑧𝑦(2,0) + 𝑐𝑜𝑧𝑦(3,0) + 𝑐𝑜𝑧𝑦(4,0)). 

6𝑐𝑜𝑧𝑦(5,1) = 6(𝑐𝑜𝑧𝑦(1,0) + 𝑐𝑜𝑧𝑦(2,0) + 𝑐𝑜𝑧𝑦(3,0) + 𝑐𝑜𝑧𝑦(4,0) + 𝑐𝑜𝑧𝑦(5,0)). 

3𝑐𝑜𝑧𝑦(6,1) = 3(𝑐𝑜𝑧𝑦(1,0) + 𝑐𝑜𝑧𝑦(2,0) + 𝑐𝑜𝑧𝑦(3,0) + 𝑐𝑜𝑧𝑦(4,0) + 𝑐𝑜𝑧𝑦(5,0) + 𝑐𝑜𝑧𝑦(6,0)). 

𝑐𝑜𝑧𝑦(7,1) = 𝑐𝑜𝑧𝑦(1,0) + 𝑐𝑜𝑧𝑦(2,0) + 𝑐𝑜𝑧𝑦(3,0) + 𝑐𝑜𝑧𝑦(4,0) + 𝑐𝑜𝑧𝑦(5,0) + 𝑐𝑜𝑧𝑦(6,0) + 

𝑐𝑜𝑧𝑦(7,0). 
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   Now the final form of counting the exact number of cozy tableaux of shape (7, 4) is 

obtained by Eq. (4) from following the latter forms in Eq. (3) 

𝑐𝑜𝑧𝑦(7,4) = 48𝑐𝑜𝑧𝑦(1,0) + 48𝑐𝑜𝑧𝑦(2,0) + 34𝑐𝑜𝑧𝑦(3,0) + 20𝑐𝑜𝑧𝑦(4,0) + 10𝑐𝑜𝑧𝑦(5,0) +

4𝑐𝑜𝑧𝑦(6,0) + 𝑐𝑜𝑧𝑦(7,0).                                                               (4) 

   Therefore, the precise number of cozy tableaux of the shape (7, 4) based on Table 1 is 

𝑐𝑜𝑧𝑦(7,4) = 165 as shown in Table 6. 

 

5. Conclusion 

   In conclusion, we investigate the exact number of cozy tableaux of the shape (𝜔1, 𝜔2) by 

Theorem 1. We can see that in every new case of (𝜔1, 𝜔2) where 𝜔2 > 3, we obtain a new 

column that differs from the new columns in the previous cases. However, the total form of 

the new column depends on the previous cases. As we get the total form of the new (gray) 

column in Table 8 depending on the values of columns A, B, C and D in Table 7. Therefore, 

to avoid that, the MATLAB programme was used to solve this problem. 
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